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Mathematical models for predicting 
human mobility in the context of infectious 
disease spread: introducing the impedance 
model
Kankoé Sallah1,2* , Roch Giorgi1,3, Linus Bengtsson4,5, Xin Lu4,5,6, Erik Wetter5,7, Paul Adrien8, 
Stanislas Rebaudet9, Renaud Piarroux10 and Jean Gaudart1,3

Abstract 

Background: Mathematical models of human mobility have demonstrated a great potential for infectious disease 
epidemiology in contexts of data scarcity. While the commonly used gravity model involves parameter tuning and 
is thus difficult to implement without reference data, the more recent radiation model based on population densi-
ties is parameter-free, but biased. In this study we introduce the new impedance model, by analogy with electricity. 
Previous research has compared models on the basis of a few specific available spatial patterns. In this study, we use a 
systematic simulation-based approach to assess the performances.

Methods: Five hundred spatial patterns were generated using various area sizes and location coordinates. Model 
performances were evaluated based on these patterns. For simulated data, comparison measures were average root 
mean square error (aRMSE) and bias criteria. Modeling of the 2010 Haiti cholera epidemic with a basic susceptible–
infected–recovered (SIR) framework allowed an empirical evaluation through assessing the goodness-of-fit of the 
observed epidemic curve.

Results: The new, parameter-free impedance model outperformed previous models on simulated data according to 
average aRMSE and bias criteria. The impedance model achieved better performances with heterogeneous popula-
tion densities and small destination populations. As a proof of concept, the basic compartmental SIR framework was 
used to confirm the results obtained with the impedance model in predicting the spread of cholera in Haiti in 2010.

Conclusions: The proposed new impedance model provides accurate estimations of human mobility, especially 
when the population distribution is highly heterogeneous. This model can therefore help to achieve more accurate 
predictions of disease spread in the context of an epidemic.

Keywords: Human mobility, Disease spread, Impedance model, Spatial statistics, Epidemiology, Radiation model, 
Gravity model
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Background
Epidemic spread depends on the likelihood of infection, 
as well as on individual human interactions. Concern-
ing the latter, mobility networks play a huge role in the 

temporal and spatial dynamics of disease transmission 
within a population [1].

If mobility networks cannot be provided, reaction dif-
fusion models can roughly report on the epidemic spread 
[2]. In the last decade, there has been a growing interest 
among infectious disease epidemiologists in estimat-
ing human mobility and rebuild mobility networks [3]. 
While mathematical models of human mobility have 
been in use since the last century, they are of less value 
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when real mobility data or reliable proxies—such as the 
call detail records (CDRs) of mobile network operators—
are available [4]. The usefulness of these models appears 
in data-scarce contexts, such as during infectious disease 
epidemics in low-income countries, when forecasting the 
best possible allocation of resources becomes necessary. 
Indeed, these models can predict mobility patterns based 
solely on population size, population density, and travel 
distance.

The gravity and radiation models are the most com-
monly used mobility models today. The gravity model 
posits that mobility between two locations increases with 
population size and decreases with distance [5], whereas 
the radiation model assumes mobility to depend on 
population density [6]. Insofar as it relies on parameter 
tuning, the gravity model provides a broad theoretical 
framework that is pragmatically useless in the absence of 
specific space-dependent fitting [7]. As for the radiation 
model, it merely serves to predict the relative probabil-
ity of mobility from a given location to different desti-
nations—though it can help deduce absolute number of 
trips, provided that the average number of trips from 
each source location is known or approximated. In short, 
in data-scarce contexts such as in low-income countries, 
mathematical models of human mobility can only be 
used with minimal assumptions about the overall prob-
ability of mobility in the population.

The aim of this study was to introduce a new, param-
eter-free model, the impedance model, for predicting 
human mobility in the context of data scarcity.

In this article, we define the mobility models, translate 
them into formulations that allow for rigorous compari-
son, simulate a set of spatial patterns linked to various 
scenarios, and then compare the performance of the 
new impedance model, intuitively adapted from the laws 
of electricity, to previous well known models, for each 
simulated pattern. Lastly, we evaluate the performance of 
each of these models in predicting a real infectious dis-
ease spread, namely the 2010 cholera epidemic in Haiti.

Methods
Definitions
The impedance model
In order to estimate probabilities of mobility in data-
scarce contexts, we proposed an intuitive and parameter-
free model adapted from Ohm’s law of electricity (1827). 
We developed this model by simple analogy with the 
electric current model, where electric potential is repre-
sented by P = I × R, R is the electric resistance, and I is 
the electric current (charge per unit of time). In a human 
mobility model, electric resistance is assimilated to dis-
tance (d), electric current to number of trips per day 
(Fij), and electric potential to mobility potential per day 

on a given trajectory. The latter depends on the overall 
probability of mobility α applied to the size of the source 
and destination populations. It can be formulated as 
α
(

Pi + Pj
)

.
Thus, according to the impedance model, the number 

of trips flow from i to j can be formulated as Fij = α
Pi+Pj
dij

.
The probability for a person in location i to travel from 

i to j is given by

This formula is parameter-free.
The previously known mobility models have also been 

developed by analogy with the laws of physical science. 
Among these, some have been pragmatically successful, 
and have thus become especially popular.

The gravity model
The gravity model estimates the number of trips Fij, 
between two geographical locations i and j, knowing 
their population sizes Pi and Pj and the distance between 
them, dij, as

To allow rigorous comparisons, the formulation was 
adapted. See Additional file 1: A1

The radiation model
The radiation model was developed by analogy with the 
processes of emission and absorption of electromagnetic 
particles studied by physical scientists. The probability of 
commuting from i to j is given by

More details on radiation model are given in Additional 
file 1: A2

Simulations
Data generation
In order to assess the performance of our proposed 
model in plausible epidemiological situations, we gen-
erated data to build spatial patterns that could stand for 
real epidemic spaces. Location coordinates were gener-
ated using the double-uniform distribution. Each spatial 
pattern formed a square whose sides spanned between 
1° and 40° in a polar coordinate system, and included 
a limited number of locations representing different 
demographic units. The area of each generated pattern 
varied approximately from 12,100 km2 (roughly the size 

(1)πij =
Fij

Ti
=

α
Pi+Pj
dij
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i �=j
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α
Pi+Pj
dij
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(
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of Gambia or Lebanon) to 19,360,000  km2 (roughly the 
size of Russia or North America). The number of gener-
ated locations in each spatial pattern varied randomly 
from 5 to 30. Each pattern reflected population densities 
that can be plausibly observed by demographers (100–
10,000  inhabitants/km2). Two topological rules were 
applied to create plausible patterns: (1) each pattern had 
to include at least 10 km between locations of more than 
100,000 inhabitants; and (2) the size of the population 
generated for each pattern had to be proportional to the 
pattern area.

Our aim was to account for geographical scale and to 
avoid the inconsistencies that come with considering 
huge populations in small areas (e.g., locations with more 
than 10,000,000 inhabitants in Gambia) or with examin-
ing very small populations in large areas (e.g., accounting 
for villages with small populations when studying disease 
spread throughout Russia).

The double-uniform distribution was used to gener-
ate population sizes. Population size heterogeneity was 
controlled by varying the gap between the two uniform 
distributions. In sensitivity analyses, the hypothesis used 
to generate population sizes was modified with a Pois-
son distribution, a double Poisson distribution, a normal 
distribution, and a truncated normal distribution. The 
regular grid pattern was also assessed to estimate result 
variability due to travel distances.

Simulation design
Reference data were needed to evaluate the performance 
of the three models on simulated patterns. In the absence 
of real mobility data or reliable proxies, we had to make 
assumptions to generate reference mobility data. Several 
scenarios were proposed, all of which had as a prerequi-
site a power deterrence function.

The first scenario—the source population and distance 
deterrence (SPDD)—assumed that the probability of 
mobility from source i to destination j decreased with the 
distance between i and j and was proportional to the size 
of the source population.

The second scenario—the small to large population 
with distance deterrence (SLDD)— assumed that the 
probability of mobility on a given trajectory was propor-
tional to the destination/source population size ratio and 
inversely proportional to distance.

The third scenario—large to small population with dis-
tance deterrence (LSDD)—assumed that the probability 

(4)πij ∝ Pi ×
1

dij

(5)πij ∝
Pj

Pi
×

1

dij

of mobility was proportional to the destination/source 
population size ratio, while retaining the power deter-
rence function.

The total number of trips from location i (Ti) depended 
on the overall probability of mobility (α) and on the size 
of the source population (Pi) (Eq. 8). The expected num-
ber of trips on a given trajectory ij (Fij) followed a Poisson 
distribution (P), whose average depended on the prob-
ability of mobility from location i to destination j (πij) and 
on the total number of trips from location i (Eq. 8).

where P represented a Poisson distribution.

Number of simulations
The parameter to be estimated, α, was the overall prob-
ability of mobility in the population. Probabilities of 
mobility estimated from various CDRs ranged from 1 to 
5% (France, 2007: 0.026 [8], Kenya, 2012: 0.026 [9], Haiti, 
2010: 0.035 [10], Spain, 2007: 0.011 [8], United States, 
2011: 0.022 [6]). We used the range’s maximum value 
(5%) in the data generation process to approximate the 
worst-case conditions for infectious disease spread.

The epidemiological literature on disease spread does 
not provide recommendations on the threshold propor-
tion of infected individuals that needs to be detected 
to avoid disease propagation. Obviously, this number 
depends on specific spatiotemporal patterns. Neverthe-
less, for methodological reasons, we assumed that a 1% 
error (Δ) in the estimated overall probability of mobil-
ity has significant consequences for emergency plan-
ning. This means that surveillance systems should be 
able to detect a variation in the overall daily probability 
of mobility corresponding to 100 persons moving from 
a small town of 10,000 inhabitants or to 100,000 persons 
moving from a huge agglomeration of about 10,000,000 
inhabitants such as Paris. Assuming the maximum over-
all probability of mobility to be 10%, the maximum vari-
ance in the probability of mobility is σ2 = 0.1 * 0.1 = 0.01. 
According to simulation guidelines [11], the number of 
simulations needed to detect significant difference in the 
overall probability of mobility estimated by various mod-
els is given by

(6)πij ∝
Pi

Pj
×

1

dij

(7)Ti = α × Pi

(8)Fij ∼ P(πij × Ti)

(9)

N =

(

Z1−(α/2)σ

�

)2

=

(

1.96× 0.1

0.01

)2

= 385

for α = 5% significance level
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For each scenario, we performed 500 independent 
simulations. The same spatial patterns were used to com-
pare the three mobility models so that bias due to sample 
variability was eliminated while assessing the differences 
between the models.

Measures of performance
Statistical measures of performance were: overall prob-
ability of mobility α̂; bias in the probability of mobility (δ); 
and average root mean square error (aRMSE) in number 
of trips.

The overall probability of mobility α̂ estimated by the 
model for a given pattern was defined as the percentage 
of travelers in the pattern’s population. This parameter 
can reveal over/underestimations of the overall probabil-
ity of mobility, and is equal to

where Fij is the number of trips on each ij trajectory esti-
mated by the model for a given pattern, and Pi is the size 
of the population in the source location n of that pattern.

The bias δ associated with each model was defined as 
δ = ¯̂α − α0, where α̂ is the overall probability of mobil-
ity estimated from a single simulation, ¯̂α is the average 
rate over a set of N simulations, and α0 is the value of the 
overall probability of mobility used for data generation.

The aRMSE in number of trips estimates was com-
puted for each mathematical model as the average of root 
mean square errors over a set of N simulations.

where Fmodel and Fref are the numbers of trips on a given 
trajectory—as estimated with model and reference data, 
respectively—n is the total number of trajectories in 
a given pattern, and N is the number of simulations for 
which the measure was computed.

Modeling mobility patterns in the 2010 cholera spread 
in Haiti with a basic susceptible–infected–recovered (SIR) 
transmission framework
As a proof of concept, we used the data routinely col-
lected during the first weeks of the cholera epidemic in 
Haiti by the Ministry of Public Health and Population. 
These data have already been used for the epidemiologi-
cal analysis of the first year of the epidemic [12]. This epi-
demic, of exceptional magnitude, struck Haiti in October 
2010, following the massive contamination of the Artibo-
nite River after cholera was introduced in the country by 
a military contingent [13].

(10)α̂ =

∑

i �=j Fij
∑n

i=1 Pi

(11)aRMSE = average





�

�

n (Fmodel − Fref)
2

n





Briefly, morbidity data were prospectively collected 
at the commune level according to the World Health 
Organization standard definition [14].

In the current study we only analyzed data from 
October 27, 2010 to December 27, 2010, correspond-
ing to the expansion phase of the epidemic, discarding 
the first 2  weeks a period when cholera transmission 
was related to the massive contamination of the river 
rather than a human-driven diffusion [13]. These early 
stages of the epidemic were modeled using a basic SIR 
framework.

We used two spatial definitions (n =  140 and n =  78 
locations): The first corresponded to municipalities, and 
the second to agglomerations connected by a human 
mobility network [4]. The set of differential equations 
below represents the dynamics of transmission in each 
location i. The overall population was assumed to be at 
demographic equilibrium, with the birth rate balancing 
the mortality rate; it was also assumed to be not immune 
in the early stages of the epidemic.

The equations above represent the weekly variations in 
the number of individuals in the susceptible (Si), infected 
(Ii) and recovered (Ri) compartments at location i. β rep-
resents the rate of exposure to the disease—i.e., the rate 
of individuals becoming infected due to exposure to the 
effective incidence of cholera. The effective incidence of 
cholera in a location i, (1− α)Ii(t)+ α

∑

j �=i πijIj(t) was 
modeled as a weighted average of incidence rates in local 
and remote locations. Weights depended on the overall 
probability of mobility (α), but also on the relative prob-
abilities of mobility from destination locations j to source 
location i which were provided by the matrices derived 
from CDRs or from the mathematical (impedance, grav-
ity, radiation) models formulated in Eqs. 1, 3, and 4. γ is 
the recovery rate of the infected compartment. We evalu-
ated mobility matrices under two hypotheses. The first 
made no assumption regarding specific overall probabili-
ties of mobility from each location, allowing the rate α to 
be adjusted. The second assumed the overall probability 
of mobility from each location to be approximated by 
CDRs.

This CDRs mobility matrix resulted from the pro-
cessing of cell phone network metadata of 2.9 million 

(12)

dSi

dt
= −βSi(t)



(1− α)Ii(t)+ α
�

j �=i

πijIj(t)





dIi

dt
= βSi(t)



(1− α)Ii(t)+ α
�

j �=i

πijIj(t)



− γ Ii

dRi

dt
= γ Ii
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subscribers of the largest mobile phone operator in Haiti 
called Digicel (60% market share). Voice call and written 
messages metadata were collected daily from October 
15 to December 19, 2010 [4, 10, 15]. The fraction of Sub-
scriber Identity Module Cards (SIM cards) on the total 
population in 2013 was 61%. The maximum distance 
between two pairs of telephone towers was 38.6  km. 
The trajectories of subscribers between the phone tow-
ers made it possible to reconstitute the mobility net-
work between geographical locations. For each pair of 
sites (i, j), the proportion of SIM cards in location i at 
time t, which were found at location j at time t + 1, was 
calculated.

To determine which model best describes the early 
stages of the cholera outbreak in Haiti, we compared the 
performances of the candidate models according to Akai-
ke’s information criterion [16, 17] (AIC).

where θ is the number of estimated parameters in the 
model, and η = nu × nw is the number of data points 
(with nu and nw being the number of spatial units and the 
number of weeks since the start of the calibration period, 
respectively). The sum of the squares of the residuals 
between model estimates and epidemiological records is 
denoted by RSS.

where C(i, j) and Ĉ
(

i, j
)

 correspond to the weekly number 
of reported cases and to the number of cases estimated 
by the model in a spatial unit u and a week w, respectively.

Results
Simulation results
Average root mean square error (aRMSE)
Estimates of absolute flows from all simulations and all 
scenarios are shown in Fig.  1. The average root mean 
square error was lower with the impedance model 
(log(aRMSE)  =  7.19 CI (7.10–7.35)) as compared with 
the gravity and radiation models (log(aRMSE) = 7.44 CI 
(7.34–7.54) and 8.40 CI (7.91–8.67), respectively).

Similar tendencies were observed (both in aRMSE and 
bias) when using the grid distribution of locations, Pois-
son distribution or a power law and whatever the spe-
cific mobility scenarios: SPDD, LSDD or SLDD (Fig.  2). 
Assuming identical population sizes, the gravity and 
impedance models performed equally. Average error 
increased with area size. A hundred-fold increase in the 
standard deviation of population size (the coefficient of 

(13)AIC = 2θ + η ln

(

RSS

η

)

(14)RSS =

nu
∑

u

nw
∑

w

[

C(i, j)− Ĉ(i, j)
]

2

variation changing from 0.2 et 3) yielded a 5% aRMSE 
increase in the impedance model and 7 and 10% aRMSE 
decreases in the radiation and gravity models, respec-
tively (Fig.  3). Thus, in heterogeneous settings, the 
impedance model produced the most accurate absolute 
flow estimates, as compared with older mathematical 
models.

Probabilities of mobility were estimated according to 
destination population, on the one hand, and according 
to travel distance, on the other. The predictions made 
with the impedance model were the closest to simulated 
data, regardless of population heterogeneity. When pre-
dicting short-distance mobility and mobility to desti-
nations with small populations, the impedance model 
outperformed the gravity and radiation models, espe-
cially in the case of heterogeneous populations (Fig. 4).

Bias
Bias in the 5% reference probability of mobility used to 
generate data is represented in Fig.  5 for various area 
sizes and for two levels of population heterogeneity.

The impedance and gravity models were unbiased 
regardless of the spatial pattern. The radiation model 
underestimated the overall probability of mobility. Bias 
was persistent regardless of the scenario and increased 
in the case of heterogeneous patterns: δ = − 0.0099 for 
heterogeneous populations versus −  0.0037 for homo-
geneous ones. Bias persisted in the grid distribution of 
locations.

Likelihood of the mobility scenarios
Figure  6 summarizes the aRMSE estimates on the total 
number of trips in each scenario over five hundred 

Fig. 1 Number of trips estimated by the three models versus simu-
lated reference data. Each dot represents the logarithm of the total 
number of trips on a given trajectory. The three simulation scenarios 
are combined for each model
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simulated patterns. The SPDD scenario yielded the low-
est aRMSE, making it a more plausible hypothesis for 
modeling human mobility (ANOVA test, p value = 0.03).

Accuracy of the transmission model assuming various 
mobility patterns for the 2010 Haiti cholera epidemic
Statistical dispersion measures comparing popula-
tion heterogeneity for both spatial definitions are pre-
sented below (Table  1). The coarse pattern (which 
includes 78 aggregated units) displays greater population 
heterogeneity.

 Transmission parameters estimated with the Metropo-
lis–Hastings Markov Chain Monte Carlo algorithm using 
a CDRs-based fine-scale mobility matrix (n =  140) are 
presented in Table 2.

CDRs data were used to calibrate the transmission 
parameters. These parameters were then entered in new 
models that lacked mobility patterns.

Table  3 shows the AIC results obtained with differ-
ent mobility matrixes, assuming that the rate of mobil-
ity from each location remains unknown. Both the 
matrix structure and the overall probability of mobility 

Fig. 2 For each scenario separately, number of trips estimated by the three models versus simulated reference data. Number of simulations was 
limited to 160. Each dot represents the logarithm of the total number of trips on a given trajectory. Power law was simulated by taking the square of 
a selected range values
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were tested. Results are shown for both spatial defini-
tions. The CDRs-based model was taken as a reference 
when computing AIC variations. The impedance model 

performed well with heterogeneous spatial distributions, 
in which locations were defined as significant population 
agglomerations. Aggregated CDRs failed to fit the epide-
miological data properly, even when using the most real-
istic parameters obtained with the fine-scale definition 
(AIC = 25,870 with the coarse definition vs. − 5200 with 
the fine-scale definition). Using the coarse definition, 
the AIC decreased by 22% for the impedance model, by 
20% for the gravity model, and by 8.4% for the radiation 
model.

Table 4 shows analogous results obtained by assuming 
that the overall probability of mobility (α) is provided by 
CDRs.

Additional file 1: B shows the sensitivity analysis asso-
ciated with the results presented in Table  3. The latter 
correspond to the AIC variations that followed from vari-
ations in mobility rates.

Discussion
In this article, we proposed a new, parameter-free and 
intuitive model for predicting human mobility in the con-
text of data scarcity. We evaluated the performances of 

Fig. 3 Variations in average root mean square error (aRMSE) accord-
ing to area size. Plain lines and dotted lines correspond to groups of 
patterns with coefficients of variation of population sizes (CV) below 
and above 1, respectively

Fig. 4 Probability of travel according to destination population, travel distance and population distributions. CV stands for the coefficient of vari-
ation of population sizes. Panels a and b stand for homogeneous population size (CV < 1) and panels c and d for heterogeneous population size 
(CV > 1). Short-distance mobility and mobility to destinations with small destinations are best predicted in heterogeneous patterns with the imped-
ance model



Page 8 of 11Sallah et al. Int J Health Geogr  (2017) 16:42 

the impedance model through intensive simulation, and 
compared it to the (non parameter-free) gravity model 
and the (parameter-free) radiation model. Our results 

suggest that when the number of trips from each loca-
tion is known (as assumed in the radiation model and as 
extracted from CDRs), the impedance model provides 
the best equation for predicting the distribution of travel-
ers towards destinations, in aggregated patterns.

The inclusion of reactive-diffusion equations in 
dynamic models of infectious disease transmission is a 
method of determining the spread of an epidemic in the 
absence of mobility data. This method assumes that the 
movements of all individuals are stochastic, happening 
by continuous progression throughout the geographical 
space and therefore, each individual can potentially visit 
all the geographical locations. Depending on the context, 
this assumption can be inaccurate [2], even if additional 
parameters may adapt the implications [18]. Recent 
works have shown that human mobility is better repre-
sented by a specific spatial network [19–21]. Each Indi-
vidual usually does not visit all the locations. This results 
in saturation in the rate of epidemic spread, whereas 
the classical diffusion hypothesis does not admit a limit 
to the diffusion speed when the mobility rate increases 
[2]. However, in the context of the Black Death outbreak 
model, Gaudart et  al. [18] used a local viscosity param-
eter proportional to the altitude and human density, thus 

Fig. 5 Bias according to model, area size, population distributions and scenarios of simulation. CV stands for the coefficient of variation of popula-
tion sizes. SPDD: source population and distance deterrence, LSDD: large to small population with distance deterrence, SLDD: small to large popula-
tion with distance deterrence

Fig. 6 Average root mean square error over all simulations for each 
scenario. The SPDD scenario appears to be the most plausible one 
with regard to simulated data
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modeling the maximal diffusion velocity. This approach 
excluded low population density/mobility from the first 
wave of the epidemic.

Our study also uncovered the existence of intrinsic 
biases associated with CDRs, depending on the spatial 
definition used. In fact, we found that the most precious 
information that can be extracted from CDRs are the 
rates of mobility from the source location, not the prob-
abilities of mobility to different destinations.

In addition, our study showed that the radiation model 
typically underestimates mobility, and can therefore yield 
inaccurate epidemiologic predictions, as has already 

been suggested [9, 22–24]. Our stimulation approach 
was more systematic than those used in previous stud-
ies, (including that of Masucci et al. [23]), as these have 
mainly relied on empirical data from specific countries.

We found that probability of mobility according to dis-
tance and to size of destination population—as measured 
in several studies [6, 9]—is a pooled measure that may 
mask errors in core flow estimates. Estimates of the prob-
ability of mobility beyond a given radius can be flawed 
because flows are pooled before probability is computed. 
In the context of infectious disease spread, raw flows 
are more relevant than average probabilities. Moreover, 
RMSE is a more relevant measure to assess the perfor-
mance of mobility models in epidemiology because it is 
directly based on absolute number of trips. The most reli-
able model is expected to yield the smallest RMSE.

The scenarios defined for data generation did not reveal 
anything specific. However, their formulation did help to 
account for a wide range of mobility hypotheses. The sec-
ond scenario (SLDD) seemed to correspond to mobility 
patterns during peak periods of activity in both industri-
alized and less industrialized countries, as well as to pat-
terns of rural migration in less industrialized countries. 
The third scenario (LSDD) resembled mobility patterns 
in industrialized countries during holiday periods, as well 
as patterns of populations fleeing conflict zones. While 
these results were consistent across all three scenarios, 
it is obvious that mobility is driven by far more complex 
motivations at the individual level—which may explain 
the unpredictability of even the best model for any given 
area [25]. Moreover, we know that CDRs are unreliable 

Table 1 Statistical dispersion measures for two spatial def-
initions of the Haitian population

IQR interquartile range, SD standard deviation, CV coefficient of variation

Measure 140 spatial units 78 spatial units

IQR 39,232 80,251

SD 103,511 309,417

CV 1.43 2.39

Table 2 Transmission parameters used in the basic SIR 
framework

β indicates the contact rate, which can be detailed as β = pc, where p denotes 
the probability of getting infected when coming into contact with an infected 
individual, and c is the per-capita contact rate; γ indicates the recovery rate

Parameter Units Value References

β d−1 1 (0.96–1.16) Fitted

γ d−1 0.93 (0.89–0.97) Fitted

Table 3 Minimal AIC values, assuming that the overall probability of mobility (α) is to be fitted

AIC values obtained with each mobility model, for the 2010 Haiti cholera epidemic, assuming that the overall probability of mobility (α) is not given by CDRs, but 
fitted. The indicated models are: impedance model (IM), gravity model (GM), and radiation model (RM). Results are presented for the two spatial definitions. ∆AIC 
corresponds to the variation from the optimal AIC value derived from the CDRs

Model AIC
n = 140

α
n = 140

∆AIC (%)
n = 140 

AIC
n = 78

α
n = 78

∆AIC (%)
n = 78 

CDRs − 5200 0.14 25,870 0.14

IM 9000 0.01 + 273 20,171 0.5 − 22

GM 16,185 0.01 + 411 20,616 0.5 − 20

RM 9005 0.05 + 273 23,696 0.09 − 8.4

Table 4 Minimal AIC values, assuming that the overall probability of mobility (α) is known from CDRs

Overall probability of mobility (α) was derived from the CDRs. The indicated models are: impedance model (IM), gravity model (GM), and radiation model (RM). Results 
are presented for the two spatial definitions. ∆AIC corresponds to the variation from the optimal AIC value derived from the CDRs

Model AIC
n = 140

α
n = 140

∆AIC (%)
n = 140 

AIC
n = 78

α
n = 78

∆AIC (%)
n = 78 

CDRs − 5200 0.14 28,992 0.14

IM 22,798 0.14 + 538 20,852 0.14 − 28

GM 22,667 0.14 + 535 21,136 0.14 − 27

RM 18,915 0.14 + 464 23,800 0.14 − 18
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due to the uneven distribution of cell phone towers and 
the heterogeneous penetration of devices across popula-
tions [26].

In this paper, we also compared results obtained from 
the new impedance model to those obtained from the 
two other more classical mobility models, based on real 
epidemiological data from the 2010 Haiti cholera epi-
demic. However, this epidemic was governed by com-
plex factors that may require mechanistic modeling that 
is more spatially explicit [17]. Here we used a basic SIR 
framework that failed to account for water contamina-
tion. Also missing from this framework were the role of 
the Artibonite river in spreading the disease, the impact 
of hurricane Thomas (from 29 October to 7 November 
2010), and rainfall data [27]. To attenuate such biases, 
the calibration span was restricted to a 12-week period 
during which meteorological and hydrolytic factors were 
presumed to be less critical.

Mathematical mobility models generally assume that 
the attractiveness of a location is correlated to the size 
of its population. However, this association is not always 
present, and, depending on the field, geographical barri-
ers to mobility (such as high elevation, water bodies, etc.) 
and cultural resistance must be accounted for in the model 
formula without complicating it. While the most com-
mon data include population sets that are usually defined 
in administrative rather than demographic terms [28], 
mathematical models are more accurate when relying on 
demographic entities. Redistribution according to demog-
raphy can therefore enhance the performance of all math-
ematical mobility models [28]. In our study, the impedance 
model performed well for patterns in which populations 
were aggregated beyond administrative constraints.

Future estimations of human mobility will likely 
increasingly rely on big data (such as high-resolution 
mobile network data or CDRs, social network data, etc.) 
[3], as these become available worldwide. However, when 
no real data is available on heterogeneous populations as 
is often the case in low-income countries, the impedance 
model can provide an unbiased, parameter-free, intuitive, 
and accurate framework for estimating human mobility 
for the purpose of controlling the spread of infectious 
diseases.

Conclusions
While dealing with scarcity of real mobility data, and 
especially when the population distribution is hetero-
geneous, the proposed new impedance model provides 
most accurate estimates of human mobility at popula-
tional level. Its use can improve epidemiological forecast-
ing when reliable mobility data sources are not available.
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