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SUMMARY

Preclinical models based on patient-derived xeno-
grafts have remarkable specificity in distinguishing
transformedhuman tumor cells fromnon-transformed
murine stromal cells computationally. We obtained 29
pancreaticductal adenocarcinoma (PDAC)xenografts
fromeither resectable or non-resectable patients (sur-
gery and endoscopic ultrasound-guided fine-needle
aspirate, respectively). Extensive multiomic profiling
revealed two subtypeswith distinct clinical outcomes.
These subtypes uncovered specific alterations inDNA
methylation and transcription as well as in signaling
pathways involved in tumor-stromal cross-talk. The
analysis of these pathways indicates therapeutic op-
portunities for targeting both compartments and their
interactions. In particular, we show that inhibiting
NPC1L1 with Ezetimibe, a clinically available drug,
might be an efficient approach for treating pancreatic
cancers. These findings uncover the complex and
diverse interplay between PDAC tumors and the
stroma and demonstrate the pivotal role of xenografts
for drug discovery and relevance to PDAC.

INTRODUCTION

Stratifying tumors using genome-wide molecular profiles has

proven to be valuable for predicting therapeutic responses and
2458 Cell Reports 21, 2458–2470, November 28, 2017 ª 2017 The A
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clinical outcome in many neoplastic diseases. While pancreatic

ductal adenocarcinoma (PDAC) is the fourth leading cause of

cancer-related deaths, few integrative genomic, epigenomic,

and transcriptomic studies have been conducted (Bailey et al.,

2016; Cancer Genome Atlas Research Network [TCGA], 2017).

This is mainly due to difficulty in obtaining an appropriate series

of PDAC tumor samples. A major obstacle is the requirement for

surgical samples resulting in the exclusion of the 85% non-

resectable patients. Another critical issue is the high proportion

of non-transformed stromal cells infiltrating the tumor, which

greatly hinders the analysis of carcinogenic-specific processes.

Despite these difficulties, the diversity of PDAC has been inves-

tigated recently using genome-wide approaches on surgical

samples. A canonical study combining elegant laser capture

microdissection followed by transcriptomic analysis revealed

three main groups of patients: classical, quasi-mesenchymal,

and exocrine-like (Collisson et al., 2011). The defined subtypes

were suggested to differ in their clinical outcome and therapeutic

responses. Another interesting study designed for tumor

stratification and drug sensitivity reproduced this classification

on a small number of samples (Noll et al., 2016). Moffitt and

colleagues (Moffitt et al., 2015) involved a sophisticated com-

putational approach using transcriptomic data and isolated

cancerous, stromal, and normal tissue gene expression

profiles. Analysis of estimated cancer-specific profiles identified

two main tumor subtypes, including a basal-like subtype with

a poor clinical outcome that bears great similarity to the

basal-like tumors described in bladder and breast cancers.

This study suggested that the exocrine-like subtype is attribut-

able to the presence of normal non-transformed pancreatic
uthors.
creativecommons.org/licenses/by-nc-nd/4.0/).
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endocrine/exocrine epithelium. More recently, the Australian

pancreatic cancer ICGC (International Cancer Genome Con-

sortium) project defined four subtypes of PDAC based on the

transcriptomic analysis of 96 selected primary tumors (Bailey

et al., 2016), which they named squamous, pancreatic progeni-

tor, immunogenic, and aberrantly differentiated endocrine

exocrine (ADEX). Overall, solely based on gene expression,

these studies recurrently found one specific subtype associated

with a poor prognosis and a loss of differentiation that was either

termed quasi-mesenchymal, basal-like, or squamous. However,

no consensus arose from the subdivision of the well-differenti-

ated PDAC tumors, particularly as none of the non-basal sub-

types that were proposed are distinguishable based on their clin-

ical outcome. In addition to the lack of non-resectable tumors,

only one study proposed a model of the function and diversity

of PDAC stroma (Bailey et al., 2016; Moffitt et al., 2015). Indeed,

while the extensive desmoplasia present in PDAC tumors has

raisedmajor interrogations of its clinical impact and,more gener-

ally, on its function in the carcinogenic process (Carapuça et al.,

2016; Rhim et al., 2014; Sherman et al., 2014; Tape et al., 2016),

large-scale studies of the pancreatic tumor microenvironment

are lacking.

Patient-derived xenografts (PDXs) are progressively appear-

ing as a prime approach for much-needed preclinical studies

and, in particular, to characterize drug efficacy by simulating

phase II clinical trials (Gao et al., 2015; Townsend et al.,

2016). PDXs have major advantages over cell lines as models

of primary cancers. For instance, tumor cells preserve their

complex 3D organization by being embedded in an active

microenvironment with an elaborate and dynamic cellular

composition. Importantly, xenografts of human primary

PDAC enable ‘‘ex patient,’’ but in vivo, studies and through

consecutive passages allow characterization of the tumor

even after patient mortality. Although there are limitations,

particularly related to the host environment, PDX is probably

the closest currently available model to the human disease.

Several studies in bladder (Pan et al., 2015), colorectal cancer,

and lymphoma (Song et al., 2016) have shown the similarities

between primary tumors and PDX, with a particular emphasis

on genomic alterations. Importantly, a study on PDAC and he-

patocellular carcinoma PDX suggested that the main differ-

ences in gene expression between primary tumors and xeno-

grafts are due to the difficulty of profiling the murine stroma

using microarrays (Martinez-Garcia et al., 2014), as they mea-

sure human gene expression. With the advent of sequencing-

based transcriptomic profiling, PDX offers an ideal setting to

distinguish and study the interactions between the tumor and

stromal cells. Indeed, sequencing profiles of a mix of human

grafted cancerous and infiltrating mouse stromal cells can be

analyzed separately in silico by unambiguously assigning

each sequence to the human or mouse genome (Bradford

et al., 2013). However, although PDX models are increasingly

used in preclinical studies, they are insufficiently character-

ized, as few studies have addressed the question of their rele-

vance as a model of the diversity of human disease (Witkiewicz

et al., 2016). Finally, we expect that the integrated analysis of

PDX multiomics profiles will reveal therapeutic targets for this

disease.
RESULTS

PDX Establishment and Validation of the Model
Following suspicion of PDAC, the endoscopic ultrasound-guided

fine-needle aspirates of non-resectable tumors or surgical sam-

ples of resectable tumors were used to generate subcutaneous

xenografts in immunocompromised mice. Histological compari-

son of resected primary tumors with their correspondent PDX

demonstrated extensive similarities (Figure S1A). Early passage

of 29 patient-derived xenografts (30 xenograft samples in all)

were used to generate genomic, epigenomic, and transcriptomic

profiles (Figure 1A). In order to accurately analyze bulk xenograft

samples, we developed a methodology that we termed SMAP

(simultaneous mapping for patient-derived xenograft), which

uses both the human and mouse genomes to distinguish reads

from the tumor and stromal compartment, respectively (see Sup-

plemental Information). The separation of species-specific RNA

reads resulted in two transcriptomic profiles for each sample:

one tumor profile based on human RNA sequences from the

grafted tumor cells and one stromal profile from the mouse

RNA sequences.

To validate PDX as amodel of the primary tumor, the transcrip-

tomeswere compared to the virtually microdissected expression

signatures that were recently proposed as associated with the

tumor or stromal cells of primary human PDAC (Moffitt et al.,

2015). The immune signature and the two stromal signatures

(normal and activated) were predominantly expressed by the

murine stromal cells, while the two cancer signatures (basal-

like and classical) were expressed by the human tumor cells

(Figures 1B and S1B). This clear distinction of the grafted human

tumor cells and the recruited murine stromal cells provides the

means to identify potential tumor-stroma interactions from the

analysis of a bulk xenograft sample. The combined analysis of

both murine and human transcriptomes highlighted several

well-described tumor-stroma interactions, such as the activation

of MET and insulin growth factor (IGF)1R in tumor cells by the

stromal-expressed HGF and IGF, respectively (Figures 1C and

S1C; Table S1). Interestingly, 9 out of 17 stromal genes shown

in Figure 1C are part of the activated stromal signature previously

defined in human primary tumors (Moffitt et al., 2015). Overall,

these results illustrate the relevance of the PDX model, in partic-

ular, in the establishment of a dialog between the grafted cells

and their host microenvironment.

Mirrored Tumor-Stroma Classification
In order to uncover the tumor diversity of PDAC using PDX, un-

supervised analyses were carried out independently on each of

the tumor-specific genome-wide molecular profiles: protein

codingmRNA, long non-coding RNA, microRNA, and non-island

and island CpGmethylation. The resulting classifications consis-

tently characterized two subtypes defined by the nearly identical

sets of samples (Figures 2A and S2A–S2F; Table S2). This

marked convergence was summarized in a consensus multio-

mics classification composed of two subtypes, basal (orange)

and classical (blue), as well as two samples with discrepancies

between their single-omics classification that will be referred

to as outliers (gray) (Figure 2A). Although non-island methyl-

ation was consistent with the other single-omics, the island
Cell Reports 21, 2458–2470, November 28, 2017 2459
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Figure 1. Patient-Derived Pancreatic Adenocarcinoma Xenograft Generation and Characterization

(A) Experimental design for systematic PDX generation followed by molecular tumor and stromal cell characterization. Numbers of biopsy and surgical samples

are indicated.

(B) Expression of human primary PDAC stromal and tumor signatures in the mouse stroma or human tumor cells. Lateral stacked bars correspond to the number

of genes in each signature that is specifically expressed in PDX by mouse cells (green), human cells (red), or neither (gray).

(C) Tumor (red) and stromal (green) expression of genes in pathways known to be involved in tumor/stroma cross-talk. Values shown aremedian expressions, and

error bars indicate first and third quartiles. References: I (Bergmann et al., 1995), II (Qian et al., 2003), III (Lonardo et al., 2011), IV (Ohnishi et al., 2003), V (Tian et al.,

2009), VI (Whatcott et al., 2013), VII (Topalovski and Brekken, 2016), and VIII (Farrow et al., 2009).
methylation classification revealed a subgroup of CIMP (CpG is-

land methylator phenotype) tumors within the classical subtype

(Figure 2B). Virtually, no genes were found to be significantly

differentially expressed in association to the CIMP in this cohort

(Figures S2G–S2I; Table S2). Moreover, the genes that were

associated with the CIMP hypermethylated CpG were more

often found to be underexpressed in all classical samples (64

of the 184 hypermethylated genes found significantly underex-

pressed in classical samples as compared to basal samples)

than specifically underexpressed in CIMP samples (neither of

the 2 genes were found to be underexpressed in CIMP samples).

These results suggest that the CIMP is only one of the mecha-

nism-silencing genes in classical samples, while the others are

yet to be discovered.

Global genomic properties such as chromosomal instability in-

dex (CIN) or mutation rate showed no specific association with

the classification (Figure 2B). Unsurprisingly, genomic alter-

ations that are commonly found in PDAC (KRAS mutations,
2460 Cell Reports 21, 2458–2470, November 28, 2017
SMAD4 losses, CDKN2A inactivation, myc amplification, etc.),

were also widespread in PDX (Figure S2J). However, none of

these alterations and none of any of the genomic alteration

events, including potential gene fusions (Table S2), identified in

this work were associated with the basal or classical subtype.

As previously observed (Bailey et al., 2016), TP53 showed a

slightly higher mutation rate in the basal subtype, although with

virtually no discriminative power. Besides the absence of sub-

type-specific single alterations, the unsupervised classification

of copy number aberrations also showed no association

(Figure S2K). This lack of genetic support for the two PDAC sub-

types has been suggested in a larger series of patients using

whole-genome sequencing (Bailey et al., 2016). However, the

remarkable parallel between the transcriptome and methylome

suggests that the main phenotypes in PDAC are epigenetically

rather than genetically established.

Clinical and histopathological characterizations revealed that

patients of the basal subtype were more often non-resectable,
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Figure 2. Tumor and Stroma Classifications
(A) Single-omics classifications and associated differential feature heatmaps used to define a consensus multiomics classification. Numbers in parentheses

correspond to the number of differential features.

(B) Global epigenetic and genetic characteristics estimated from genome-wide assays. CIN, chromosomal instability index; CIMP, CpG island methylator

phenotype.

(C) Clinical and histopathological characteristics.

(D) Primary human PDAC classification systems applied to the PDX tumor cell transcriptomes or methylation data (Methyl.). Lateral bars correspond to �log10 p

value of Fisher’s exact test of the association with the consensus multiomics classification (excluding outliers). Bars are colored when associated to a specific

subtype (orange for basal; blue for classical) and significant (p % 0.05, indicated by red line).

(E) Consensus clustering applied to the stromal gene expression, generated from mouse RNA-seq reads. Heatmap represents expression values of all differ-

entially expressed stromal genes between the two stromal subtypes.

(F) Immune stromal component sample projection and its contributing genes associated to the ICGC immunogenic subtype (prediction and score) applied to the

stromal transcriptomes.

(G) Estimated level of infiltration of seven immune and two other stromal populations as computed by MCPcounter. Lateral bars correspond to�log10 p value of

the association with the consensus multiomics classification (excluding outliers; Fisher’s exact test or ANOVA). Bars are colored when associated to a specific

subtype (orange for basal; blue for classical) and significant (p % 0.05). *p % 0.05, significant association with the stromal immune component (Pearson’s

correlation or ANOVA). All classifications and components analysis shown are based on unsupervised analysis of the associated datasets. Heatmaps show

expression/methylation values of the genes/CpG most associated with the unsupervised classification or component. All heatmaps are shown with the same

samples in the same order.
had a marginally lower median survival, and presented a less

differentiated tumor (Figures 2C and S2L), altogether indicating

a more aggressive phenotype. Conversely, classical tumors

were more frequently resectable, presented a higher level of

differentiation, and were often associated with fibrosis and

inflammation. In order to compare these PDX-based subtypes

with currently available human PDAC classifications, methylome

and gene expression classifiers were constructed from three

different public datasets (Collisson et al., 2011), (Moffitt et al.,

2015), ICGC methylation (Nones et al., 2014) and RNA

sequencing (RNA-seq) (Bailey et al., 2016). All published PDAC

classification systems were in agreement with the proposed

multiomics classification, thereby illustrating the reliability of

PDX to model PDAC diversity (Figures 2D and S3A–S3D).

Altogether, our analysis on cancer cells using either PDX or
human PDAC classifications reveals the presence of two

clinically relevant types of PDAC.

Unsupervised analysis of the stromal transcriptomes recon-

structed from the murine RNA sequences also revealed two

types of stroma with a strong agreement with tumor subtypes

(Figure 2E). In order to evaluate this remarkable echo in the

diversity of the tumor cells and of their stroma, the tumor and

stroma PDAC PDX subtypes were predicted in four public data-

sets of human primary PDAC. To do so, we derived a tumor and a

stromal gene signature predictive of PDAC subtypes based on

tumor and stromal expression, respectively. A minor overlap

was found between the genes of these signatures, a majority

of which encoded cell communication proteins or extra-cellular

components (e.g., semaphorins, cytokines; Table S2). The

stromal and tumor subtype prediction made by these gene
Cell Reports 21, 2458–2470, November 28, 2017 2461



signatures significantly matched in all four primary human tumor

datasets, which confirms the mirrored tumor-stromal classifica-

tion observed in xenografts (Figure S3E).

Interestingly, two recent studies on bulk primary human

pancreatic tumors proposed a classification that was suggested

to be linked to the stromal composition. The first, byMoffitt et al.,

described an activated stroma that was linked to a poor outcome

(Moffitt et al., 2015) and recently associated with the basal sub-

type (Bailey et al., 2016). The second was the immunogenic

group, which was suggested to be driven by a strong infiltration

of immune cells. In order to further characterize the stroma of

PDX, a blind source separation algorithm, independent compo-

nent analysis, was used to extract two components from the

stromal transcriptomes (Table S2). The first component was

weakly associated with the basal subtype andmostly composed

of genes that define the proposed activated stroma of primary

PDAC (Moffitt et al., 2015) (Figure S3F). The genes contributing

to this component observed in the stroma of xenograft suggest

a gradient in stromal activation. Similar to observations in pri-

mary human PDAC, the xenografts with a strong activation of

their stroma have a marginal tendency to be associated with pa-

tients with lower survival (Figure S3G). The second component

was strongly associated with the classical subtype as well as

with the immunogenic class predictor applied to the stroma

(Figure 2F). The immune aspect of this component was sup-

ported by its correlation with the infiltration of several popula-

tions of immune cells estimated using MCPcounter (Becht

et al., 2016) (Figure 2G). Remarkably, these results show that,

although the mouse hosts are immunodeprived, PDX tumor

models are able to reproduce an immune-related phenotype

observed in human primary tumors.

Basal Subtype Characterization
The precise sequence-based dissociation of tumor and stroma

transcriptomic profiles offers the possibility to rigorously

analyze the carcinogenic processes of tumor cells in a sub-

type-specific approach (Table S3). The basal subtype showed

significant deregulations in oncogenic-related pathways and,

in particular, a strong overexpression of cell-cycle genes (Fig-

ure 3A). The upregulation of the glycolysis in basal tumor cells

is in line with a recent description of a group of glycolytic

PDAC cell lines associated with a characteristic mesenchymal

phenotype (Daemen et al., 2015). Several pathways were also

associated with a differential methylated pattern as well as

miRNA-based deregulations. This supports the hypothesis

that PDAC diversity and the specificities in carcinogenic devel-

opment of each subtype are epigenetically rather than geneti-

cally driven.

In addition to the description of basal tumor cell pathways, the

differential analysis of basal stromal pathways was also carried

out. The genes involved in focal adhesion and axon guidance

pathways, which imply complex interactions with the surround-

ing tissues, were overexpressed by the tumor and stromal com-

partments. Along with the enrichment of basal PDX in fibroblasts

(Figure 2G), this result suggests a basal-specific communication

between tumor cells and adjacent fibroblasts, which is in agree-

ment with recent observations in PDAC of the role of cancer-

associated fibroblasts in axon guidance signaling (Secq et al.,
2462 Cell Reports 21, 2458–2470, November 28, 2017
2015). In order to validate the transcriptional activation of these

pathways in human primary PDAC, an identical pathway analysis

was performed on three independent datasets (Figure 3A). The

results consistently showed that human basal PDAC activated

all of the pathways highlighted in basal PDX. Moreover, the

comparison between basal cancer and normal pancreatic

transcriptomes showed that these pathway upregulations were

cancer specific. Figure 3B schematically illustrates the means

by which transcriptional and epigenetic alterations stimulate

the highly deregulatedWNT pathway.Wnt signaling is potentially

activated by tumor cells in an autocrine manner through the

upregulation of several WNT ligands, as well as in a paracrine

manner by the stromal upregulation of distinct WNT ligands.

Finally, the analysis of the methylation patterns suggests a

sustained activation of the entire pathway as shown by

aberrant methylation of effectors at nearly every step of the

signaling cascade as well as of inhibitors of the pathway

(Figure S4A).

Classical Subtype Characterization
The analysis of transcriptionally upregulated genes in classical

PDX revealed the activation of many pathways (Figure 4A). The

upregulation of all of the highlighted pathways was verified in

an equivalent differential analysis on human primary PDAC.

Importantly, several of these were also found to be active in

normal pancreatic samples, suggesting an aberrant differenti-

ated phenotype. Interestingly, a majority of classical-specific

pathways relate to either pancreatic digestive function (fat and

protein digestion, pancreatic and bile secretion), metabolite

transport (fat and protein absorption, small molecule transport),

or metabolic pathways (glucose, fructose, mannose, arginine,

proline, linoleic, and arachidonic acidmetabolism). These results

suggest that Classical tumor cells acquire cellular functions usu-

ally imputed to other gastrointestinal tissues (e.g. enterocytes), in

addition to retaining some level of pancreatic digestive function.

This is in line with the previous description of the Classical sub-

type as Progenitor, although we speculate it may acquire some

characteristics of amore general gastrointestinal progenitor. Un-

like the previously proposed exocrine-like or ADEX PDAC sub-

types, we observe here that the Classical subtype maintains a

lower level of a more general digestive activity, including product

breakdown and uptake that could be used to fuel high metabolic

needs. Altogether, we describe the Classical subtype as closer

to normal pancreatic tissue than the Basal subtype yet, we do

not identify any acinar-like or any differentiated pancreatic sub-

types which would only harbor functions and markers of the

exocrine or endocrine pancreas.

In order to further characterize the molecular phenotypes of

these PDXs, extensive metabolomics profiles, including lipido-

mics, were generated. Differential analysis of metabolite quanti-

fications supported this hypothesis by demonstrating a general

increase in REDOX-related metabolites (Figure S4B; Table S4),

previously associated with well-differentiated PDAC cell lines

(Daemen et al., 2015). The potential digestive activity was

particularly demonstrated by the decline in triacylglicerols asso-

ciated with an increased lipase expression and an increased

level of fatty acids (Figure 4B). In addition, classical tumors

also displayed an increase in several glycerophospholipids
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Figure 3. Basal Epigenetically Deregulated Pathways

(A) Basal pathway enrichment of: overexpressed genes (mRNA), overexpressed and differentially methylated genes (Methylated), overexpressed genes that are

targets of underexpressed microRNA (miRNA regulated), genes overexpressed in the stroma of basal tumors (Stroma), overexpressed genes in the basal tumors

of the Moffitt et al. (2015) dataset (Moffitt et al.), the ICGC dataset (ICGC), and the TCGA dataset (TCGA), and genes overexpressed in basal tumors compared to

normal pancreatic samples (Versus normal). Pathway definition originates from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database unless

specified otherwise.

(B) Schematic illustration of the tumor and stromal deregulation of the WNT signaling pathway. Ellipses represent genes and hexagons miRNA found to be

overexpressed (orange) or underexpressed (gray and crossed) in basal PDX tumors. Yellow circles indicate methylation-associated deregulation of expression.

Rectangles represent genes overexpressed in basal PDX stroma. Blue-red heatmaps represent expression values of genes and miRNA. Blue-yellow heatmaps

represent methylations values of CpG associated with genes. The CpGI annotation indicates that represented CpG methylation level originates from a CpG

island. All heatmaps are shown with the same samples in the same order.
(Figure S4C), altogether indicating a broad deregulation of the

lipid metabolism, as suggested in a previous metabolomics

study on PDAC cell lines (Daemen et al., 2015).

Figure 5 shows a partial view of the range of small molecule

transporters overexpressed in classical samples, which include

the upregulation of the glucose (SLC2A2) and glutamine

(SLC1A1) transporters, which are strongly hypomethylated in

classical samples (Figure S4D). Glutamine is a necessary nitro-

gen donor for the initial steps of nucleotide biosynthesis. Inter-

estingly, the upregulation and epigenetic deregulation of the

glutamine transporter in classical tumors is associated to a

strong increase in two nucleotides, inosine monophosphate
(IMP) and uridine monophosphate (UMP) (Figure S4E). Choles-

terol transporters were also significantly upregulated; in partic-

ular, the overexpression of the intestinal cholesterol uptake regu-

lator NPC1L1 was associated to extensive hypomethylation

(Figure 5). Aberrant cholesterol uptake has been recently impli-

cated in the proliferation and survival of pancreatic cancer cells

(Guillaumond et al., 2015). Metabolomics profiling revealed a

significantly higher level of cholesteryl ester in classical PDX

(Figure 5), supporting an increased absorption activity. More-

over, the analysis of the stroma of classical tumors highlighted

the upregulation of genes involved in lipid metabolism and

cholesterol synthesis, as well as the master regulators of lipid
Cell Reports 21, 2458–2470, November 28, 2017 2463



A

B

Figure 4. Classical Signaling and Metabolic

Pathways

(A)Classical pathwayenrichmentof: overexpressed

genes (mRNA), overexpressed and differentially

methylated genes (Methylated) overexpressed

genes that are targets of underexpressed micro-

RNA (miRNA regulated), genes overexpressed in

the stroma of classical tumors (Stroma), overex-

pressed genes in the classical tumors of the Moffitt

et al. (2015) dataset (Moffitt et al.), the ICGC

dataset (ICGC) and the TCGA dataset (TCGA),

and genes overexpressed in Classical tumors

compared to normal pancreatic samples (versus

normal). Pathways are ordered by their tumor

specificity compared to normal pancreatic

samples and to the stroma. Pathway definition

originates from the KEGG database, unless speci-

fied otherwise.

(B) Pancreatic lipase activity. Boxplots show

the levels of the putative metabolic substrates

(triacylglicerols, left) and products (fatty acids,

right) of lipases in basal and classical samples.

Expression of lipases is represented as a

heatmap.
and cholesterol homeostasis, namely, PPARG and NR1H3

(LXRɑ). Altogether, these results suggest an active cross-talk

involving the stromal synthesis of cholesterol associated with

aberrant nutrient uptake by classical tumor cells.

In order to validate the predicted compartment-specific

expression of genes of interest, immunohistochemical staining

was performed. As a control, MUC17, which was expressed by

classical tumor cells displayed no protein expression in basal

tumors, as expected (Figures S5A and S5B). Immunohistochem-

ical staining of PPARG and its target FABP5 confirmed transcrip-

tomic data by validating their expression in classical stromal

cells (Figures S5C and S5D).

Evidence of Potential Therapeutic Targets
Despite the absence of any specific druggable genetic alter-

ations, the integrative multiomics analysis uncovered epigeneti-

cally deregulated pathways in PDAC subtypes with high poten-

tial druggability (e.g., WNT, EGFR, PPARG, small molecule

transporters). In particular, our integrated analysis examined

the stroma as well as the epigenetic deregulation of cholesterol

metabolism and uptake. Moreover, cholesterol metabolism

was recently associated with pancreatic cancer in cellular and
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epidemiological studies (Chen et al.,

2015; Guillaumond et al., 2015). As a

proof of concept for defining therapeutic

targets from the integrated multiomics

analysis of PDX, we selected the highly

epigenetically deregulated NPC1L1, for

which an efficient inhibitor is clinically

available: Ezetimibe. DNA demethylation

using 5-Aza-20-deoxycytidine confirmed

the epigenetic regulation of NPC1L1 (Fig-

ure S6A). Immunohistochemical staining

confirmed the protein expression of
NPC1L1 and its correlation with mRNA levels, overall showing

higher levels in classical tumors (Figures 6A and S6B).

Sensitivity analysis of Ezetimibe on the survival of 4 basal

and 3 classical PDX-derived cell cultures expressing different

levels of NPC1L1 revealed that all PDAC cells are sensitive to

the inhibitor, while the treatment had little to no effect on

fibroblasts (Figures 6B and S6C). However, as Ezetimibe func-

tions as a competitor of cholesterol, cells expressing lower levels

ofNPC1L1 (i.e., Basal) were highly sensitive, while cells with high

levels of NPC1L1 (i.e., Classical) required greater inhibitor quan-

tities (Figure 6C). This result suggests that NPC1L1 and, by

extension, the cholesterol metabolism have a major role in

both Basal and Classical PDAC. In addition, the combination of

gemcitabine with Ezetimibe did not affect the cytotoxic effect

of gemcitabine in PDAC cells (Figure S6D).

In order to study the specificity of NPC1L1 inhibition on PDAC

survival, targeted small interfering RNA (siRNA) knockdown was

performed. This genetic approach revealed a dramatic effect on

the survival of the siRNA-transfected cells validating the role of

NPC1L1 as an original therapeutic target (Figure 6D). The

knockdown of NPC1L1 made cells resistant to high levels

of Ezetimibe, providing evidence for the specificity of the
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Figure 5. Classical Deregulated Tumor-Stroma Signaling Cross-Talk

Schematic illustration of the overexpressed transporters and stromal pathways in classical tumors. Ellipses represent genes overexpressed (blue) in classical

PDX tumors. Yellow circles indicate methylation-associated deregulation of expression. Rectangles represent genes overexpressed in classical PDX stroma.

Boxplots show the levels of cholesteryl ester in basal and classical samples. Blue-red heatmaps represent expression values of genes and miRNA. Blue-yellow

heatmaps represent methylations values of CpG associated with genes. Arrows indicate the hypothetical flow of cholesterol. All heatmaps are shown with the

same samples in the same order.
treatment (Figures S6E and S6F). We then derived spheroids

and organoids from PDX and treated these structures with

Ezetimibe for 3 and 4 days, respectively, as shown in Figures

6E and 6G. Ezetimibe treatment resulted in a significant effect

on their growth, as measured by cell viability (Figures 6F and

6I) and volume change (Figure 6H). Finally, we performed a

preclinical analysis by treating two PDXs with Ezetimibe

(5 mg/day) in 200 mL corn oil by a daily intraperitoneal (i.p.) in-

jection to confirm the in vitro results. As shown in Figure 6J,

PDAC019T (classical) and PDAC003T (basal) samples efficiently

responded to the treatment by reducing their growth. Based on

these in vitro and in vivo results, we conclude that NPC1L1 is

a highly effective therapeutic target for treating PDAC using

Ezetimibe.
DISCUSSION

We report in this work the use of PDXs to profile both resect-

able as well as non-resectable PDAC. We found that PDXs ob-

tained by biopsied PDAC are frequently associated with a

more aggressive phenotype, suggesting that studies profiling

PDAC still present a bias. Moreover, one advantage of a xeno-

graft is to combine transformed tumor and stromal cells from

distinct species, resulting in the ability to investigate cancer

and stromal molecular profiles independently. Analysis of tu-

mor-cell-specific molecular profiles allowed the examination

of epigenetic and transcriptomic profiles, separately from

non-neoplastic signals. Conversely, the absence of relation-

ship between the consensus multiomics classification and
Cell Reports 21, 2458–2470, November 28, 2017 2465
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Figure 6. NPC1L1 Is a Therapeutic Target for Treating PDAC

(A) Immunohistochemical staining of NPCL1L.

(B) Ezetimibe sensitivity of 7 PDX-derived cell lines. Dose-response curves after 72 hr of Ezetimibe treatment. The level of cell viability is represented as a

percentage to the vehicle-treated control. Error bars represent SEM; n = 6.

(C) Correlation between survival percentage of Ezetimibe at 50 mM and NPC1L1 mRNA expression for the 8 PDXs with Spearman correlation.

(D) Effect of knockdown NPC1L1 with siRNA. si_RNA_1 and siRNA_2 directed against NPC1L1 were transfected into PDAC012T, and survival was measured

72 hr later. Data are expressed as a percentage of siRNA_control (cont)-transfected cells.

(E and F) Effect of Ezetimibe on spheroid growth is indicated.

(E) Representative picture of the PDAC012T-derived spheroids treated with Ezetimibe (50 mM) or vehicle after 3 days.

(F) Cell viability of spheroids was measured by CellTiter Glo and expressed as percentage of the vehicle-treated spheroids. **p < 0.01.

(G–I) Effect of Ezetimibe on organoid growth is indicated.

(G) Representative picture of the PDAC012T-derived organoids treated with Ezetimibe (50 mM) or vehicle after 4 days.

(H) Calculated volume of organoids treated with Ezetimibe. *p < 0.05; **p < 0.01.

(I) Cell viability of organoids was measured by CellTiter Glo and expressed as percentage of the vehicle-treated organoids.

(J) Two PDXswere treatedwith 5mg/day of Ezetimibe or with vehicle for 17 days by i.p. injections (n = 3 per group). *p < 0.05; ***p < 0.001, in two-way ANOVAwith

Bonferroni post-test (mean ± SEM).
genomic alterations, which was previously proposed, is unam-

biguously confirmed in this work. This is a crucial confirmation,

since it supports the idea of an epigenetic identity for PDAC

subtypes. The most likely explanation for this observation

is that genetic mutations, amplifications, and deletions are

involved in the transformation process of PDAC, whereas the

clinical outcome, response to treatments, and the phenotype

of the tumors are controlled at the epigenetic level. This obser-

vation is of obvious clinical relevance, since emerging epige-

netic drugs can be used to target these tumor characteristics

and, therefore, opens a promising avenue in the treatment of

PDAC patients. While preliminary genomic analysis suggested

that genetic alteration could define therapeutic options (Witkie-

wicz et al., 2015), more recent studies found no associations

between any genetic alterations and therapeutic responses
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on a large number of drugs (Knudsen et al., 2017; Witkiewicz

et al., 2016).

Based on the analysis of PDX, we identified two major sub-

types with extensive similarities to the basal and classical human

PDAC subtypes. The specific analysis of the tumor cell profiles

underlined the homogeneity of basal samples while highlighting

the diversity of the classical subtype. For instance, while CIMP

PDACs have been described (Ueki et al., 2000), we found that

this phenotype corresponds to a subdivision of classical PDAC

exclusively. Overall, the two molecular subtypes describe two

distinct PDAC development patterns: a dedifferentiated basal

subtype, highly glycolytic and with features associated with

epithelial-mesenchymal transition, and a subtypewithmore gen-

eral digestive differentiation features reminiscent of an aberrant

gastro-intestinal progenitor. In addition to having distinct and



specific signaling exchanges with their stroma, a broad homoge-

neity among all samples can be observed in some major tumor-

stroma pathways (e.g., HGF, IGF, and Hedgehog). Despite the

PDX being hosted in immunodeprived mice, we found a sub-

group of samples in the classical PDX group with extensive im-

mune infiltration that strongly correlated with the immunogenic

subtype described in primary PDAC (Bailey et al., 2016). Our ob-

servations indicate that this subgroup is broadly driven by its

stromal content and is, in fact, a ‘‘classical inflammatory infil-

trated’’ subtype instead of a specific subtype by itself. Although

thesemodels are not suitable to study immune therapy, these re-

sults show the extent to which xenografts can reproduce primary

PDAC phenotypes, including interaction with the immune

microenvironment. Importantly, athymic NMRI nude mice

(Foxn1nu) lack conventional T cell development, but this does

not preclude extrathymic maturation such as intestinal T cell

differentiation, which likely explains the extensive infiltration of

the immunogenic-like PDX. Although nude mice lack thymus-

dependent lymphocytes, other immune cell populations such

as macrophages, natural killers and B cells are present and

functional. Given the potential of PDX to reproduce an immuno-

genic PDAC subtype in a model with an only partial immune

landscape, new developments in animal models, in particular

humanized mice, can be expected to greatly improve the

present model and potentially be used to investigate immune

therapies.

In addition to greatly improving the multiomics description of

tumor-specific altered pathways, the precise distinction of tumor

and stromal cells in the same samples enabled analysis of cross-

talk at the genome-wide level. The simple description of themost

expressed genes in each compartment highlighted known mo-

lecular dialogs between tumor cells and their stroma. The role

of PDAC stroma on tumor survival and growth is not settled. It

was previously suggested that the stroma plays a major role in

the resistance to the PDAC treatments, because it acts as a me-

chanical barrier impeding the access of the drugs and also in-

hibits the formation of vessels. Therefore, it seemed important

to combine agents against cancer cells with compounds target-

ing the stroma to improve efficiency. Accordingly, recent results

encourage going forward in this way. In fact, initial testing of the

Hedgehog signaling pathway inhibitor IPI-926 demonstrated a

promising transient effect on the tumor microenvironment, lead-

ing to improved drug delivery and an association with improved

survival in mice treated with both IPI-926 and gemcitabine (Olive

et al., 2009).Mousemodels of PDACdeficient inSonicHedgehog

(Rhim et al., 2014) demonstrated that Hedgehog inhibition leads

to an absence of tumor stroma and an abundance of intratumoral

blood vessels yet increases tumor aggressiveness and metas-

tasis. Another potential stroma-targeting therapy relates to

glycosaminoglycan hyaluronan, which is overrepresented in

PDAC stroma and which can be degraded by hyaluronidase.

Notably, treatment with PEGPH20, aPEGylated human recombi-

nant hyaluronidase, induces a rapid perfusion increase, leading

to the inhibition of growth when combined with chemotherapy

in mouse PDAC models (Walker et al., 2015). While the outcome

of stroma-targeting therapies remains unknown, major signaling

pathways driving PDAChave been shown to be stimulated by the

non-transformed cells composing its microenvironment. Our
work revealed the potential sustaining role of the stroma as sub-

type specific. Indeed, the analysis of the recruited stroma diver-

sity revealed the unidentified subtype specificity of the stroma

through the discovery of convergent tumor/stromal classifica-

tions, which was verified in four different datasets of primary tu-

mors. This is, to some extent, dissimilar to the activated stroma

previously described (Moffitt et al., 2015) as subtype indepen-

dent. Overall, our results show that the stroma, originating from

surrounding host cells, is closely associated with the phenotype

of the tumor indicating that the composition and function of the

tumor microenvironment may be trained by tumor cells.

A major advantage of the PDX model is that it is a perpetual

source of livingmaterial conserving original biological characteris-

tics. Indeed, each PDX can bemolecularly analyzed and concom-

itantly used for testingbiological hypothesesor putative therapeu-

tic targets derived from these analyses. In this work, we describe

several subtype-specific pathways, thereby highlighting potential

targeted therapies.WeusedNPC1L1, a transporter of cholesterol,

as a proof of concept of an original candidate to be targeted for

treatingPDAC.The function of this gene can be inhibited by a spe-

cific inhibitor, Ezetimibe, which has been routinely used for the

treatment of hypercholesterolemia. While no studies describe

the association of NPC1L1 or its inhibitor with pancreatic cancer,

statins (used for the treatment of hypercholesterolemia) were

shown in epidemiological studies to reduce the risks of

pancreatic cancer (Walker et al., 2015) and to improve survival

(Huang et al., 2016; Wu et al., 2015). Preclinical tests demon-

strated thatusing thespecific inhibitorEzetimibeorgenetic knock-

down approaches results in a dramatic effect on the survival

capacity of PDAC cells and on the growth of spheroids and orga-

noids in vitro andofPDX in vivo. Finally,wealsodemonstrated that

Ezetimibe treatment does not affect the cytotoxicity of gemcita-

bine, suggesting that patients could be treated with an inhibitor

of theNPC1L1 transporter incombinationwithaconventional anti-

cancer drug without influencing its effect. Altogether, our data

demonstrate that NPC1L1 is an interesting and promising thera-

peutic target.

In conclusion, the data presented in this work reveal that PDX

is a suitable model for preclinical studies, representing the diver-

sity of the primary cancers in which the stroma is reconstituted.

Its multiomics analysis is a rich source of novel and reliable ther-

apeutic targets for treating patients with PDAC.

EXPERIMENTAL PROCEDURES

PDXs

Three expert clinical centers collaborated on this project after receiving ethics

review board approval. Patients were included in this project under the Paoli-

Calmettes Institute clinical trial number 2011-A01439-32. Consent forms of

informed patients were collected and registered in a central database. The tu-

mor tissues used for xenograft generation were deemed excess to that

required for the patient’s diagnosis. PDAC tissue from surgical samples was

fragmented, mixed with 100 mL Matrigel, and implanted with a trocar (10G;

Innovative Research of America, Sarasota, FL) in the subcutaneous right upper

flank of an anesthetized and disinfected male NMRI-nude mouse. Samples

obtained from endoscopic ultrasound-guided fine needle aspiration (EUS-

FNA) were mixed with 100 mL of Matrigel (BD Biosciences, Franklin Lakes,

NJ) and injected in the upper right flank of a male nude mouse (Swiss Nude

Mouse Crl:NU(lco)-Foxn1nu; Charles River Laboratories, Wilmington, MA) for

the first implantation. When xenografts reached 1 cm3, these were removed
Cell Reports 21, 2458–2470, November 28, 2017 2467



and passed to NMRI-nude mice in the same manner as surgical samples. In

total, 30 xenografts from 29 different patients were generated, and early pas-

sages were used for large-scale molecular profiling.

Genome-wide Profiles and Data Availability

Genotype data fromwhole-exome sequencing have been deposited at the Eu-

ropean Genome-phenome Archive (EGA; http://www.ebi.ac.uk/ega/), which is

hosted by the EBI, under accession number EMBL-EBI: EGAS00001001928.

Other datasets are available on ArrayExpress (http://www.ebi.ac.uk/

arrayexpress): SNP data are available under accession number EMBL-EBI:

E-MTAB-5006, Methylation data are available under accession number

EMBL-EBI: E-MTAB-5008, miRNA sequencing data are available under

accession number EMBL-EBI: E-MTAB-5018, and mRNA sequencing data

are available under accession number EMBL-EBI: E-MTAB-5039. Sequencing

datasets were processed using SMAP (see Supplemental Experimental Pro-

cedures) to separate mouse and human reads. In addition to raw data, all pro-

cessed data produced by and used in this study are available through our insti-

tutional web portal (http://cit.ligue-cancer.net/pacaomicsdata-web-page),

and simple gene-level queries for expression andmethylation are available us-

ing a custom application (http://cit-apps.ligue-cancer.net/pdac.pacaomics).

Public Dataset Comparison

ICGC methylation chips, RNA-seq, and microarray gene expression datasets

were downloaded from the ICGC data portal (dcc.icgc.org, release 20). TCGA

data were downloaded through the Broad Institute TCGA Genome Data Anal-

ysis Center (GDAC) firehose tool (gdac.broadinstitute.org, 20160411 data

snapshot). Other datasets were downloaded from the provided GEO entries

GSE71729 (Barr et al., 2012, 2010; Moffitt et al., 2015) and GSE17891 (Collis-

son et al., 2011; Martı́nez-Arranz et al., 2015; Nones et al., 2014). All non-can-

cer samples were removed from each dataset. Expression datasets were then

centered gene-wise. Centroid classifiers were built for each dataset defining a

classification using a Pearson-based approach described in previous work

(Bailey et al., 2016; Guinney et al., 2015; Marisa et al., 2013)

Primary Cell Cultures and Sensitivity

Primary cell cultures were obtained from PDX. Ezetimibe was obtained from

Selleckchem (ref. S1655). Tissues were split into several small pieces and

processed in a biosafety chamber. Five thousand cells per well were plated

in 96-well plates in serum-free definedmedia (SFDM)medium. The RNAprofile

of each cell culture showed a contamination in murine cells of less than 3%.

Twenty-four hours later, the media were supplemented with increasing con-

centrations of Ezetimibe and incubated for an additional 72-hr period. Cell

viability was estimated with the PrestoBlue (Invitrogen, Grand Island, NY) re-

agent. Each experiment was done in triplicate and repeated at least three

times. Six increasing concentrations of Ezetimibe were used ranging from

0 mM to 100 mM.

Spheroid Sensitivity to Ezetimibe

Fifteen thousand cells per well were seeded in 96-well round-bottom plates

with medium containing 20% methylcellulose (Sigma-Aldrich, St. Louis, MO,

USA). After 48-hr incubation, cells with spheroids of uniform size and shape

were incubated with 50 mMEzetimibe during 72 hr. Spheroid growth wasmoni-

tored for 96 hr by taking microphotographs every day or assessed with the

CellTiter-Glo 3D kit at the end of the treatment according to themanufacturer’s

instructions (Promega, Madison, WI). Values were normalized and expressed

as the percentage of the control treatment (DMSO, 0.05%).

Pancreatic Organoid Generation and Treatment with Ezetimibe

Organoid suspensions obtained from fresh tissue samples were placed into a

12-well plate coated with 100 mL GFR Matrigel. Media were replaced every

2–3 days. Twenty-four hours after seeding, organoids were incubated with

100 mL pancreatic organoid feeding media (POFM) supplemented with

50 mM Ezetimibe or 100 mL POFM supplemented with vehicle (0.5% DMSO)

into 96-well plates coated with 15 mL Matrigel GFR. Organoid growth was

monitored for 96 hr by taking microphotographs every day or assessed with

the CellTiter-Glo 3D kit at the end of the treatment. Values were normalized

and expressed as the percentage of the control.
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Treatment with Ezetimibe of PDX In Vivo

We transplanted two PDX samples (PDAC019T and PDAC003T) subcuta-

neously into 6-week-old male Swiss nude mice (Crl: Nu(lco)-Foxn1nu;

Charles River Laboratories, Wilmington, MA). Each PDX sample was inoc-

ulated into six nude NMRI mice that were randomized for treatment (n = 3)

and vehicle (n = 3). When the PDX reached 100 mm3, we started the treat-

ment with Ezetimibe or vehicle and followed their growth for 17 days.

Ezetimibe was prepared as a solution of 250 mg/mL in ethanol and then

resuspended in corn oil at 25 mg/mL, and 200 mL was administered in

i.p. injections every day. Tumor size was measured with a Vernier caliper

twice weekly, and the tumor volume was calculated with the equation

v = (length/width2)/2.
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Figure S1. PDX stromal analysis. Related to figure 1. a. Hematoxylin and eosin 
staining of PDX tumor and original human primary resected tumors. b. Distribution of 
expression (normalized FPKM) of the gene signatures by Moffitt et al. in the tumor (red) 
and the stroma (green). Expression data were normalized to allow comparison between 
human and mouse RNAseq quantification. c. Tumor (red) and stromal (green) 
expression of genes in pathways potentially involved in tumor/stroma cross talk. Values 
shown are median expressions and error bars indicate first and third quartiles. 
Expression data were normalized to allow comparison between human and mouse 
RNAseq quantification and gene-wise scaled. 
 
 



  



Figure S2. Multi-omics classifications. Related to figure 2. Co-occurrence heatmaps 
of the consensus clustering applied to protein coding mRNA (a), long non-coding RNA 
(b), microRNA (c), non-CpG island methylation (d), CpG island methylation (e) and to 
mouse/stromal mRNA (f). Value represented range from 0 (never co-clustered in any 
bootstrap iteration) to 1 (always co-clustered). g. Volcano plot of differential tumor gene 
expression between CIMP and non-CIMP samples. Y-axis: -log10 limma-voom FDR 
adjusted p-value. h. Volcano plot of differential tumor gene expression between 
classical CIMP and classical non-CIMP samples. Y-axis: -log10 limma-voom FDR 
adjusted p-value. i. Volcano plot of differential tumor gene expression between basal 
and classical samples. Y-axis: -log10 limma-voom FDR adjusted p-value. Red points 
indicate genes that are significantly negatively correlated (Pearson’s correlation, FDR 
5%) to CpG that are significantly hypermethylated (t-test, FDR 5%) in CIMP samples 
and are reported in supplementary table 2. j. Most frequent genomic alterations, 
including point mutations (mut) and copy number aberrations. k. Consensus 
classification of Copy Number Aberrations using SNP chips. Heatmap shows the most 
variant copy number status of each chromosome arm. l. Kaplan-Meier plot of survival in 
two subtypes. The logrank test p-value shown was done after correcting for curative 
surgery. Basal median survival: 7 months, Classical median survival: 18 months. 
 
  



  



Figure S3. Stromal classification of PDAC. Related to figure 2. PDAC classifications 
applied to public expression datasets. Classifiers were trained on their original datasets 
and applied to public expression datasets: Moffitt et al.1 (a) from the RNAseq dataset of 
the ICGC2 (b), the expression array data from the ICGC2 (c, upper panel all samples, 
lower panel samples filtered based on tumor cell purity) and the TCGA (d, upper panel 
all samples, lower panel samples filtered based on tumor cell purity). P-values of a Chi2 
test of independence between each classification and the predictions of the PDX-based 
classified (Multiomics classification). When a classification is given in the original 
publication it is noted as pub. while the prediction of the classifier trained on the same 
dataset to be applied to others is noted as pred. e. Application of the PDX-based tumor 
and stromal predictors on human primary PDAC transcriptome datasets. For each 
dataset, the subtype predictions (heatmap, upper panels) and the prediction scores 
(scatter plot, lower panel) are shown. Prediction heatmap panels exclude low confident 
predictions shown as indeterminate points (grey) in lower panels. Scatter plot axes 
represent tumor (y-axis) and stroma (x-axis) subtype prediction scores for which 
positive scores corresponds to the basal subtype and negative scores to the classical 
subtype. ICGC RNAseq, ICGC array and TCGA contain only samples with at least 33% 
of estimated tumor cell content. Fisher’s exact test were computed without 
indeterminate samples. R: Pearson’s correlation including indeterminate samples. f. 
Sample projection on the stroma activation component and expression of the top 
contributing stromal genes. Lateral bar represents the –log10 transformed p-value of a 
one-way ANOVA. Rows in the heatmap indicate genes that were found in the activated 
stroma component described by Moffitt et al. (pink) and genes that were either found in 
other components or not found in the analysis (e.g. no known human homolog genes). 
g. Kaplan-Meier plot of survival of samples projected above (high) or below (low) 
median sample projection on the stromal activation component (left panel) and in 
combination with tumor classification (right panel). The logrank test p-value shown was 
done after correcting for curative surgery. 
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Figure S4. Epigenetic and metabolic characterization of PDAC subtypes. Related 

to figures 3, 4 and 5. a. Scatter plots of the expression and methylation value of the 
genes and their associated CpG shown in figure 3. Gene expression are normalized log 
counts after gene-wise centering. Methylation levels are normalized Beta-values. b. 
Metabolomic comparison of basal and classical tumors of b. REDOX metabolites. c. 
Glycerophospholipides. PE: phosphoethanolamine ; LPE: lysophsphatidylethanolamine 
; PC: phosphocholine ; PI: phosphoinositol. d. Scatter plots of the expression and 
methylation value of the genes and their associated CpG shown in figure 5. Gene 
expression are normalized log counts after gene-wise centering. Methylation levels are 
normalized Beta-values. e. Metabolomic comparison of basal and classical tumors of 
Nucleotides. IMP: inosine mono-phosphate ; UMP: Uridine mono-phosphate. All 
metabolites shown are differential between the two subtypes (Student’s t test, 
alpha=0.05). 



  



Figure S5. Subtype-specific tumor and stromal immunohistochemistry. Related to 

figures 4 and 5. a. Immunohistochemical staining of MUC17 in classical (upper panels) 
and basal (lower panels) PDX samples. b. Boxplot of the expression level of MUC17 
human mRNA in basal and classical PDX samples. No detectable level of the murine 
MUC17 mRNA. Immunohistochemical staining of PPARG c. and d. FABP5 in PDX 
samples. 

 
 



 



Figure S6. NPC1L1 therapeutic targeting validation. Related to figure 6. a. NPC1L1 
expression after demethylating treatment using 5-aza-2’-deoxycytidine. The mRNA level 
of NPC1L1 was measured by quantitative RT-PCR in Pancreatic ductal 
adenocarcinoma–derived cells with or without 5-aza-2’-deoxycytidine (respectively ctr 
and 5-AZA). Each experiment was done in triplicate. Error bars represent standard 
deviation. b. NPC1L1 immunostaining in the PDX cohort. c. Effect Ezetimib treatment 
on cancer associated fibroblasts. Ezetimibe sensitivity of 4 human cancer associated 
fibroblasts. Dose-response curves after 72h of Ezetimibe treatment. Cell viability is 
indicated in % to the control (vehicle treated). Error bars represent SEM; n = 6. d. 
Chemograms with Ezetimibe alone or associated with Gemcitabine. Pancreatic ductal 
adenocarcinoma–derived cells were treated with increasing concentrations of Ezetimibe 
alone or associated with 3 fixed different concentrations of Gemcitabine (60 nM, 4nM or 
1 nM). The concentration of Gemcitabine was chosen to induce a mortality ranging from 
30 to 70% (DL30 to 70). The percentage of cell viability was measured after 72 hours of 
treatment. A sensitivity profile was obtained for each drug. Each experiment was done 
in triplicate and repeated 3 times with similar results. Error bars represent standard 
deviation. e. Dose-response curves in two Pancreatic ductal adenocarcinoma–derived 
cells after 72h of Ezetimibe treatment with NPC1L1 siRNA knockdown or a control 
siRNA. Cell viability is indicated in % to the control (vehicle treated). Error bars 
represent SEM; n = 6. f. Validation of NPC1L1-directed siRNA on gene expression 
(triplicates). 

  



 
Extended experimental procedure 
 

SUPPLEMENTARY EXPERIMENTAL PROCEDURES 
 

Patient-derived xenograft 
Three expert clinical centers collaborated on this project after receiving ethics review 
board approval. Patients were included in this project under the Paoli-Calmettes Institute 
clinical trial number 2011-A01439-32. Consent forms of informed patients were collected 
and registered in a central database. The tumor tissues used for xenograft generation 
were deemed excess to that required for the patient’s diagnosis.  
PDAC tissue from surgical samples was fragmented, mixed with 100 μL of Matrigel and 
implanted with a trocar (10 gauge; Innovative Research of America, Sarasota, FL) in the 
subcutaneous right upper flank of an anesthetized and disinfected male NMRI-nude 
mouse. 
Samples obtained from EUS-FNA were mixed with 100 μL of Matrigel (BD Biosciences, 
Franklin Lakes, NJ) and injected in the upper right flank of a male nude mice (Swiss Nude 
Mouse Crl: NU(lco)-Foxn1nu; Charles River Laboratories, Wilmington, MA) for the first 
implantation. When xenografts reached 1 cm3, these were removed and passed to NMRI-
nude mice in the same manner than surgical samples. 
All animal experiments were conducted in accordance with institutional guidelines and 
were approved by the “Plateforme de Stabulation et d’Expérimentation Animale” (PSEA, 
Scientific Park of Luminy, Marseille).  
 
DNA and RNA extraction 
Nucleic acids were extracted for 30 xenografts samples corresponding to 29 unique 
patients. DNA was extracted using Blood & Cell culture DNA mini kit (Qiagen) following 
the manufacturer's instructions. RNA were extracted using trizol and Guanidine 
Isothiocyanate and isolated with the miRneasy Mini kit (Qiagen) as previously described 
4. 
 
Whole-exome sequencing and analysis 
Exome sequencing was performed in 27 pairs of PDX and matched normal samples (from 
blood). Library preparation, exome capture and sequencing have been done by 
IntegraGen SA (Evry, France). Genomic DNA was captured using Agilent in-solution 
enrichment methodology (SureSelect XT Human All Exon V5-UTR, Agilent) with their 
biotinylated oligonucleotides probes library (SureSelect XT Human All Exon V5-UTR - 70 
Mb, Agilent), followed by paired-end 75 bases massively parallel sequencing on Illumina 
HiSeq2500. Sequence capture, enrichment and elution were performed according to 



manufacturer’s instruction and protocols (SureSelect, Agilent) without modification except 
for library preparation performed with NEBNext® Ultra kit (New England Biolabs®). Image 
analysis and base calling was performed using Illumina Real Time Analysis (2.7.3) with 
default parameters. Reads were mapped and processed using BWA-MEM 5 and SMAP 
on the human hg19 and mouse mm38 genomes (Ensembl 75). The human mapped reads 
were processed using GATK 6 based on the Mutect2 exome somatic calling best practice 
pipeline 7,8. Mutations were annotated using ANNOVAR 9.  
Genotype data has been deposited at the European Genome-phenome Archive (EGA, 
http://www.ebi.ac.uk/ega/), which is hosted by the EBI, under accession number 
EGAS00001001928. 
 
SNP arrays analysis 
Illumina Infinium HumanCode-24 BeadChip SNP arrays were used to analyze the DNA 
samples. Integragen SA (Evry, France) carried out hybridization, according to the 
manufacturer’s recommendations. The BeadStudio software (Illumina) was used to 
normalize raw fluorescent signals and to obtain log R ratio (LRR) and B allele frequency 
(BAF) values. Asymmetry in BAF signals due to bias between the two dyes used in 
Illumina assays was corrected using the tQN normalization procedure 10. We used the 
circular binary segmentation algorithm 11 to segment genomic profiles and assign 
corresponding smoothed values of log R ratio and B allele frequency. The Genome 
Alteration Print (GAP) method was used to determine the ploidy of each sample, the level 
of contamination with normal cells and the allele-specific copy number of each segment 
12. Chromosomal instability index (CIN) was estimated by the mean number of SNP 
probes with a loss or gained status normalized by chromosomes length. SNP data is 
available through ArrayExpress (http://www.ebi.ac.uk/arrayexpress) under accession E-
MTAB-5006. 
 
DNA methylation profiling and analysis 
Whole-genome DNA methylation was analyzed using the Illumina Infinium 
HumanMethylation450 Beadchip. Integragen SA (Evry, France) carried out microarray 
experiments and hybridized to the BeadChip arrays following the manufacturer’s 
instructions. Illumina GenomeStudio software was used to extract the Beta-value DNA 
methylation score for each locus. We removed data from probes that contained SNPs or 
overlapped with a repetitive element that was not uniquely aligned to the human genome 
or regions of insertions and deletions in the human genome.  
The CpG Island Methylator Phenotype (CIMP) index was determined using methylation 
Illumina Infinium HumanMethylation450 BeadChip based on previous low throughput 
work 13. In brief, all island CpG found to be unmethylated (<20% Beta-value) in all 25 
normal pancreatic samples from the ICGC consortium 14 were selected. The CIMP index 



was calculated independently for each sample as the proportion of methylated (>30% 
Beta-value) CpGs among the selected normally unmethylated island CpG. 
Methylation data is available through ArrayExpress (http://www.ebi.ac.uk/arrayexpress) 
under accession E-MTAB-5008. 
 
microRNA profiling and analysis 
Total RNAs are purified with miRNeasy kit which allows the selection of the small RNA 
fraction less than 100b. From these samples enriched in small RNAs, libraries are 
performed according to previously established protocols 15. After the sequencing platform 
generates the sequencing images, the data are analyzed in three steps: image analysis, 
base calling and bcl conversion. CASAVA demultiplexes multiplexed samples during the 
bcl conversion step. Convert *bcl files into compressed FASTQ files. To do some quality 
control checks on raw sequence data, fastqc software is used. Finally, the script 
"Trim_adapter", provides by mirExpress software, handles the sequence file which 
contain adapter or not according the input of adaptor sequence. The sequence adapter 
was trimmed on sequence data. 
sRNAbench 16 software (version 10/14) was used to quantify read counts for each human 
and mouse miRNA referenced in mirBase21. One sample (PDAC016T) was removed 
following quality check. Only mature miRNA with at least three read counts in at least 3 
samples were kept for further analysis. Gene counts were normalized using the upper-
quartile approach 17. miRNA sequencing data is available through ArrayExpress 
(http://www.ebi.ac.uk/arrayexpress) under accession E-MTAB-5018. 
 
mRNA profiling and analysis 
mRNA profiles were obtained using Illumina’s TrueSeq Stranded mRNA LT protocol. 
Sequencing followed oligo-dT capture and was done on a paired-end 100 pair flow cell. 
mRNA libraries were prepared and sequenced by AROS Applied Biotechnology A/S 
(Aarhus, Denmark). RNAseq reads were mapped using STAR 18 with the proposed 
ENCODE parameters) and SMAP on the human hg19 and mouse mmu38 genomes and 
transcript annotation (Ensembl 75). Gene expression profiles were obtained using 
FeatureCount 19. Only genes with at least three read counts in at least 3 samples were 
kept for further analysis. Gene counts were normalized using the upper-quartile approach 
17.  
When specified, the expression of protein coding mRNA corresponds to the selection of 
genes annotated in Ensembl as protein coding while the long non-coding RNA annotation 
was taken from Carlevaro-Fita and colleagues work 20. 
Immune cell population estimation was done by applying MCP-counter 21 on the stromal 
expression dataset. 
The direct comparison between human and mouse based gene counts was done on the 
subset of unique homolog gene pairs (downloaded from the MGI 



http://www.informatics.jax.org/), normalized by transcript length and the two datasets (i.e. 
human and mouse) were co-normalized using quantile normalization.  
mRNA sequencing data is available through ArrayExpress 
(http://www.ebi.ac.uk/arrayexpress) under accession E-MTAB-5039. 
 

Xenograft sequencing analysis: SMAP 
In order to effectively sort sequences based on their specie identity, we developed a process that 
we termed SMAP for Simultaneous Mapping for Patient-derived xenograft. The method is aligner 
independent and runs in three steps. First, a chimeric genome (and/or transcriptome depending 
on the alignment strategy) is constructed by the concatenation of the human and mouse 
genomes. Then, a conventional alignment pipeline processes the unsorted sequencing reads 
using the chimeric genome, thereby mapping all sequences simultaneously on both genomes. 
Finally, aligned reads are separated based on which part of the chimeric genome they were 
mapped, human or mouse, and all reads with an identical alignment score on both genomes are 
removed. The output of SMAP is a strictly distinct pair of aligned reads file (BAM), one mouse 
and one human. Common analysis can then be applied separately such as mutation calling, copy 
number analysis or gene expression quantification. SMAP was also used in association to STAR 
and STAR-fusion to identify and filter human chimeric transcripts.  
 
Unsupervised and differential analysis 
Single-omics clustering - Unsupervised clustering analysis was carried out on: protein 
coding gene expression (RNAseq, 30 samples), long non-coding gene expression 
(RNAseq, 30 samples), miRNA expression (miRseq, 29 samples), non-island CpG 
methylation (Infinium BeadChip, 30 samples) and island CpG methylation (Infinium 
BeadChip, 30 samples). For sequence or chip based data, an extension of the 
ConsensusClusterPlus algorithm was used 22. In brief, using all paired combination of 
distance metrics (Euclidean, Pearson and Spearman) and linkage (Ward, complete and 
average), hierarchical clustering is bootstrapped in 1,000 iterations of resampling of the 
most variant features. An additional level of iteration adjusts the threshold of feature 
variability. The consensus is given by a final hierarchical clustering using the complete 
linkage and the number of co-classification as sample distance. For Methylation chips 
and SNP chips, the standard deviation was used as a measure of variability and 10 
thresholds between 1% and 10% were used for each iteration of ConsensusClusterPlus. 
To take into account the specificity of the mean-variance relationship in count data 23, a 
combination of mean and standard deviation of the log-counts (minimum rank of both) 
was used to select between 1% and 50% of the most variable and expressed features in 
RNAseq. 
Multi-omics clustering – The 5 non-genetic tumor omics classifications (Protein coding 
mRNA, long-noncoding RNA, micro-RNA, CpG-island methylation and non-CpG island 
methylation while excluding SNP and exome) consistently classified a majority of samples 
in the exact same subtypes. The tumor consensus multi-omics classification was derived 



from the single-omics classification to each sample using a majority vote approach. Each 
sample was assigned the subtype that was given by at least 4/5 of the single-omics 
classification. Two samples (PDAC009T and PDAC014T) had too many divergent single-
omics classifications and therefore were defined as outlier. 
Differential analysis - Differential genes in RNAseq were defined using the limma-voom 
approach 23 and a one way ANOVA for all other types of data. 
Blind source separation - Blind source separation of RNAseq-based stromal 
transcriptome profiles was performed using the JADE (joint approximate diagonalization 
of eigeinmatrices) algorithm 24 for Independent Component Analysis. Two independent 
components were extracted from the expression data. Genes contributing to each 
component were selected by thresholding the gene weights at 2 standard deviations from 
mean and at least 3 standard deviations from the weights in the other component. 
 
Public dataset comparison 
Three published studies were used in addition to the yet unpublished TCGA data.  
TCGA –TCGA data were downloaded through the Broad Institute TCGA GDAC firehose 
tool (gdac.broadinstitute.org, 20160411 data snapshot). 
ICGC – Methylation chips, RNAseq and microarray gene expression datasets were 
downloaded from the ICGC data portal (dcc.icgc.org, release 20). The subtype labels 
were available only for the 96 samples profiled by RNAseq all of which were also profiled 
using a methylome chip. The gene expression and methylation signatures for each of the 
four subtypes (Progenitor, Squamous, Immunogenic and ADEX) were selected from a 
differential analysis on the basis of a one-versus-all comparison (limma for gene 
expression and Student’s t test for methylation). The 1,000 most differentially expressed 
gene or methylated CpG were used as gene/CpG signatures. Signatures are available as 
Supplementary table 2. 
Moffitt et al. – Gene expression datasets were downloaded from the provided Gene 
Expression Omnibus entry GSE71729 1. All non-cancer samples were removed for tumor 
subtype analysis and before any gene-wise data centering. Gene signatures (Basal, 
Classical, Immune, Activated Stroma and Normal Stroma) were taken from 
Supplementary Table S2 of the article by Moffitt et al.  
Collisson et al. – Gene expression datasets were downloaded from the provided Gene 
Expression Omnibus entry GSE17891 25. Subtype gene signatures are defined in the 
article as part of the “PDAssigner” genes as available in the supplementary table 3 of the 
article by Collisson et al.  
Classifiers – Centroid classifiers were built for each dataset describing a classification 
using an approach described in previous work 26,27. Briefly, after gene-wise centering, a 
centroid was built for each subtype using all the genes from the signatures. Gene 
expression or methylation profiles of samples to test were then correlated (Pearson’s 
correlation) to all the centroids of a classification system (using only the subset of genes 



available in both datasets) and the closest centroid class (highest correlation coefficient) 
was assigned. When specified, indeterminate samples correspond to samples that did 
not significantly correlated to any centroid (Pearson correlation test, alpha=5%). 
CIT tumor and stroma classifiers – The classifiers used to predict the CIT tumor and 
stroma subtypes were derived in a similar manner. The first 1000 most differentially 
expressed human genes and mouse genes were used as signatures for the tumor and 
stromal subtype respectively. After gene-wise mean centering, a centroid was built using 
the mean expression of these genes in the sets of samples of each of the subtypes. The 
centroids are reported in Supplementary table 2. Given When predicting these subtypes 
in human primary samples, the 37 genes that were present in both centroids. Although 
the results were virtually identical, this was done for rational reasons as it is not possible 
to determinate in human primary tumors if the transcriptional signal originates from the 
stromal or tumor compartment, unlike in PDX. 
 
Metabolomics 
Metabolomics profiles were generated by OWL metabolomics (Derio, Spain). Metabolite 
extraction was accomplished by fractionating the tissue samples into pools of species 
with similar physicochemical properties, using appropriate combinations of organic 
solvents. Four different combination of extraction and UPLC-MS methods were used 
according to the target analytes’ chemical class as previously described 28,29. All data 
were processed using the TargetLynx application manager for MassLynx 4.1 software 
(Waters Corp., Milford, USA). A set of predefined retention time, mass-to-charge ratio 
pairs, Rt- m/z, corresponding to metabolites included in the analysis were used in the 
program. Associated extracted ion chromatograms (mass tolerance window = 0.05 Da) 
were then peak-detected and noise-reduced in both the LC and MS domains such that 
only true metabolite related features are processed by the software. A list of 
chromatographic peak areas was then generated for each sample injection. 
Normalization factors were calculated for each metabolite by dividing their intensities in 
each sample by the recorded intensity of an appropriate internal standard in that same 
sample as previously described 30.  
 
Primary cell culture and sensitivity 

Primary cell cultures were obtained from PDX. Tissues were split into several small pieces 
and processed in a biosafety chamber. After a fine mincing, they were treated with 
collagenase type V (ref C9263; Sigma) and trypsin/EDTA (ref 25200-056; Gibco, Life 
Technologies) and suspended in DMEM supplemented with 1% w/w 
Penicillin/Streptomycin (Gibco, Life Technologies) and 10% Fetal Bovine Serum (Lonza). 
After centrifugation, cells were re-suspended in Serum Free Ductal Media (SFDM) 
adapted from Schreiber et al. 31 without antibiotic and incubated at 37°C in a 5% CO2 
incubator. Cells were screened for their chemosensitivity to Ezetimibe compound (Selleck 



Chemicals, Houston, TX, USA). Five thousand cells per well were plated in 96-wells 
plates in SFDM medium. Twenty-four hours later the media was supplemented with 
increasing concentrations of Ezetimibe and incubated for an additional 72 h period. Cell 
viability was estimated with the PrestoBlue (Invitrogen, Grand Island, NY) reagent. Each 
experiment was done in triplicate and repeated at least three times. Six increasing 
concentrations of Ezetimibe were used ranging from 0 to 100 µM.  
The RNA profile of each cell culture showed a contamination in murine cells of less than 
3%. 
 
Knockdown NPC1L1 expression by siRNA transfection 

Two specific siRNA directed against NPC1L1 transcript were purchased from Dharmacon 
(refs A-008048-13-0005 [siRNA_1] and A-008048-14-0005 [siRNA_2]) as well as a non-
targeting siRNA (ref D-001910-01-05 [siRNA_cont]) and a fluorescent Green non-
targeting siRNA (ref D-001950-01-05). Pancreatic PDX cells were transfected with both 
siRNAs against NPC1L1 following the manufacturer’s protocol, cultured for 72h, and then 
the cell viability was measured with the PrestoBlue (Invitrogen, Grand Island, NY) 
reagent. Each experiment was done in triplicate and repeated two times. To investigate 
for efficiency of transfection, we used Accell Green non-targeting siRNA and found that 
transfection was over the 95% in all tested cells.  
 
Spheroids sensitivity to Ezetimibe 

Fifteen thousand cells per well were seeded in 96-well round bottom plates with medium 
containing 20% methylcellulose (Sigma-Aldrich, St Louis, MO, USA). After 48 h 
incubation, cells with spheroids of uniform size and shape were incubated with 50 µM 
Ezetimibe during 72h. Spheroid growth was monitored for 96h by taking 
microphotographies every day or assessed with the CellTiter-Glo 3D kit at the end of the 
treatment according to the manufacturer instructions (Promega, Madison, Wisconsin). 
Values were normalized and expressed as the % of the control treatment (DMSO 0.05%). 
 
Pancreatic organoids generation and treatment with Ezetimibe 

Fresh tissue samples obtained from PDX (~50 mg) were washed with resuspension 
medium [DMEM + 1% BSA + 1% penicillin:streptomycin]. The pieces were dissociated by 
mechanical cutting with scalpel blades into smaller pieces (~0.5 to 1 mm). The pulps 
obtained were transferred into 15 ml tubes and incubated with digestion media [DMEM + 
collagenase/dispase mix (1 mg/ml)] for 30 min at 37°C. Digested pulps were gently spin 
and supernatants were discard and replaced with 2 ml of StemPro Accutase cell 
dissociation reagent (Life Technology) for an additional 30 min period at 37°C. The 
incubation was then stopped with 1 ml resuspension media. Mixtures were filtered on cell 
EASY strainer 100 µm (Greiner Bio One) and resuspended into 1 ml Pancreatic 
Organoids Feeding Medium (POFM) [DMEM:F12 + EGF (0.05 µg/ml) + FGF (0.1 µg/ml) 



+ Gastrin (1nM) + mNoggin (0.1µg/ml) + N-Acetylcystein 1.25 mM + Nicotinamide (10mM) 
+ human R-spondin (1µg/ml) + GFR MatriGel (5%)] as previously described 32. Organoids 
suspensions were then placed into 12 well plate coated with 100 µl GFR MatriGel. Media 
were replaced every 2-3 days. Twenty-four hours after seeding, organoids were 
incubated with 100 µl POFM supplemented with 50 µM Ezetimibe or 100 µl POFM 
supplemented with vehicle (0.5% DMSO) into 96 well plates coated with 15 µl MatriGel 
GFR. Organoids growth was monitored for 96h by taking microphotographies every day 
or assessed with the CellTiter-Glo 3D kit at the end of the treatment. Values were 
normalized and expressed as the % of the control.  
 
Tissue microarray 
Xenografts from PDAC samples corresponding to 29 patients were formalin-fixed. The 
procedure for construction of tissue microarrays (TMA) was as previously described 33,34. 
Briefly, cores were punched from the selected paraffin blocks, and distributed in new 
blocks including two cores of 0.6-mm diameter for each tumor. To avoid false positive 
staining that might result from necrotic areas that could react with the antibodies tested, 
the tumor areas selected for the punches were dense carcinomatous. All the TMAs blocks 
were stored at 4°C. 
 
Immunohistochemistry 
TMA serial tissue sections were prepared 24 hours before IHC processing and stored at 
4°C. The immunoperoxidase procedures were performed using an automated Ventana 
Benchmark XT autostainer. This device allowed identical well-controlled procedures for 
antigen retrieval and Ventana kits. Markers were detected using commercially available 
antibodies. PPARᵧ (E-8) : sc-7273, (Santa Cruz Biotechnology, Inc.) 1/100; MUC17 
(NBP1-91013), Novusbio, 1/100, FABP5: FABP5 (D1A7T), Cell Signaling, 1/300 and 
NPC1L1 (NB400-128), Nuvusbio, 1/100. 
 
 

Supplementary bibliography 
 
1. Moffitt, R. A. et al. Virtual microdissection identifies distinct tumor- and stroma-

specific subtypes of pancreatic ductal adenocarcinoma. Nature Genetics 47, 
1168–1178 (2015). 

2. Bailey, P. et al. Genomic analyses identify molecular subtypes of pancreatic 
cancer. Nature 531, 47–52 (2016). 

3. Conway, T. et al. Xenome--a tool for classifying reads from xenograft samples. 
Bioinformatics 28, i172–8 (2012). 

4. Banneau, G., Ayadi, P. M., Armenoult, L. & Carvalho, E. Homogenization of 
cartilage tumors to extract total RNA to microarray and sequencing analysis using 



Precellys bead-beating technology. 52:196–197 (BioTechniques, 2012). 
doi:10.2144/000113829 

5. Li, H. Aligning sequence reads, clone sequences and assembly contigs with 
BWA-MEM. arXiv.org (2013). 

6. McKenna, A. et al. The Genome Analysis Toolkit: A MapReduce framework for 
analyzing next-generation DNA sequencing data. Genome Research 20, 1297–
1303 (2010). 

7. Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the 
Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 43, 
11.10.1–33 (2013). 

8. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and 
heterogeneous cancer samples. Nature Biotechnology 31, 213–219 (2013). 

9. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic 
variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164–
e164 (2010). 

10. Staaf, J. et al. Normalization of Illumina Infinium whole-genome SNP data 
improves copy number estimates and allelic intensity ratios. BMC Bioinformatics 
9, 409 (2008). 

11. Venkatraman, E. S. & Olshen, A. B. A faster circular binary segmentation 
algorithm for the analysis of array CGH data. Bioinformatics 23, 657–663 (2007). 

12. Popova, T. et al. Genome Alteration Print (GAP): a tool to visualize and mine 
complex cancer genomic profiles obtained by SNP arrays. Genome Biol 10, R128 
(2009). 

13. Toyota, M. et al. CpG island methylator phenotype in colorectal cancer. Proc. 
Natl. Acad. Sci. U.S.A. 96, 8681–8686 (1999). 

14. Nones, K. et al. Genome-wide DNA methylation patterns in pancreatic ductal 
adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET 
signaling. Int. J. Cancer 135, 1110–1118 (2014). 

15. Vigneault, F. et al. High-throughput multiplex sequencing of miRNA. Curr Protoc 
Hum Genet Chapter 11, Unit 11.12.1–10 (2012). 

16. Barturen, G. et al. sRNAbench: profiling of small RNAs and its sequence variants 
in single or multi-species high-throughput experiments. Methods in Next 
Generation Sequencing 1, 

17. Bullard, J. H., Purdom, E., Hansen, K. D. & Dudoit, S. Evaluation of statistical 
methods for normalization and differential expression in mRNA-Seq experiments. 
BMC Bioinformatics 11, 94 (2010). 

18. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–
21 (2013). 

19. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose 
program for assigning sequence reads to genomic features. Bioinformatics 30, 
923–930 (2014). 

20. Carlevaro-Fita, J., Rahim, A., Guigó, R., Vardy, L. A. & Johnson, R. Cytoplasmic 
long noncoding RNAs are frequently bound to and degraded at ribosomes in 
human cells. RNA 22, 867–882 (2016). 

21. Becht, E. et al. Immune and Stromal Classification of Colorectal Cancer Is 
Associated with Molecular Subtypes and Relevant for Precision Immunotherapy. 



Clinical Cancer Research 22, 4057–4066 (2016). 
22. Wilkerson, M. D. & Hayes, D. N. ConsensusClusterPlus: a class discovery tool 

with confidence assessments and item tracking. Bioinformatics 26, 1572–1573 
(2010). 

23. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock 
linear model analysis tools for RNA-seq read counts. Genome Biol 15, R29 
(2014). 

24. Cardoso, J. F. & Souloumiac, A. Blind beamforming for non-Gaussian signals. 
IEE Proceedings F - Radar and Signal Processing 140, 362–370 (1993). 

25. Collisson, E. A. et al. Subtypes of pancreatic ductal adenocarcinoma and their 
differing responses to therapy. Nature Medicine 17, 500–503 (2011). 

26. Marisa, L. et al. Gene expression classification of colon cancer into molecular 
subtypes: characterization, validation, and prognostic value. PLoS Med. 10, 
e1001453 (2013). 

27. Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nature 
Medicine 21, 1350–1356 (2015). 

28. Barr, J. et al. Liquid chromatography-mass spectrometry-based parallel metabolic 
profiling of human and mouse model serum reveals putative biomarkers 
associated with the progression of nonalcoholic fatty liver disease. J. Proteome 
Res. 9, 4501–4512 (2010). 

29. Barr, J. et al. Obesity-dependent metabolic signatures associated with 
nonalcoholic fatty liver disease progression. J. Proteome Res. 11, 2521–2532 
(2012). 

30. Martínez-Arranz, I. et al. Enhancing metabolomics research through data mining. 
J Proteomics 127, 275–288 (2015). 

31. Schreiber, F. S. et al. Successful growth and characterization of mouse 
pancreatic ductal cells: functional properties of the Ki-RASG12V oncogene. 
Gastroenterology 127, 250–260 (2004). 

32. Huang, L. et al. Ductal pancreatic cancer modeling and drug screening using 
human pluripotent stem cell- and patient-derived tumor organoids. Nature 
Medicine 21, 1364–1371 (2015). 

33. Giusiano, S. et al. Immunohistochemical profiling of node negative breast 
carcinomas allows prediction of metastatic risk. Int. J. Oncol. 36, 889–898 (2010). 

34. Charpin, C. et al. Validation of an immunohistochemical signature predictive of 8-
year outcome for patients with breast carcinoma. Int. J. Cancer 131, E236–43 
(2012). 

 


	CELREP4394_annotate.pdf
	Pancreatic Adenocarcinoma Therapeutic Targets Revealed by Tumor-Stroma Cross-Talk Analyses in Patient-Derived Xenografts
	Introduction
	Results
	PDX Establishment and Validation of the Model
	Mirrored Tumor-Stroma Classification
	Basal Subtype Characterization
	Classical Subtype Characterization
	Evidence of Potential Therapeutic Targets

	Discussion
	Experimental Procedures
	PDXs
	Genome-wide Profiles and Data Availability
	Public Dataset Comparison
	Primary Cell Cultures and Sensitivity
	Spheroid Sensitivity to Ezetimibe
	Pancreatic Organoid Generation and Treatment with Ezetimibe
	Treatment with Ezetimibe of PDX In Vivo

	Data and Software Availability
	Supplemental Information
	Author Contributions
	Acknowledgments
	References



