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Abstract

Brain atrophy as measured from structural MR images, is one of the primary imaging
biomarkers used to track neurodegenerative disease progression. In diseases such as
frontotemporal dementia or Alzheimer’s disease, atrophy can be observed in key brain

1List of consortium members in appendix.
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structures years before any clinical symptoms are present. Atrophy is most commonly
captured as volume change of key structures and the shape changes of these structures
are typically not analysed despite being potentially more sensitive than summary volume
statistics over the entire structure.

In this paper we propose a spatiotemporal analysis pipeline based on Large Diffeomor-
phic Deformation Metric Mapping (LDDMM) to detect shape changes from volumetric
MRI scans. We applied our framework to a cohort of individuals with genetic variants of
frontotemporal dementia and healthy controls from the Genetic FTD Initiative (GENFI)
study. Our method, take full advantage of the LDDMM framework, and relies on the
creation of a population specific average spatiotemporal trajectory of a relevant brain
structure of interest, the thalamus in our case. The residuals from each patient data
to the average spatiotemporal trajectory are then clustered and studied to assess when
presymptomatic mutation carriers differ from healthy control subjects.

We found statistical differences in shape in the anterior region of the thalamus at
least five years before the mutation carrier subjects develop any clinical symptoms. This
region of the thalamus has been shown to be predominantly connected to the frontal
lobe, consistent with the pattern of cortical atrophy seen in the disease.

Keywords: Shape analysis, clustering, Computational anatomy, thalamus,
spatiotemporal geodesic regression, parallel transport

1. Introduction1

Neurodegenerative diseases such as frontotemporal dementia (FTD) present progres-2

sive symptoms of behavioural and cognitive dysfunction. These changes follow many3

years of a clinically silent phase in the disease, where abnormal proteins slowly accu-4

mulates within the brain, leading to neurodegenerative processes that ultimately result5

in loss of function. Reliably identifying presymptomatic changes in individuals could6

lead to intervention with therapies that could slow, or even halt, the onset of these dis-7

eases. However, finding a cohort of presymptomatic individuals guaranteed to develop8

a form of dementia can be challenging. One common strategy is to investigate people9

who are at-risk for rare autosomal dominant forms of dementia. Half of these individuals10

are carriers of the mutation, allowing for comparisons between carriers and non-carriers11

at various stages within the disease process. In the case of genetic FTD, roughly one12

third of all cases are caused by autosomal dominant mutations, primarily in three genes:13

chromosome 9 open reading frame 72 (C9orf72 ), progranulin (GRN ), and microtubule14

associated protein tau (MAPT ) [1]. As the name would suggest, in all mutations, there15

is early involvement of both the frontal and temporal lobes, as well as the insula where16

differences can be observed as early as ten years before estimated age of expected symp-17

tom onset, as shown in Rohrer et al. [2]. However, there are additional structures, such as18

the thalamus, which also appear to be implicated to some degree early on in the disease19

process [3]. In many forms of FTD, clinical presentations suggest a left/right asymmetry20

in terms of which hemisphere is more affected, and this is often supported by evidence21
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of increased atrophy within the affected hemisphere [4]. However, the affected side is22

not consistent across all cases, and in some cases, there is no evidence of an asymmetry.23

As this asymmetry is likely to start early in the disease process, it must be taken into24

account when looking to detect early changes with any sensitivity.25

One biomarker that shows promise during the presymptomatic phase is measurement26

of atrophy derived from structural magnetic resonance imaging (MRI) [5, 2, 6]. Volumes27

summarizing change within a region of interest (ROI) tend to be more sensitive to early28

change than voxelwise approaches, but they do not provide any spatial localisation as29

to where the atrophy is occurring within the ROI. Conversely, voxelwise analysis can30

provide better spatial localisation, but the mass univariate nature of the analysis requires31

correction for multiple comparisons to control for false positive findings, which often32

results in reduced sensitivity. As loss of brain volume will imply a change in the shape of33

the structure, a third option is to perform the shape analysis over time for a structure of34

interest. This could provide more spatial information than a single summary measure of35

volume alone, but does not require the same level of multiple comparisons as a voxelwise36

analyses. Given the decades long nature of the disease process, it is not yet feasible37

to measure the complete time course within one individual. Therefore, the pattern38

of atrophy over the course of the disease must be estimated through spatiotemporal39

regression models based on large populations of either cross-sectional data or through40

longitudinal data that covers a smaller segment (i.e. a few years) of the disease process41

within each individual.42

There have been numerous approaches to spatiotemporally model trajectories for age-43

ing and dementia. Some methods model this evolution using dense 4D deformation fields44

to measure change between timepoints. Lorenzi et al. [7] modelled the 4D deformation45

fields within a population to obtain subject-specific measurements of atrophy. An ex-46

tension of this work discriminated spatiotemporal patterns that could be attributed to47

natural ageing versus those that were related to disease [8]. Other groups establish point48

correspondences between subjects on a surface representation, and then apply mixed ef-49

fects models at those points [9, 10, 11], providing fixed effects that represent the change50

across the overall population while allowing individual longitudinal trajectories as ran-51

dom effects. More complex representations of surfaces can be used, as in Durrleman52

et al. [12], they proposed a spatiotemporal regression approach to estimate continuous53

subject-specific trajectories of longitudinal data.54

In our previous work [13], we defined the shape of the structure of interest as its 3D55

outline that is rotation and translation invariant. Differences between shapes were quan-56

tified using the Large Deformation Diffeomorphic Metric Mapping (LDDMM) frame-57

work [14, 15, 16], producing a smooth and invertible continuum between all possible58

shapes within the population. The smooth representation of these deformations also59

acted as low-pass filter, reducing the effects of irregularities and errors in the surface60

boundaries. Overall, our approach consisted of three main steps. First, using all avail-61

able data, we compute an average shape spatiotemporal trajectory. Second, for every62

individual shape we evaluate its distance from the mean trajectory. Last, after spatially63

normalising all the subject-specific distances to the mean, we run a statistical analysis64

on the subject-specific residuals to assess when a shape starts diverging from normal-65

ity. This previous work presented a global spatio-temporal analysis, on one side of the66

brain, without considering a potential left/right asymmetry of the disease. In this pa-67

per, we build on the aforementioned framework, which we altered in two main ways.68
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First, we take into consideration the potential asymmetry of FTD by considering the69

left and right structures using a common shape representation. Second, we modified70

our feature extraction method using a clustering approach to ensure we can attribute71

the recovered differences to substructure of the shape under study, and made a novel72

local analysis, based on clustering of deformations, which takes better advantage of the73

LDDMM framework.74

We apply this approach to data from the Genetic FTD Initiative (GENFI), an in-75

ternational study of autosomal dominant forms of FTD aimed at collecting multimodal76

neuroimaging, alongside other biomarkers with the objective of obtaining an improved77

understanding of the changes that are occurring during the presymptomatic phase of78

the disease. In general, the expected age of onset of clinical symptoms is estimated by79

using the average age of onset in the family of the subject, allowing to align the different80

subjects onto a single time axis. We applied our method to a subcortical structure, the81

thalamus, which has been shown to present volumetric differences before onset in Rohrer82

et al. [2]. We used the expected age to onset to characterise the time progression. In the83

next section, we will present the different steps of the proposed framework before then84

further describing the experiment and associated results.85

2. Method86

We indicate with {(Si, ti)}i∈{0;...;N−1} a set of N shapes associated with a corre-
sponding time point ti. With analogy to classical random-effect-modelling approaches,
we assume that each shape is a random realisation of a common underlying spatiotem-
poral process φ(t):

Si = ρi(φ(B0, ti)) + εi,

where B0 is a common reference frame, and ρi is a subject-specific ”residual” defor-87

mation accounting for individual deviation from the mean shape. We characterise this88

residual through the diffeomorphism linking the shape Si to the corresponding sample of89

the common spatiotemporal trajectory at time point ti. We also assume that εi is Gaus-90

sian randomly distributed noise. In order to identify group-wise differences between the91

given populations, we rely on the analysis of the subjects-specific residuals deformations92

ρi.93

This is a challenging problem, since all ρi are defined at different time points along94

the common spatiotemporal trajectory, and therefore cannot be directly compared in a95

common anatomical framework. Moreover, the optimisation of the functional for the96

simultaneous estimation of the group-wise trajectory and random effects is not trivial,97

and would ultimately result in expensive and thus impractical numerical schemes. For98

these reasons, we propose a serial optimisation of the problem by introducing an efficient99

numerical framework composed of three steps illustrated in Figure 1.100

(i) First, we assume that the residuals deformations ρi are fixed, and we estimate the101

common trajectory φ(t). (ii) Second, given the modelled trajectory φ, we estimate the102

residuals deformations ρi through non-linear registration between the trajectory point103

φ(B0, ti) and Si. (iii) Third, we spatially normalise the residual deformations in the104

common initial reference space B0 using parallel transport.105

The proposed framework relies on the mathematical setting of the Large Diffeomor-106

phic Deformation Metric Mapping (LDDMM) framework and the varifold representation107
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Figure 1: Overview of the proposed regression approach. The temporal axis indicates the time variable
attached to the data, in this case the estimated years to expected symptom onset. The residual defor-
mations (step 2) ρi parametrised by (φ(B0, ti);α

i(0)) computed from the common trajectory (step 1) φ
parametrised by (B0;β0), cannot be analysed because they are defined on different spaces i.e. φ(B0, ti).
They have to be transported to a common space (i.e. B0) along the geodesic φ, so they can be analysed
(step 3).

of shapes (section 2.1). This choice allows a mathematically consistent definition of all108

steps (section 2.2), namely: (i) the spatiotemporal regression, (ii) the ρi deformations109

estimation, and (iii) the normalisation of the initial momentum of ρi through parallel110

transport.111

2.1. Large diffeomorphic deformation metric mapping and varifold representation112

The LDDMM framework [14, 15] is a mathematical and algorithmic framework based113

on flows of diffeomorphisms, which allows comparing anatomical shapes as well as per-114

forming statistics. The framework used in this paper is a discrete parametrisation of115
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the LDDMM framework, as proposed by Durrleman et al. [17], based on a finite set of116

NB0 control points overlaid on the 3D space enclosing the initial shape B0. The control117

points number and position are independent from the shapes being deformed as they do118

not require to be aligned with the shapes’ vertices. They are used to define a potentially119

infinite-dimensional basis for the parametrization of the deformation. Momentum vec-120

tors are associated with the control points and are used as weights for the decomposition121

of a given deformation onto this basis.122

Deformation maps ϕv : R3 → R3 are built by integrating time-varying vector fields
(vt)0≤t≤1, such that each v(·, t) belongs to a Reproducing Kernel Hilbert Space (RKHS)
V with kernel KV . We use a Gaussian kernel for all control points x, y:

kV (x, y) = exp

(
−|x− y|2

λ2

)
Id,

with Id the identity matrix, and λ a scale factor which determines the size of the kernel
and therefore the degree of smoothness of the deformations. We define ϕv(x) = φv(x, 1)
as the diffeomorphism induced by v(x, t) where φv(x, 1) is the unique solution of the
differential equation:

dφv
dt

(x, t) = v(φv(x, t), t),∀t ∈ [0, 1] with φv(x, 0) = x, ∀x ∈ R3.

Velocity fields v(·, t) are controlled via an energy functional
∫ 1

0
‖v(·, t)‖2V dt, where ‖ · ‖V

is a Hilbert norm defined on vector fields of R3, which is used as a regularity term in the
matching functional to penalise non-regularity. In the LDDMM framework, matching
two shapes S and T requires estimating an optimal deformation map φ : R3 → R3 such
that φ(S) is close to T . This is achieved by optimising

d([ϕv(S)], [T ])2 + γ

∫ 1

0

‖v(·, t)‖2V dt,

where γ balances the regularity of φv against the spatial proximity d, a similarity measure123

between the varifold representation of ϕv(S) and T noted respectively [ϕv(S)] and [T ].124

In a discrete setting, the vector fields v(x, t) corresponding to optimal maps are
expressed as combinations of spline parametrised fields that involve the reproducing
kernel KV of the space V :

v(x, t) =

NB0∑
p=1

KV (x, xp(t))αp(t),

where xp(t) = φv(xp, t) are the trajectories of control points xp. The control points125

are regularly spaced on a 3D grid overlaid on the space that contains the mesh of the126

subject S. The control point spacing is defined by the size of the kernel KV . The127

time-dependent vectors αp(t) ∈ R3 are referred to as momentum vectors attached to xp.128

The full deformation can be encoded by the set of initial momentum vectors α(0) =129

{αp(0)}1≤p≤n located at the points {xp}1≤p≤n. This allows the analysis of a set of130

deformation maps from a given template to the observed shapes by performing statistics131

on the initial momentum vectors defined on control points located around the template132
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shape. The process of generating back any deformation map from initial conditions133

(xp(0), αp(0)), i.e. integrating the geodesic equations, is called geodesic shooting or134

exponential map and is noted expxp(0)(αp(0)).135

As previously stated, varifolds are used to represent shapes [18]. They are non-136

oriented versions of the representation with currents [19], which are used to efficiently137

model a large range of shapes. To represent a shape S as a varifold, the shape space138

is embedded into the dual space of a RKHS W, noted W ∗, and encoded using a set139

of non-oriented unit normals attached on each vertex of the shape. This kernel-based140

embedding allows to define a distance between different embedded shapes. Varifolds are141

robust to varying topologies, do not require point to point correspondences, and embed142

the shapes in a vector space, which facilitate the interpretation of results. The varifold143

representation of a discretised mesh composed by M triangles S is noted [S] and writes:144

[S](ω) =
∑M
k=1 ω(ck)τ(ck)2/‖τ(ck)‖ with ω a vector field in W, ck the centre of the145

triangle k, and τ(ck) the tangent of the surface S at point ck.146

2.2. Residual extraction framework147

Due to the asymmetry of the disease, the proposed framework has been designed so148

that it is unbiased to the affected side. For each subject, rather than considering the left149

or right structure, we build a mean shape by averaging both sides. First, the structure150

of interest is segmented using the method proposed by Cardoso et al. [20]. Second, we151

flip all input T1w brain images and segmentation masks, in order to have all structures,152

left and right, on the same side. Third, we affinely align the T1w brain images (the153

originals and the flipped ones) to a subject-specific mid-space [21]. The MNI52 atlas154

was used to define the mid-space and ensure that all subjects have a similar total intra-155

cranial volume (TIV). TIV varies from subject to subject due to normal variability in156

the population. Alignment to a common mid-space enables to discard this inter-subject157

variability through normalisation. The obtained affine transformations are then applied158

to the corresponding segmentation masks. Fourth, we compute a mask covering the159

area of the structure of interest and its surroundings for all T1w MRI, to estimate a160

rigid refinement focused on the area of interest. This is achieved by a 6-voxel dilation161

of the union of all propagated masks to ensure that for each subject, the structure of162

interest and its surrounding are considered. The rigid refinement step is done using the163

T1w MRIs rather than the segmented shape. Finally, we extract the meshes of the left164

(flipped, Li) and right structures (Ri), and compute the mean shape, by estimating the165

diffeomorphisms χ
(i)
v for each subject i, such as χ

(i)
v = argmin1

2 (‖[χvi(Li)] − [Si]‖2W∗ +166

‖[χvi(Ri)] − [Si]‖2W∗) + γ
∫ 1

0
‖vi(·, t)‖2V dt with W ∗ the space of varifolds and Si, the167

obtained subject-specific average shape of the structure of interest, is associated with a168

temporal information ti, the number of years to the expected onset (EYO) of the subject169

i.170

The computation of the spatiotemporal regression [12] requires an initial shape B0 =171

{xp}p=1,...,NB0
as reference. To avoid any bias towards a subject selected as the initial172

shape, we estimate the initial shape from the 10 subjects who are the furthest away from173

expected symptom onset, who are all approximately 40 years before their expected onset174

of clinical symptoms according to EYO. We estimate the centroid of those 10 subjects175

using the diffeomorphic Iterative Centroid method [22], which estimates a centre of a176

given population in a reasonable computation time [23].177
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The spatiotemporal regression of the set of shapes {(Si, ti)}i∈{0;...;N−1} is imple-
mented in the Deformetrica software [24, 25]2. The EYO values are discretised into
T time points. Starting from B0 at time t = 0, a geodesic moving through the positions
φ(B0, t), ∀t ∈ {0; ...;T} is computed by minimising the discrepancy between the model
at time t (i.e. φ(B0, t)) and the observed shapes Si:

E(φv) =
∑
ti

d([φv(B0, ti)], [Si])
2 + γ‖v‖2V φ ,

with v the time-varying velocity vector field that belongs to the RKHS V determined by178

the Gaussian Kernel KV . The initial momentum vectors β0(0) = {β0
p(0)}1≤p≤NB0

are179

defined on the control points grid overlaid on the baseline shape B0 and fully encode the180

geodesic regression parametrised by {B0;β0(0)}.181

We then compute the residuals diffeomorphic deformations ρi between every obser-182

vation and the spatio-temporal average shape by estimating a geodesic between φ(B0, ti)183

and {Si, ti}. This yields a set of trajectories parametrised by {φ(B0, ti);α
i(0)}i∈{0;...;N−1}184

that encode the deformations ρi from the spatio-temporal regression to all subjects, with185

αi(0) the initial momentum vectors, where the varying parameter is the step of the de-186

formation. This parameter should not be confused with the time variable corresponding187

to the EYO and to the time varying deformation of the main spatio-temporal trajectory.188

189

In order to be able to compare this set of momenta, we gather them in the same
Euclidean space. This is achieved by transporting all momenta into the initial space
of B0 = φ(B0, 0), using a parallel transport method based on Jacobi fields as intro-
duced in [26]. Parallel transporting a vector along a curve (the computed trajectory
parametrised by (B0;β0(0))) consists in translating it across the tangent spaces along
the curve by preserving its parallelism, according to a given connection. The Levi-Civita
connection is used in the LDDMM framework. The vector is parallel transported along
the curve if the connection is null for all steps along the curve [27]. We use Jacobi
field instead of the Schild’s Ladder method [28], to avoid the cumulative errors and the
excessive computation time due to the computation of Riemannian Logarithms in the
LDDMM framework, required for the Schild’s Ladder. The cumulative errors would have
differed from subject to subject and thus introduce a bias. Indeed, their distances from
the baseline shape vary, as they all are at different points along the temporal axis. The
Jacobi field, used to transport a vector αi(0) from a time t to the time t0 = 0 along the
geodesic γ, is defined as:

Jγ(t)(0,−β0(t),αi(0)) =
∂

∂ε
expγ(t)(1/T (−β0(t) + εαi(0))).

The transported initial momentum vector αi(0) is noted θi(0). After parallel transport-190

ing all residuals, all initial momentum vectors are defined in B0.191

2.3. Feature extraction for statistical analysis192

Each transported initial momentum vectors θi(0) is of size 3×NB0
, where NB0

is the193

number of control point used to parametrise the geodesics.194

2http://www.deformetrica.org/
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Jacobian determinants are a geometric measure derived from the full deformation195

tensor that is commonly used to study shrinkage or growth of the surface. In this work196

we propose an analysis framework where we decouple the amplitude and the orientation197

of the deformation. Such an approach will still analyse growth and shrinkage, but also198

other geometric aspects, such as rotation and torsion, that are not captured by the199

surface Jacobian. Furthermore, the changes being analysed are residual deformations,200

which are defined using a purely geometrical spatio-temporal regression. As such, the201

shape differences that we aim to detect are not necessarily limited to shrinkage or growth,202

but can be induced by more complex effects.203

To analyse direct measures from deformation and to avoid losing statistical power204

from doing a large number of comparisons, we propose an original clustering approach205

by grouping the parametrisation (B0;β0(0)) of the spatio-temporal regression φ into206

clusters.207

To do so, we defined a similarity measure derived from the positions of the con-208

trol points xp, the pairwise angles and the magnitudes of the initial momentum vectors209

{β0
p(0)}1≤p≤NB0

attached to the control point xp. The difference between two control210

points xp and xq ∀p, q ∈ {1; ...;NB0
} is defined by the euclidean distance, the angle be-211

tween two vectors is defined by the cosine. The similarity between p and q is defined by212

s(p, q) = −5‖xp − xq‖2 + 2(cos(β0
p , β

0
q ) + 1) − |‖β0

p‖2 − ‖β0
q‖2|. Parameters are chosen213

to balance between vector similarity and control point positions and depend on the dis-214

tance in mm between two points. The distance is determined by the kernel KV so that215

clusters encompass control points and their momentum vectors within the same area and216

look alike. To estimate those clusters, we used a spectral clustering method [29] using217

the discretisation approach presented in [30] for initialisation, as it has been shown to218

be more stable than other approaches such as k-means for initialisation. 3000 different219

initialisations are generated and we select the best one in term of inertia for spectral220

clustering. We chose 10 clusters as thought this would be a good balance between re-221

ducing the number of multiple comparisons while maintaining some spatial specificity in222

the analyses and equitable clusters. A mean vector is then computed from the parallel223

transported residuals defined on the control points of the cluster. This is done for each224

cluster and for each subject. We then obtain N vectors {νi,k} per cluster k, and 10225

vectors per subject i.226

For the statistical analysis, we will use two uncorrelated descriptors for the vectors227

{νi,k}: the amplitude and the orientation. The orientation of the vectors {νi,k} is origi-228

nally represented by 3 angles, one per axis. The angles are then projected via a Principal229

Component Analysis onto the first eigenvector, therefore the orientation of {νi,k} con-230

sidered here is represented by one continuous scalar, leading to the set of responsive231

variables {Oi,k}.232

3. Data and application233

As previously mentioned, we applied the proposed framework to the GENFI study234

and used the thalamus as structure of interest.235

3.1. Dataset description236

All participants included in this study come from the data freeze 1 of the GENFI237

cohort described in detail in [2]. Initial results from this cohort [2] show volumetric238
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Table 1: Data demographics, in absolute values.

Non-carriers Mutation carriers
n=98 n=113

Males 59 56
Asymptomatic 98 76
Age in years (med (IQR)) 50.2 (62.1 - 36.6=25.5) 52.7 (62.7 - 41.1=21.6)
Years from expected onset:
≤ −20 years 30 21
−20 ≤ years ≤ −10 16 21
−10 ≤ years < 0 23 22
0 ≤ years 29 49

differences in the thalamus at least 5 years before expected age of onset with an effect in239

all genetic subtypes, and so we chose this well-defined subcortical structure for further240

analysis. In this paper we used 211 participants, 113 mutation carriers (MAPT=26,241

GRN=53, C9ORF=34) and 98 non-carriers. All participants have a T1-weighted (T1w)242

MRI available and an associated expected years to symptom onset (EYO). The EYO,243

ranging from -40 years to +20 years, is calculated as the difference between the age of244

the participant at the time of the T1w acquisition and the mean age at onset of affected245

family members, as in [2]. The median of the age at onset of all subjects is 59.7 years246

with inter-quartile range IQR = 60.5−55. Table 1 shows the demographics of the study247

participants used in this analysis.248

3.2. Application to the thalamus249

As previously mentioned in section 2.2, all T1w MRIs and associated segmentations of250

the structure of interest, the thalamus, are first aligned to a common space. This enables251

to normalise for intra-cranial volume differences across subjects. We then extracted252

the meshes corresponding to the thalamus, composed by around 2, 300 vertices. This253

resulted in 211 thalamus meshes, representing the mean left and the right shape. Each254

were associated with the EYO of the corresponding subject as well as mutation status:255

non-carrier and mutation carrier (MC). For the spatio-temporal regression, we used 30256

time points, which corresponds approximately to one time point every two years. The257

space of deformations V was defined using a 11mm width kernel, approximately half of258

the length of the thalamus, which leads to a set of 288 control points. For the space of259

varifolds we used a 5mm width kernel which covers the size of 2 voxels. This parameter260

was fixed and thought to be a good compromise between the capture of high frequency261

changes and the robustness of the approach to noise in the shape segmentation.262

Similarly to the volumetric analysis performed by Rohrer et al. [2], we used a mixed263

effect model to study the shape difference between the non-carriers and mutation carriers.264

Amplitude {|νi,k|} and orientation {Oi,k} were used as responsive variables and the fixed265

effects predictors of interest were mutation carrier status, EYO, interaction between266

mutation carrier status and EYO, sex and the site in which the subject has been scanned.267

A random intercept for family allows values of the marker to be correlated between268

family members.Correcting for age of subjects is not relevant here, since there is a strong269

correlation (r = 0.9) between EYO and age.270
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Table 2: p-values with the corresponding χ2 value, resulting from the Wald tests testing the mutation
carrier (MC) differences (test T1), and the evolution of those differences along time (test T2), for the
amplitude of the initial momentum vector and its orientation, for the clusters showing at least one
significant test. Bold p-values: ≤ 0.05, and starred (*) p-values indicate the corrected threshold for
multiple comparisons: ≤ 2.5e-3.

C1 C2 C4 C6 C7

A
m

p
l. T1

p = 0.48 p = 0.51 p =1.5e-3 (*) p = 0.08 p = 0.76
χ2
df=2 = 1.43 χ2

df=2 = 1.35 χ2
df=2 = 12.94 χ2

df=2 = 5.10 χ2
df=2 = 0.55

T2
p = 0.24 p = 0.26 p =1.5e-3 (*) p =0.04 p = 0.68
χ2
df=1 = 1.37 χ2

df=1 = 1.28 χ2
df=1 = 10.08 χ2

df=1 = 4.20 χ2
df=1 = 0.17

O
ri

en
t. T1

p =2e-4 (*) p = 0.12 p = 0.85 p = 0.63 p = 0.08
χ2
df=2 = 16.60 χ2

df=2 = 4.17 χ2
df=2 = 0.33 χ2

df=2 = 0.92 χ2
df=2 = 5.06

T2
p =9e-4 (*) p =0.05 p = 0.62 p = 0.34 p =0.04
χ2
df=1 = 11.01 χ2

df=1 = 3.85 χ2
df=1 = 0.25 χ2

df=1 = 0.91 χ2
df=1 = 4.29

We performed a Wald test for every model, assessing the difference between the271

mutation carrier group and the non-carrier group, and the evolution of differences across272

time. For each analysis with statistically significant differences between both groups,273

further Wald tests were conducted every 5 years as in the volumetric analysis [2] to274

assess how long before the expected onset we could detect changes between mutation275

carriers and controls.276

4. Results277

Results for the amplitude and the orientation of the residual momentum vectors278

are presented in Table 2. We found significant differences, after correction for multiple279

comparisons, in cluster 1 and cluster 4, for both tests; T1:differences between MC and280

controls and T2: differences over time between MC and controls. Those differences281

are significant after Bonferroni correction for multiple comparisons (20 tests). Cluster282

1 shows differences in the orientation, and no differences in the amplitude, whereas283

cluster 4 shows significant differences for those 2 tests in amplitude, and no differences284

in orientation. Those 2 clusters are thus selected for the next Wald test step. Wald285

tests were conducted every 5 years between 20 years before the expected onset and 10286

years after the expected onset to limit the number of tests, since we would not expect287

substantial changes in volume or shape 20 years before onset. Results are shown in288

Figure 2, the p-values and confidence intervals are corrected for multiple comparison289

across time using Bonferroni correction. The orientation of the cluster 1 deformation290

shows significant differences between the mutation carriers and controls, 5 years before291

EYO (p = 0.03), the uncorrected for this cluster is p = 2e-3, to keep a head to head292

comparison with the previous studies on this dataset [2, 13] in which the p-values at -5293

EYO was significant but higher than here. The uncorrected p-values show significant294

differences at 10 years before EYO, with p=0.048 for the orientation of cluster 1. The295

amplitude between the two groups doesn’t differ significantly for the cluster 4 before296

EYO for corrected p-values, and differs 5 years before onset without correction (p=0.05).297
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Figure 2: cluster 1 (orientation component) and cluster 4 (amplitude component) estimates in mutation
carriers and controls, by estimated time from expected symptoms onset (EYO). p-values and confident
interval are Bonferroni corrected. * : p < 0.05, ** : p < 0.01, *** : p < 0.001

Figure 3 shows the initial momentum vectors of clusters 1 and 4, and the amount of298

displacement due to the deformations corresponding to those clusters 1 and 4, where299

each cluster has its own colour scale, since the maximum displacement for cluster 4 is300

about 3 mm, against 9 mm for cluster 1. Deformations affect more the anterior part of301

the thalamus.302

Since the number of clusters used (i.e. 10), is an arbitrary choice, we tried to reproduce303

the results with different number of clusters. We performed the analysis for 2, 4, 6,304

8, 10, 12, 14 and 16 clusters which results can be found in supplementary material305

(https://zenodo.org/record/1324234). For 6 clusters and 16 clusters, there were306

differences in orientation for one of the clusters which deformation corresponds to the307

one of cluster 1 (see Figure 3). From 8 clusters to 14 clusters, we found a cluster with308

strong differences 5 years before the expected onset (p < 0.01) in orientation whose309

deformation corresponds again to the one of the cluster 1 (p = 0.003). The change310

in orientation for the deformation recovered within cluster 1 (see Figure 3) appears to311

be stable for different clustering of the parametrisation of the global spatiotemporal312

trajectory (https://zenodo.org/record/1324234, Figure 1).313

5. Discussion and conclusion314

We applied a novel method of statistical shape analysis to a cohort of individuals with315

genetic FTD in order to localise any presymptomatic differences present in the shape of316

the thalamus. From the analysis, we conclude that differences are observed five years317

before expected symptom onset. While volumetric analysis [2] and our initial shape318

analysis [13] also found these changes, this method showed significance that survived319

correction for multiple comparisons. The change in shape is primarily attributable to320

differences in orientation of the deformation rather than changes in amplitude of the321
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Figure 3: Deformation obtained by the momentum vectors (displayed here and coloured by amplitude)
of Cluster 1 and Cluster 4. The colour map is in millimetres and indicates the displacement due to the
corresponding deformation (blue meshes). The scale for Cluster 1 range from 0 mm to 9 mm, and from
0 mm to 2.8 mm for Cluster 4.

deformation, which would imply a simple scaling effect of the region. This result con-322

firms our previous shape analysis in this cohort [13] that was performed at a global level323

through a kernel principal component analysis. The first mode of variation which de-324

tected significant shape differences around the same point with respect to EYO did not325

capture volume differences but only changes in the orientation of the deformation. The326

results of those studies seem to indicate that shape changes occur before volume changes.327

The regions of the thalamus most affected in the analysis are anterior, overlapping328

with the anterior nuclei group. The main connections of these nuclei are to the pre-329

frontal cortices, an area universally affected in all genetic forms of FTD. To illustrate330

this purpose, we used the Oxford thalamic connectivity atlas, a thalamic atlas based on331

its anatomical connectivity to the cerebral cortex [31], and displayed at Figure 4 the atlas332

next to the clusters 1 and 4. Whilst differences are seen in cortical involvement within333

the different genetic forms of FTD [32], it may well be that this joint analysis of GRN,334

C9orf72 and MAPT mutations is only identifying thalamic regions jointly affected.335

This approach could also be used to explore other regions known to be implicated in336

FTD, such as the insular cortex, which is located in the lateral sulci and is connected337

to the limbic system, and to the thalamus. In fact, it would be interesting to analyse338

the insula and thalamus together, and the insula only, so we could investigate if shape339

changes in both structures are linked.340
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Figure 4: Thalamic connectivity atlas, and deformations clusters 1 and 4. The orientation of cluster 1
leads to significant differences between MC and controls 5 years before EYO.

The small numbers in each group precluded any analysis of the individual genetic341

types, but it will be important to investigate future data freezes from the GENFI study342

with larger numbers, particularly the C9orf72 group who have been shown to have early343

thalamic involvement [32].344

Future studies should also evaluate the initial momentum vectors of individual geodesic345

evolution of shapes from each subject, through longitudinal data. Those individual evo-346

lutions would provide information on the differences of evolutions of shape between the347

mutation carriers and the controls.348
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