, Alzheimer's disease: A replication study and meta-analysis, Curr Alzheimer Res, vol.13, pp.223-256, 2016.

W. Q. Zhao, D. Felice, F. G. Fernandez, and S. , Amyloid beta oligomers induce impairment of neuronal insulin receptors, Faseb J, vol.22, pp.246-60, 2008.

T. R. Bomfim, L. Forny-germano, and L. B. Sathler, An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer's diseaseassociated Abeta oligomers, J Clin Invest, vol.122, pp.1339-53, 2012.

M. Jimenez-palomares, J. J. Ramos-rodriguez, and J. F. Lopez-acosta, Increased Abeta production prompts the onset of glucose intolerance and insulin resistance, Am J Physiol Endocrinol Metab, vol.302, pp.1373-80, 2012.

M. Vandal, P. J. White, and G. Chevrier, Age-dependent impairment of glucose tolerance in the 3xTg-AD mouse model of Alzheimer's disease, Faseb J, vol.29, pp.4273-84, 2015.

J. R. Clarke, E. Lyra, and C. P. Figueiredo, Alzheimer-associated Abeta oligomers impact the central nervous system to induce peripheral metabolic deregulation, EMBO Mol Med, vol.7, pp.190-210, 2015.

N. Zhao, C. C. Liu, and A. J. Van-ingelgom, Apolipoprotein E4 impairs neuronal insulin signaling by trapping insulin receptor in the endosomes, Neuron, vol.96, pp.115-144, 2017.

A. M. Moloney, R. J. Griffin, and S. Timmons, Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer's disease indicate possible resistance to IGF-1 and insulin signalling, Neurobiol Aging, vol.31, pp.224-267, 2010.

M. Yarchoan, J. B. Toledo, and E. B. Lee, Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer's disease and tauopathies, Acta neuropathol, vol.128, pp.679-89, 2014.

E. Marciniak, A. Leboucher, and E. Caron, Tau deletion promotes brain insulin resistance, J Exp Med, vol.214, pp.2257-69, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01833342

T. Ahmed, A. Van-der-jeugd, and D. Blum, Cognition and hippocampal synaptic plasticity in mice with a homozygous tau deletion, Neurobiol Aging, vol.35, pp.2474-2482, 2014.

F. Biundo, D. Prete, D. Zhang, and H. , A role for tau in learning, memory and synaptic plasticity, Sci Rep, vol.8, p.3184, 2018.

N. Wijesekara, R. A. Goncalves, and R. Ahrens, Tau ablation in mice leads to pancreatic beta cell dysfunction and glucose intolerance, Faseb J, p.201701352, 2018.

E. Khoury, N. B. Gratuze, M. Papon, and M. A. , Insulin dysfunction and Tau pathology, Front Cell Neurosci, vol.8, p.22, 2014.

M. Schubert, D. Gautam, and D. Surjo, Role for neuronal insulin resistance in neurodegenerative diseases, Proc Natl Acad Sci U S A, vol.101, pp.3100-3105, 2004.

M. Schubert, D. P. Brazil, and D. J. Burks, Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation, J Neurosci, vol.23, pp.7084-92, 2003.

B. Cao, J. D. Rosenblat, and E. Brietzke, Comparative efficacy and acceptability of antidiabetic agents for Alzheimer's disease and mild cognitive impairment: A systematic review and network meta-analysis, Diabetes Obes Metab, 2018.

K. I. Avgerinos, G. Kalaitzidis, and A. Malli, Intranasal insulin in Alzheimer's dementia or mild cognitive impairment: a systematic review, J Neurol, 2018.

C. D. Chapman, H. B. Schiöth, C. A. Grillo, and C. Benedict, Intranasal insulin in Alzheimer's disease: Food for thought, Neuropharmacology, vol.136, pp.196-201, 2018.

M. Gejl, A. Gjedde, and L. Egefjord, Alzheimer's disease, 6-month treatment with GLP-1 analog prevents decline of brain glucose metabolism: Randomized, placebo-controlled, double-blind clinical trial, Front Aging Neurosci, vol.8, p.108, 2016.

S. J. Baloyannis, I. Mavroudis, and D. Mitilineos, The hypothalamus in Alzheimer's disease: a Golgi and electron microscope study, Am J Alzheimers Dis Other Demen, vol.30, pp.478-87, 2015.

D. F. Swaab, E. Fliers, and T. S. Partiman, The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia, Brain Res, vol.342, pp.37-44, 1985.

D. G. Harper, E. G. Stopa, and V. Kuo-leblanc, Dorsomedial SCN neuronal subpopulations subserve different functions in human dementia, Brain, vol.131, pp.1609-1626, 2008.

K. Stevanovic, A. Yunus, and A. Joly-amado, Disruption of normal circadian clock function in a mouse model of tauopathy, Exp Neurol, vol.294, pp.58-67, 2017.

T. Li, K. E. Braunstein, and J. Zhang, The neuritic plaque facilitates pathological conversion of tau in an Alzheimer's disease mouse model, Nat Commun, vol.7, p.12082, 2016.

L. Intérêt,

, Les auteurs déclarent n'avoir aucun lien d'intérêt concernant les données publiées dans cet article

J. P. Références-1.-brion, A. M. Couck, E. Passareiro, and J. Flament-durand, Neurofibrillary tangles of Alzheimer's disease: an immunohistochemical study, J Submicrosc Cytol, vol.17, pp.89-96, 1985.

T. Lebouvier, F. Pasquier, and L. Buée, Update on Tauopathies, Curr Op Neurol, vol.30, issue.6, pp.589-598, 2017.

L. Torrent and I. Ferrer, PP2A and Alzheimer disease, Curr Alzheimer Res, vol.9, pp.248-56, 2012.

C. Duyckaerts, H. Braak, and J. P. Brion, PART is part of Alzheimer disease, Acta Neuropathol, vol.129, issue.5, pp.749-56, 2015.

T. Mcduff and S. M. Sumi, Subcortical degeneration in Alzheimer's disease, Neurology, vol.35, pp.123-129, 1985.

H. Braak and E. Braak, Neuropathological stageing of Alzheimer-related changes, Acta neuropathologica, vol.82, pp.239-59, 1991.

J. Havrankova, D. Schmechel, J. Roth, and M. Brownstein, Identification of insulin in rat brain, Proc Natl Acad Sci U S A, vol.75, pp.5737-5778, 1978.

W. S. Young, Periventricular hypothalamic cells in the rat brain contain insulin mRNA, Neuropeptides, vol.8, pp.93-100, 1986.

S. U. Devaskar, S. J. Giddings, and P. A. Rajakumar, Insulin gene expression and insulin synthesis in mammalian neuronal cells, J Biol Chem, vol.269, pp.8445-54, 1994.

S. M. Gray, K. W. Aylor, and E. J. Barrett, Unravelling the regulation of insulin transport across the brain endothelial cell, Diabetologia, vol.60, pp.1512-1533, 2017.

J. L. Marks, D. Porte, J. Stahl, W. L. Baskin, and D. G. , Localization of insulin receptor mRNA in rat brain by in situ hybridization, Endocrinology, vol.127, pp.3234-3240, 1990.

J. C. Bruning, D. Gautam, and D. J. Burks, Role of brain insulin receptor in control of body weight and reproduction, Science, vol.289, pp.2122-2127, 2000.

C. A. Grillo, K. L. Tamashiro, and G. G. Piroli, Lentivirus-mediated downregulation of hypothalamic insulin receptor expression, Physiol Behav, vol.92, pp.691-701, 2007.

K. Loh, L. Zhang, and A. Brandon, Insulin controls food intake and energy balance via NPY neurons, Mol Metab, vol.6, pp.574-84, 2017.

E. Blázquez, E. Velázquez, V. Hurtado-carneiro, and J. M. Ruiz-albusac, Insulin in the brain: Its pathophysiological implications for states related with central insulin resistance, type 2 diabetes and Alzheimer's disease, Front Endocrinol, vol.5, p.161, 2014.

P. R. Moult and J. Harvey, Hormonal regulation of hippocampal dendritic morphology and synaptic plasticity, Cell Adh Migr, vol.2, pp.269-75, 2008.

L. P. Van-der-heide, A. Kamal, and A. Artola, Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-d-aspartate receptor and phosphatidyl-inositol-3-kinasedependent manner, J Neurochem, vol.94, pp.1158-66, 2005.

C. A. Grillo, G. G. Piroli, and R. C. Lawrence, Hippocampal insulin resistance impairs spatial learning and synaptic plasticity, Diabetes, vol.64, pp.3927-3963, 2015.

G. Cheng, C. Huang, H. Deng, and H. Wang, Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies, Intern Med J, vol.42, pp.484-91, 2012.

C. Benedict, M. Hallschmid, and A. Hatke, Intranasal insulin improves memory in humans, Psychoneuroendocrinology, vol.29, pp.1326-1360, 2004.

A. M. Moloney, R. J. Griffin, and S. Timmons, Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer's disease indicate possible resistance to IGF-1 and insulin signalling, Neurobiol Aging, vol.31, pp.224-267, 2010.

K. Talbot, H. Y. Wang, and H. Kazi, Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline, J Clin Invest, vol.122, pp.1316-1354, 2012.

O. Guerin, S. Andrieu, and S. M. Schneider, Different modes of weight loss in Alzheimer disease: a prospective study of 395 patients, Am J Clin Nutr, vol.82, pp.435-441, 2005.

A. Leboucher, C. Laurent, and F. J. Fernandez-gomez, Detrimental effects of diet-induced obesity on tau pathology are independent of insulin resistance in tau transgenic mice, Diabetes, vol.62, pp.1681-1689, 2013.

M. L. Brownlow, L. Benner, D. Agostino, and D. , Ketogenic diet improves motor performance but not cognition in two mouse models of Alzheimer's pathology, PloS one, vol.8, p.75713, 2013.

M. L. Brownlow, A. Joly-amado, and S. Azam, Partial rescue of memory deficits induced by calorie restriction in a mouse model of tau deposition, Behav Brain Res, vol.271, pp.79-88, 2014.

J. Serraneau, K. S. Brownlow, and M. , Metabolic changes over the course of aging in a mouse model of tau deposition, Neurobiol Aging, vol.44, pp.62-73, 2016.

G. P. Wolf-klein, F. A. Silverstone, and A. P. Levy, Nutritional patterns and weight change in Alzheimer patients, Int Psychogeriatr, vol.4, pp.103-121, 1992.

J. Janson, T. Laedtke, and J. E. Parisi, Increased risk of type 2 diabetes in Alzheimer disease, Diabetes, vol.53, pp.474-81, 2004.

G. Bucht, R. Adolfsson, F. Lithner, and B. Winblad, Changes in blood glucose and insulin secretion in patients with senile dementia of Alzheimer type, Acta Med Scand, vol.213, pp.387-92, 1983.

Y. Fujisawa, K. Sasaki, and K. Akiyama, Increased insulin levels after OGTT load in peripheral blood and cerebrospinal fluid of patients with dementia of Alzheimer type, Biol Psychiatry, vol.30, pp.1219-1247, 1991.

J. Ma, W. Zhang, and H. F. Wang, Peripheral blood adipokines and insulin levels in patients with TIRÉS À PART D