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Abstract. The single diffusion tensor model for mapping the brain
white matter microstructure has long been criticized as providing sen-
sitive yet non-specific clinical biomarkers for neurodegenerative diseases
because (i) voxels in diffusion images actually contain more than one ho-
mogeneous tissue population and (ii) diffusion in a single homogeneous
tissue can be non-Gaussian. Analytic models for compartmental diffu-
sion signals have thus naturally emerged but there is surprisingly little
for processing such images (estimation, smoothing, registration, atlas-
ing, statistical analysis). We propose to embed these signals into a Bayes
Hilbert space that we properly define and motivate. This provides a uni-
fied framework for compartment diffusion image computing. Experiments
show that (i) interpolation in Bayes space features improved robustness
to noise compared to the widely used log-Euclidean space for tensors and
(ii) it is possible to trace complex key pathways such as the pyramidal
tract using basic deterministic tractography thanks to the combined use
of Bayes interpolation and multi-compartment diffusion models.

1 Introduction

Diffusion MRI is a unique in-vivo and non-invasive imaging technique that probes
the microstructure of tissues by tracking water diffusion [5]. The diffusion pro-
cess is a probability distribution that describes the random 3-dimensional dis-
placements of water molecules due to thermal agitation. The signal recovered in
diffusion MRI is the Fourier transform of the diffusion density evaluated at the
magnetic field spatial gradient to which the imaged brain was subjected.

A practical approach to access the diffusion density pertains to resorting to
parametric models that lead to an analytic expression of the observed diffusion
signals. The first parametric model was introduced two decades ago in [2] and is
called single tensor (ST) model. The ST model essentially assumes that the diffu-
sion in the voxel is well characterized by a zero-mean Gaussian distribution with
covariance matrix proportional to the so-called diffusion tensor. It has become
widely used in clinical practice, which raised the demand for a solid mathemati-
cal framework for processing tensor images (estimation, smoothing, registration,
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atlasing, statistical analysis). As a response, several frameworks have been pro-
posed, including a Riemannian affine-invariant framework [9, 6] and the popular
log-Euclidean space for tensors, embedding them in a Lie group structure [1].

However, because of the low spatial resolution in diffusion MRI, it has been
shown that the ST model is an average of several diffusion processes arising from
multiple populations of tissues in the voxel, ultimately leading to an inaccurate
description of the microstructure in most parts of the brain white matter. In
addition, even within a single homogeneous tissue population, non-Gaussian dif-
fusion has been observed [13]. This has led to the extension of the ST model
to mixture models, often called multi-compartment models (MCM), where the
voxelwise diffusion signal is modeled as a linear combination of compartmental
diffusion signals arising from underlying homogeneous diffusion processes [8]. To
the best of our knowledge, the only mathematical framework available for multi-
compartment image processing [12] is however limited to multi-tensor images
(mixture of single-tensor signals, see [10]) as it relies on log-Euclidean geometry.

In this work, we present an alternative to the log-Euclidean space on tensors
called the Bayes Hilbert space [3] for processing compartmental diffusion signals
instead of tensors. It provides a unified framework that can accommodate an-
alytic compartment diffusion signals of any type (Gaussian and non-Gaussian).
Section 2 gives a general introduction to Bayes Hilbert spaces with motivation
and setup in diffusion MRI. Section 3 describes a simulation study and a tractog-
raphy application on real data to compare Euclidean, log-Euclidean and Bayes
interpolation. Results commented in Section 4 show that Bayes interpolation fea-
tures improved robustness to noise and yields better pyramidal tract reconstruc-
tions when combined with MCM-based deterministic tractography to account
for streamline atlas priors when diffusion models cannot be locally trusted.

2 Theory

2.1 Bayes Hilbert Spaces and Compartmental Diffusion

The signal in diffusion MRI, hereafter diffusion signal, observed after the ap-
plication of a diffusion gradient q, where ‖q‖2 = b is the well known b-value,
undergoes a signal decay starting from a baseline signal. The form of this decay
depends on how water molecules diffuse in tissues in the vicinity of the spa-
tial location where the signal is observed. In general, in a voxel composed of K
different tissue structures, the compound diffusion signal reads:

S(q) =

K∑
j=1

Sj(q) =

K∑
j=1

S0jAj(q), S0j > 0, Aj ∈ [0, 1], (1)

in which all the information pertaining to the microstructure (set of surrounding
tissue structures) is grasped by the signal attenuations Aj ’s. This is the signal
decomposition at the foundation of diffusion compartment imaging [8]. Hence,
up to some multiplicative constant, the compartmental diffusion signal Sj can be
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interpreted as the density of a probability measure νj on the space of diffusion
gradients, which is absolutely continuous w.r.t. the Lebesgue measure λ such that
dνj
dλ (Radon-Nykodym derivative w.r.t. the Lebesgue measure λ) is proportional
to Sj . Furthermore, this multiplicative constant is related to the T2 relaxation
time of tissue j and thus not relevant for microstructure mapping.

To account for this, we propose to embed the probability measures induced
by compartmental diffusion signals into the Bayes space B2(P ) of (classes of
equivalence of B(R3)-finite) measures on the Borel space (Ω,B(Ω)), with square-
integrable log-densities w.r.t. a reference measure P [3], which reads:

B2(P ) =

{
ν :

∫
R3

log2

(
dν

dP

)
dP <∞, ν > 0

}
. (2)

In this view, if a diffusion signal Sj1 (or, equivalently a probability measure ν1 in-
duced by Sj1) carries a piece of information about the structure of tissue j, then
a diffusion signal Sj2 proportional to Sj1 does not carry additional information
about the structure of tissue j. Hence, Sj1 and Sj2 are regarded as equivalent
for microstructure mapping. This key property, known as scale invariance, is ac-
counted for in the Bayes space B2(P ) by the induced classes of equivalence. Not
every Bayes space B2(P ) however can accommodate compartmental diffusion
signals because, depending on the choice of the reference measure P , the log-
arithm of compartmental diffusion signals might not be square-integrable. The
choice of the reference measure of the Bayes space is thus critical. Provided that
an appropriate reference measure P exists, embedding diffusion signals in B2(P )
provides a unified framework for processing any type of analytic microstructure
compartment models [8] at the cost of numerical integrations.

The space B2(P ) is a vector space when endowed with the perturbation and
powering operations (⊕,�), defined for ν1, ν2 ∈ B2(P ), A ∈ B(R3), α ∈ R as:

(ν1 ⊕ ν2)(A) =B(P )

∫
A

dν1
dP

dν2
dP

dP, (α� ν1)(A) =B(P )

∫
A

(
dν1
dP

)α
dP,

and becomes a separable Hilbert space when equipped with a proper inner prod-
uct [4]. In the following subsection, we focus on the special case of Gaussian
compartmental diffusion for which analytic expressions can be obtained for the
perturbation and powering operations as well as for the distance.

2.2 Gaussian Compartmental Diffusion

The diffusion signal arising from Gaussian compartmental diffusion reads [2]:

S(q) = S0e
−q>Dq, (3)

where D is the so-called diffusion tensor, i.e. a 3× 3 symmetric positive definite
(SPD) matrix. Hence, the probability measure ν induced by S is a Gaussian dis-
tribution with mean 0 and covariance matrix D−1/2 and we can write, for the
purpose of notation, S ∼ N (0, D−1/2). As a result, Gaussian diffusion signals
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cannot be embedded in B2(λ) because choosing the Lebesgue measure as refer-
ence makes the integral of the squared logarithm of S diverge. However since all
moments of the Gaussian distribution are finite, if we define the reference mea-
sure P as a Gaussian distribution with mean 0 and covariance matrix Dref SPD,
i.e. P ∼ N (0, Dref), then Gaussian diffusion signals can be embedded in B2(P ).
Furthermore, it is possible to obtain analytic expression for the operations ⊕
and �. The perturbation of measure ν1 by measure ν2 reads:

(ν1 ⊕ ν2)(A) =B

∫
A

dν1
dλ

dν2
dλ

dλ

dP
dλ =B

∫
A

e−q
>(D1+D2−Dref )qdλ(q).

Hence, (ν1⊕ ν2) ∼ N (0, Dref + (D1−Dref) + (D2−Dref)). The result is another
Gaussian distribution whose covariance matrix is centered around the one of the
reference Gaussian distribution but perturbed by the covariance information in
D1 and D2 that are not already present in the reference covariance structure.
The multiplication of measure ν by a scalar α ∈ R reads:

(α� ν)(A) =B

∫
A

(
dν

dλ

)α(
dλ

dP

)α−1
dλ =B

∫
A

e−q
>(αD+(1−α)Dref )qdλ(q).

Hence, (α� ν) ∼ N (0, αD+ (1−α)Dref). The result is another Gaussian distri-
bution whose covariance matrix is a linear combination between the covariances
of ν and P . This offers the possibility of giving more or less weight to the infor-
mation content of a diffusion signal in terms of microstructure. If one think of
α ∈ [0, 1], then (α� ν) means that less weight is put on the information content
of ν (which could come from a poor model estimate, low SNR, etc) in favor of
the information content of the reference P . In practice, it shrinks the diffusion
tensor of the signal towards the one of the reference.

Note that writing the results of the operations of ⊕ and � as Gaussian dis-
tributions is an abuse of notation. In effect, the space of diffusion signals is a
subspace of B2(P ) that is not closed in the Bayes geometry. This is because
operations on diffusion signals in B2(P ) might yield non positive “covariance”
matrices. However, most applications in which analytic diffusion model comput-
ing is required involve weighted average operations, i.e. linear combinations with
positive weights whose sum is less than one, which always produce SDP tensors
in B2(P ). In effect, it is easy to show that:

N⊕
i=1

wi � νi ∼ N

(
0,

N∑
i=1

wiDi +

(
1−

N∑
i=1

wi

)
Dref

)
. (4)

In the rare events that operations in Bayes space produce non-positive matrices,
one can perform an orthogonal projection of the non-positive matrix back into
the space of diffusion signals by solving the following minimization problem:

min
D∈B(P ) s.t. D>0

ad2B(P )(M,D) + (1− a)d2B(P )(Dref , D), a ∈ [0, 1], (5)

where M is the symmetric matrix assumed to have some negative eigenvalues
and dB(P ) is the distance on B2(P ) given by:

‖ν1 	 ν2‖2B(P ) := Tr
(
(D1 −D2)D−1ref (D1 −D2)D−1ref

)
= ‖(D1 −D2)D−1ref ‖

2
F .
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3 Experimental Setup

3.1 Simulations: Robustness to Noise

The goal of the simulated data is to assess the robustness of Bayes space interpo-
lation to MRI-induced noise, compared to more traditional approaches that focus
directly on the tensor and embed it either in Euclidean or log-Euclidean space.
In Bayes space, as shown in Eq. (4), the tensor associated with the interpolated
signal is a convex combination of the tensor interpolated in Euclidean space and
the tensor of the reference signal, where the weight wdata associated with the
tensor interpolated in Euclidean space shall indicate how much we are willing to
trust its information content. For this purpose, we set wdata := 1− e−SNR/β and
include in the comparison three Bayes spaces (Bayes10, Bayes20, Bayes30), using
β = 10, 20, 30 respectively. We generate (i) a set of 31 noise-free diffusion signals
according to Eq. (3) with a baseline signal S0 = 1 and 31 diffusion gradients
q uniformly distributed on the hemisphere of radius

√
b, with b = 1000s/mm2

and (ii) a set of n = 8 normalized weights to define spatial weights of the 8
neighbors. Next, for a given SNR and a given method, we obtain a Monte-Carlo
estimate of the mean-square error (MSE) of the interpolated tensor by averaging
the squared distances between the ground truth tensor and R = 1000 replicates
of interpolated tensors from noisy neighboring tensors produced as follows:

(a) Add Rician noise to the noise-free signals using σ = S0/SNR;
(b) Get a realistic noisy tensor field by estimating a diffusion tensor in each

neighboring voxel via maximum likelihood estimation [11];
(c) Interpolate the tensor in the central voxel from the tensors in the 8

neighboring voxels to which we associate the initially simulated spatial weights;
(d) Compute distance between the interpolated and ground truth tensor.
We used 8 SNR ∈ [6.25, 50] and three metrics to compare interpolations

with ground truth: the angle between principal orientations (direction distance),
the Euclidean distance between axial diffusivities (diffusivity distance) and the
Euclidean distance between radial diffusivities (radius distance as it is often
used as a proxy to measure axon radii). We chose these metrics as they focus on
microstructural parameters of direct clinical relevance and are independent from
the compared spaces. For interpolation in Bayes space, for each SNR, we set the
reference tensor as a noisy version of the ground truth tensor using the same
procedure as above using SNR

√
N . This is because, often, the available data to

use as reference comes from atlases generated on similar data but averaged on
multiple subjects (N). Hence, there is still uncertainty in the reference tensor
but its variance is likely to be divided by N . In this simulation, we set N = 20.

3.2 Case Study: Tractography of the Pyramidal Tract

The pyramidal tract (PT) is of primary importance as it handles volontary
motion. Neurons initiate in the primary motor cortex (R0), goes successively
through the corona radiata (R1), genu and posterior limb of the internal capsule
(R2) and cerebral peduncles (R3) to eventually enter the spinal cord (R4). The
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PT is difficult to reconstruct from tractography due to the large spreading of
neurons on the cortex. We aim at showing that interpolation in Bayes space
makes deterministic FACT tractography [7] feasible for PT reconstruction. In
details, we compare four approaches obtained combining single- or multi-tensor
FACT tractography (ST or MT) with log-Euclidean or Bayes interpolation (ST-
LogEuclidean, ST-Bayes, MT-LogEuclidean and MT-Bayes).

We scanned a healthy subject on a 3T Siemens Verio magnet for a T1
MPRAGE image at 1mm3 resolution and diffusion data at 2mm3 resolution
using the same gradient table as in the simulations. We used an available PT
atlas in MNI space based on 20 healthy subjects that underwent the same acqui-
sition protocol. We estimated ST and MT models from the diffusion data [11]
and brought the resulting images into MNI space where FACT tractography was
performed. In the case of MT-FACT, at a given point, a single tensor was picked
from each neighboring mixture according to the highest orientation similarity
w.r.t. arrival direction so that we could proceed as in ST-FACT. We performed
tractography of the PT following regions of interest (ROI). We used R0 as seed-
ing mask, stopped a streamline generation when FA fell below 0.1 (for ST-FACT)
or when linearly interpolated fraction of free water exceeded 0.8 (for MT-FACT)
and filtered the resulting streamlines progressively through R1, R2, R3 and R4.
We defined the reference weight at position x for Bayes interpolation as:

wref(x,FA,SNR,xref ;β, δ) :=
(

1− FA(1− e−SNR/β)
)
e−‖x−xref‖/δ,

where FA is the fractional anisotropy of the tensor interpolated in Euclidean
space, xref is the position of the closest point on the PT atlas and (β, δ) are
user-defined parameters that control the decay velocity of SNR and distance
weights. In essence, we put more trust in the data when both SNR and orienta-
tion coherence between neighbors are high or when the reference is too far.

4 Results & Discussion

Simulations: Robustness to Noise. Figure 1 shows the MSE between
the ground truth tensor in central voxel and the interpolated tensor from noisy
neighbors, with increasing amount of noise. For all metrics, interpolation in
Bayes space performs uniformly better in terms of robustness to MRI-induced
noise for recovering microstructural parameters. The MSE curves for the three
Bayes spaces that give increasing importance to the reference measure (from
Bayes10 to Bayes30) reveals that even when we trust mostly the data (Bayes10),
interpolation in Bayes space is preferable.

Case Study: Tractography of the Pyramidal Tract. Figure 2 shows
PT reconstruction with increasing number of filtering ROIs (from left to right)
for all four methods. First, observe that only methods based on Bayes inter-
polation (rows 2 and 4) successfully manage to reconstruct streamlines that go
through all four ROIs and thus are more likely to belong to the PT. Also, in gen-
eral, deterministic FACT tractography fails to recover PT streamlines with the
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Fig. 1. MSE of interpolators as a function of noise. Axial diffusivity recovery (left),
principal eigenvector recovery (middle), radial diffusivity recovery (right). Ground
truth tensor: orientation (

√
2/2,

√
2/2, 0)>; diffusivities 10−3(1.71, 0.3, 0.1)>mm2/s.

Fig. 2. Coronal View of Reconstructed Pyramidal Tracts (with overlaid PT atlas).
Columns correspond to increasing number of filtering ROIs: R1 (1st column), R1+R2
(2nd column), R1+R2+R3 (3rd column), R1+R2+R3+R4 (4th column). Rows corre-
spond to the methods (from top to bottom): single-tensor FACT – log-Euclidean, and
Bayes, multi-tensor FACT – log-Euclidean, and Bayes.

traditional log-Euclidean interpolation (rows 1 and 3) . This is well documented
in the literature on ST-FACT. We hypothesize that MT-FACT has a lot more
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directional information for tracking but, without prior anatomical knowledge,
the FACT algorithm (which stepwise follows the most collinear direction) has
no mechanism to channel streamlines into following the PT shape. This explana-
tion is supported by the sequential filtering that shows high streamline variability
when filtering only by the corona radiata (1st column, 3rd row) and almost no
remaining streamlines at the end of the entire filtering process (4th column, 3rd
row). The ST-Bayes method seems to mainly follow the shape of atlas stream-
lines. This is due to an inherent model mis-specification in most parts of the
white matter where the ST model provides an insufficient description of the mi-
crostructure and therefore presents an articially low FA which uniformly inflates
the weight of the reference measure. Conversely, the MT-Bayes version nicely
preserves the PT streamlines after complete filtering without heavy influence of
the atlas since the MT model provides an accurate description of the microstruc-
ture and thus the interpolated tensor has low FA only when neighboring tensors
have heterogeneous orientations.
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