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Abstract 

Background 

Antibiotic disruption of the intestinal microbiota favors colonization by Clostridium difficile. Using a 

charcoal-based adsorbent to decrease intestinal antibiotic concentrations, we studied the 

relationship between antibiotic concentrations in feces and the intensity of dysbiosis, and quantified 

the link between this intensity and mortality. 

Methods 

We administered either moxifloxacin (n=70) or clindamycin (n=60) to hamsters by subcutaneous 

injection from day 1 (D1) to D5, and challenged them with a C. difficile toxigenic strain at D3. Hamsters 

received various doses of a charcoal-based adsorbent, DAV131A, to modulate intestinal antibiotic 

concentrations. Gut dysbiosis was evaluated at D0 and D3 using diversity indices determined from 16S 

rRNA gene profiling. Survival was monitored until D16. We analyzed the relationship between fecal 

antibiotic concentrations and dysbiosis at the time of C. difficile challenge and studied their capacity 

to predict subsequent death of the animals. 

Results 

Increasing doses of DAV131A reduced fecal concentrations of both antibiotics, lowered dysbiosis and 

increased survival from 0% to 100%. Mortality was related to the level of dysbiosis (p<10-5 for the 

change of Shannon index in moxifloxacin-treated animals and p<10-9 in clindamycin-treated animals). 

The Shannon diversity index and unweighted UniFrac distance best predicted death, with areas 

under the ROC curve of 0.89 [95%CI, 0.82;0.95] and 0.95 [0.90;0.98], respectively. 

Conclusions 

Altogether, moxifloxacin and clindamycin disrupted the diversity of the intestinal microbiota with a 

dependency to the DAV131A dose; mortality after C. difficile challenge was related to the intensity of 

dysbiosis in a similar manner with the two antibiotics. 
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Main text 

Introduction 

Antibiotics disrupt the structure and composition of the intestinal microbiota, and alter metabolic 

processes occurring in the gut with possible acute and long-term consequences (1-5). Short-term 

effects include diarrhea in 5-25% of antibiotic-treated patients, and antibiotics are the main risk 

factor of C. difficile infection (6), which causes a wide range of symptoms from mild diarrhea to toxic 

megacolon with an annual mortality estimated to 29,000 deaths in the United States (7, 8). The 

lincosamide antibiotic clindamycin, as well as fluoroquinolones are among the main antibiotic classes 

associated with C. difficile infection (9). 

The burden of C. difficile infection increases (10), and C. difficile is considered by the US CDC as an 

urgent threat (11). C. difficile pathophysiology is related to the perturbation of the intestinal 

microbiota and its metabolism, which allows C. difficile spores to germinate and colonize the gut, and 

cytotoxic toxins to be released. Various animal models have been developed to delineate the 

pathophysiology of C. difficile infection (12); including the golden Syrian hamster model (13). In this 

model, hamsters treated with antibiotics and colonized by C. difficile are highly susceptible to lethal 

infection, and the degree of susceptibility to develop infection varies between classes of antibiotics 

(14, 15).  

There is however no precise and quantitative analysis of the relationship between the effects of 

antibiotics on global bacterial diversity within the intestinal microbiota and the development of a C. 

difficile infection. Yet diversity is the first descriptor of the structure of a community and is believed 

to be a major determinant of its dynamics. The analysis of complex bacterial communities was made 

possible by the development of efficient sequencing technologies applied to 16S rRNA genes (16). 

These genes are found in all bacterial species and contain regions which are highly conserved and 

others which are highly variable in sequence and can be used as molecular fingerprints. Several 

metrics are available for measuring diversity in bacterial communities. Alpha-diversity refers to 
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within-sample diversity and is usually analyzed using the number (richness) and the distribution 

(evenness) of bacterial taxa observed within a single population, e.g., the Shannon diversity index, 

number of observed operational taxonomic units (OTUs) and the Chao1 index (17, 18). Beta-diversity, 

which refers to diversity between samples, measures the distance between pairs of samples, e.g., 

UniFrac distances based on bacterial taxonomy and Bray-Curtis dissimilarity index (19, 20).  

However whether the intensity of the dysbiosis, as it can be reflected by the variations of these 

global indices, is quantitatively related to the occurrence of C. difficile infection has not be explored 

so far. This is important for a better understanding of the pathophysiology of C. difficile infection and 

to determine whether various degrees of dysbiosis are associated with various degrees of risk of C. 

difficile infection. Here we explored this relationship in an animal model of C. difficile infection in 

hamsters. We had previously showed that DAV131A, a charcoal-based adsorbent with the same 

principle of action and based on the same adsorbent, than the DAV132 product which has recently 

proven to be highly effective to reduce fecal antibiotic concentrations and dysbiosis in human 

volunteers treated with moxifloxacin (21), reduced mortality through a decrease of fecal antibiotic 

concentrations in a hamster model of lethal moxifloxacin-induced C. difficile colitis (22). In this study, 

we induced various degrees of dysbiosis by treating hamsters either with clindamycin or 

moxifloxacin, which have different antibacterial spectra but are both highly associated with the 

occurrence of C. difficile infection, and modulating intestinal antibiotic concentrations by using 

various doses of DAV131A.  

Results 

In order to further analyze the pathophysiology of severe C. difficile colitis, we treated individually 

housed hamsters with either moxifloxacin (total number of 70 animals) or clindamycin (total of 60 

animals) for 5 days in 2 separate studies with similar designs (see Figure 1). Some groups received 

various doses of DAV131A given orally bis in die (bid) concomitantly with the antibiotic and for an 

additional 3 days after (corresponding to a total of 8 days). All hamsters were challenged with 104
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spores of a toxigenic C. difficile strain on the 3rd day of antibiotic treatment. We analyzed the 

quantitative relationship between antibiotic-induced dysbiosis at the time of the C. difficile challenge 

and the occurrence of subsequent death from infection. 

Among antibiotic-treated animals, 10 (12.5%) died in the moxifloxacin study, and 28 (40.6%) in the 

clindamycin study. One hamster from one of the control groups died during the acclimation period, 

but none did after the beginning of antibiotic treatment. Significant differences in mortality rates 

were observed between groups which received various doses of DAV131A in addition to the 

antibiotic (p<10-11 in the moxifloxacin study and p<10-10 in the clindamycin study). In both studies, all 

hamsters treated with antibiotic + DAV131A placebo died. In the moxifloxacin study, all hamsters 

receiving 200 mg/kg DAV131A bid and greater survived, whereas in the clindamycin study, there was 

a dose-dependent reduction of mortality from 90% at 300 mg/kg DAV131 bid to 100% survival 

reached at 750 mg/kg DAV131 bid and above. Full results are presented in Table 1 and Figure 2.  

Fecal counts of C. difficile decreased with increasing doses of DAV131A (p<10-7 in the moxifloxacin 

study and p=0.00018 in the clindamycin study). 

Fecal concentration of free and active antibiotics, as measured by a microbiological assay, also 

decreased as expected with increasing doses of DAV131A (p<10-9 in the moxifloxacin study and p<10-

4 in the clindamycin study). These concentrations were significantly lower in hamsters which survived 

than in those which died during the study (p=0.00025 in the moxifloxacin study and p<10-6 in the 

clindamycin study, see Table 2). 

The structure and composition of the bacterial intestinal microbiota was studied by 16S rRNA gene 

profiling using Illumina sequencing technology. The two antibiotics exhibited different effect on the 

taxonomic composition of the intestinal microbiota (see Supplementary Figure 1). Moxifloxacin 

administration had a relatively modest effect, consisting in a decrease of the mean relative 

abundance of Actinobacteria from 2.9% to 1.4%, and Proteobacteria from 1.9% to 0.4%, and an 

increase of the mean relative abundance of Bacteroidetes from 11.8% to 17.0%, while Firmicutes 
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remained stable (from 79.4% to 80.3%). In contrast, clindamycin administration resulted a very 

pronounced decrease of the mean relative abundance of Firmicutes from 87.4% to 14.0% and of 

Bacteroidetes from 5.1% to 0.1%. The mean relative abundance of Proteobacteria increased from 

2.5% to 84.4% and Actinobacteria remained quite stable (from 2.4% to 1.3%). For both antibiotics, 

the effect on composition of the intestinal microbiota varied with the dose of DAV131A, with a much 

larger amplitude of variation in the case of clindamycin. 

Several α- (within sample) and β- (between samples) diversity metrics were computed for 

investigating the individual-specific change of diversity between the time of antibiotic initiation and 

the time of C. difficile inoculation. The loss of diversity between the beginning of antibiotic treatment 

and C. difficile inoculation was lower in DAV131A-treated hamsters than in those treated with 

antibiotic and DAV131A placebo (Table 1 and Supplementary Table 1). Indeed, loss of diversity 

increased with increasing concentrations of free antibiotic in feces, attesting of a direct relationship 

between antibiotic exposure of the microbiota and the extent of dysbiosis (Spearman r=-0.25, 

p=0.043 for the change of Shannon index between D0 and D3 and r=0.71, p<10-10 for unweighted 

UniFrac distance between D0 and D3 in the moxifloxacin study, and r=-0.49, p<10-4 for the change of 

Shannon index between D0 and D3 and r=0.57, p<10-5 for unweighted UniFrac distance between D0 

and D3 in the clindamycin study, see Supplementary Figure 2 and in Supplementary Table 2). 

We also compared the changes in diversity within the intestinal microbiota between D0 and D3 

according to the vital status at D16. Diversity at the time of C. difficile challenge was significantly less 

affected in hamsters which survived (Table 2 and Figure 3). In the moxifloxacin study, the median 

(min; max) change of the Shannon index was -1.7 (-3.0; -1.0) in hamsters which died by D16, versus -

1.0 (-1.9; -0.1) in those which survived (p<10-4). In the clindamycin study, the median (min; max) 

change of the Shannon index was -2.2 (-4.3; -0.4) in hamsters which died by D16, versus -1.1 (-2.6; 0.0) 

in those which survived (p<10-7). Interestingly, the median change of Shannon index in hamsters 

which died was rather similar for the 2 antibiotics, in spite of their different spectra of activity and 
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mode of action. In order to further assess the ability of diversity indices to predict death by D16, we 

computed for each diversity index the area under the Receiver Operating Curve (AUROC), which can 

be interpreted as the probability that the index correctly ranks 2 randomly chosen animals. AUROCs 

were above 0.8 for all diversity indices studied (Table 2), attesting that they are highly predictive of 

the outcome (23). Each index also exhibited a similar predictability of death for both antibiotics. 

Changes in the Shannon index at the time of challenge had the best predictability of death by D16 

among α-diversity indices (AUROC 0.91 [95%CI, 0.80; 0.98] for moxifloxacin and 0.88 [0.78; 0.96] for 

clindamycin), whereas unweighted UniFrac was the most predictive β-diversity index (AUROC 0.95 

[0.90; 0.99] for moxifloxacin and 0.94 [0.88; 0.99] for clindamycin). These two indices were further 

studied after pooling data from the two different antibiotic treatments. Overall, data from 130 

antibiotic-treated animals were available, among which 38 died by D16 (29.2%). Logistic models of 

mortality by D16 for both diversity indices are presented in Figure 4. The AUROC of the Shannon index 

change was 0.89 [0.82; 0.95], and that of the unweighted UniFrac distance was 0.95 [0.90; 0.98] (see 

Supplementary Figure 3), thus also indicative of their high predictive value. The difference between 

the 2 AUROCs was not significant (p=0.10). 

As these two indices were highly predictive of mortality, we further studied them by determining 

their optimal cut-off value best discriminating between death and survival by D16 using the Youden 

index.  The value of the Shannon index change best discriminating between death and survival at D16 

was -1.7 [-1.8; -1.2] (Supplementary Figure 4). The probability of observing a loss of diversity higher 

than -1.7 in hamsters which would die by D16 (sensitivity) was 0.71 [0.63; 0.95] and the probability of 

observing a loss of diversity lower than -1.7 in hamster which survived at D16 (specificity) was 0.96 

[0.76; 0.99]. The best cut-off value of the unweighted UniFrac distance was 0.61 [0.58; 0.64] 

(Supplementary Figure 4). Associated sensitivity and specificity were 0.87 [95%CI, 0.79; 1.00] and 

0.88 [0.72; 0.97], respectively. These values of sensitivity and specificity further illustrate the high 

predictability of these two diversity indices for the occurrence of the death of hamsters in these 

experiments. 
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Finally, in order to quantify the relationship between the loss of diversity and mortality, and to 

determine the maximal change of diversity required to limit the mortality rate to predefined values, 

we developed a logistic model of the probability of death according to the diversity observed in the 

intestinal microbiota. The model showed that small losses of diversity were sufficient to allow the 

development of severe colitis and death in a substantial number of animals. For instance, a reduction 

of the Shannon index between D0 and D3 by as little as 0.7 [95%CI, 0.4; 1.1] predicted to result in the 

death of 5% of the animals. The same mortality rate was predicted by an unweighted UniFrac 

distance of 0.51 [0.47; 0.55] between D0 and D3. Results for other mortality rates are presented in 

Table 3. 

Discussion 

Our main result was the evidence of an association between the probability of hamster death and 

the antibiotic-induced loss of diversity of the intestinal microbiota at the time of C. difficile 

inoculation. Seemingly such a quantitative relationship had never been described. In this animal 

model, antibiotics perturb the structure and function of the intestinal microbiota, allowing the 

germination and growth of C. difficile spores, and the production of cytotoxic toxins leading to death 

of the animals (12). The protection provided by DAV131A through lowering the fecal concentration of 

active antibiotic, previously shown for moxifloxacin (22) was extended here to clindamycin, an 

antibiotic from a different class with a very different mode of action and spectrum of activity.  

Despite the fact that the two antibiotics studied had different impacts on the taxonomic composition 

of the intestinal microbiota, global indices of intestinal bacterial diversity exhibited similar variation 

patterns of change with antibiotic concentrations. Our observations showed a clear relation between 

the loss of intestinal microbiota diversity and the development of C. difficile infection-associated 

death in this model. Both α- and β-diversity indices studied had high predictive capacities for the 

ability of C. difficile spores to generate a lethal infection, the change of Shannon index between the 

beginning of antibiotic treatment and the time of C. difficile inoculation (for α-diversity) and the 
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unweighted UniFrac distance (for β-diversity) appearing as the most predictive metrics. A link 

between the reduction of intestinal microbiota diversity after treatment with the glycylcycline 

antibiotic tigecycline had previously been reported in mice (24) but the precise quantitative 

relationship was not analyzed. In humans, the occurrence of C. difficile infection has been associated 

with a reduced diversity within the intestinal microbiota assessed from the diarrheal feces (25, 26). 

Here, we extend these observations to hamsters treated with either of two very different antibiotics 

moxifloxacin and clindamycin. We showed using various metrics, that individual-specific loss of 

diversity within the intestinal microbiota induced by antibiotics prior to C. difficile inoculation was 

highly predictive of the animals’ susceptibility to C. difficile infection, thus providing further insight 

into C. difficile pathophysiology. Furthermore, we were able to quantify this link, with even a small 

loss of diversity significantly increasing the risk of mortality. Indeed, a 0.7 reduction of the Shannon 

diversity index was associated with a 5% risk of death. Transposition of our results to humans is 

however challenging, in particular due to the differences in physiology between rodents and humans. 

The ANTICIPATE European observational study (NCT02896244) was undertaken to evaluate the 

incidence of Clostridium difficile infections in hospitalized patients aged over 50 that were treated 

with various antibiotics; evaluation of the associated states of the intestinal microbiota by 16S rRNA 

gene profiling in those patients, should shed further light on their link with the risk of Clostridium 

difficile infection. 

We observed that the loss of diversity was correlated to the concentration of free antibiotic in the 

fecal content. By adsorbing antibiotic residues reaching the colon after subcutaneous administration, 

DAV131A protected the microbiota against antibiotic-induced dysbiosis and reduced mortality in a 

dose dependent-manner. This approach appears to be promising as it might be extended to most 

classes of antibiotics, in addition to the two tested here, due to the wide adsorbing capacities of the 

product (21). Transposition to humans is currently ongoing. In a phase 1 clinical trial, DAV132, the 

human counterpart of DAV131A containing the same adsorbent, was shown to reduce by more than 

99% the fecal exposure to moxifloxacin in healthy volunteers, while the plasma concentration of the 
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antibiotic remained unaffected; in subjects co-treated by moxifloxacin and DAV132, the diversity of 

the microbiota was protected from moxifloxacin-induced disruption (21). Further developments of 

this strategy to protect patients from the deleterious consequences of antibiotic treatments on the 

microbiota are currently ongoing. 

Material and Methods 

Hamster model of antibiotic-induced C. difficile infection 

A previously developed hamster model of antibiotic-induced C. difficile infection was adapted to 

moxifloxacin (a fluoroquinolone antibiotic) and clindamycin (a lincosamide antibiotic) (27). After an 

8-day acclimation period, male Golden Syrian hamsters (80-120 grams) received antibiotic by 

subcutaneous injection at a time designated as H0, once a day from day 1 (D1) to day 5 (D5). 

Administered doses were 30 mg/kg for moxifloxacin and 5 mg/kg for clindamycin. These doses were 

chosen as the lowest dose resulting in a 100% mortality rate in treated hamsters infected with C. 

difficile spores. 

Animals were infected orally on day 3 (D3), 4 hours after antibiotic administration (H4), with 104 

spores of the non-epidemic C. difficile strain UNT103-1 (VA-11, REA J strain), TcdA+, TcdB+, cdtB−, 

vancomycin MIC = 2 µg/mL, moxifloxacin MIC = 16 µg/mL, clindamycin MIC > 256 µg/mL, ceftriaxone 

MIC = 128 µg/mL, obtained from Dr. Curtis Donskey, Ohio VA Medical Centre.  

Hamsters were individually housed during all the experiment, with no contact between animals. Vital 

status of the animals was evaluated daily until the end of the study at D16. Animals judged in a 

moribund stated were euthanized. All surviving hamsters were euthanized at D16. 

Ethics statement 

Animals were housed in conformity with NIH guidelines (28). All procedures were conducted at the 

University of North Texas Health Science Center in Fort Worth (Texas, USA) in accordance with 

Protocol IACUC-2016-0015 approved by the local Institutional Animal Care and Use Committee. 
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DAV131A 

DAV131A is an activated charcoal-based adsorbent with high adsorption capacity (29). It was 

administered to hamsters by oral gavage after mixing with 0.25% w/v Natrosol® 250 

Hydroxyethylcellulose. Hamsters from placebo groups received Natrosol® alone. 

Study design 

Two studies with rather similar design were performed each with one antibiotic, moxifloxacin or 

clindamycin, in order to assess the protection provided by DAV131A against lethal antibiotic-induced 

C. difficile infection. DAV31A was administered bis in die (bid) to hamsters for 8 days, at H0 and H5 on 

D1, then at H-4 and H1 from D2 to D8.  

In the moxifloxacin study, 70 animals were treated with moxifloxacin and 10 animals were left 

untreated. Groups of 10 or 20 antibiotic-treated animals were constituted according to the DAV131A 

unit dose administered bid: DAV131A placebo (MXF/0, n=10), 200 mg/kg (MXF/200, n=20), 300 

mg/kg (MXF/300, n=20), 600 mg/kg (MXF/600, n=10) or 900 mg/kg (MXF/900, n=10). The control 

group was not treated by antibiotic and received DAV131A placebo. 

In the clindamycin study, 60 animals were treated with clindamycin and 10 were left untreated. 

Groups of 10 antibiotic-treated animals were constituted according to the DAV131A unit dose 

administered bid: DAV131A placebo (CLI/0, n=10), 300 mg/kg (CLI/300, n=10), 450 mg/kg (CLI/450, 

n=10), 600 mg/kg (CLI/600, n=10), 750 mg/kg (CLI/750, n=10) or 900 mg/kg (CLI/900, n=10). The 

control group was not treated by antibiotic and received DAV131A placebo. 

Sample collection 

For each animal, fecal samples were collected at D0 and D3. On D0, the fecal sample comprised 

pellets emitted in the 12 hours preceding the first antibiotic administration. On D3, 2 pools of feces 

were collected. The first was constituted of pellets emitted in the 12 hours following antibiotic 

administration (H0 to H12); this surrounds the time at which animals were challenged by gavage with 

C. difficile spores (at 4h after antibiotic administration). The second was constituted by pellets 
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emitted in the period between 12 and 24 hours after antibiotic administration (H12 to H24). 

Coprophagy of hamsters was not controlled, as this is a natural behavior in rodents. Fecal samples 

were stored at -80°C until further analysis. 

Determination of C. difficile counts in feces 

Fecal counts of C. difficile were determined extemporaneously at D3 (on the pool H12 to H24) by 

plating serial dilutions of the samples on CDSA selective media (BBL C. difficile selective agar, BD). 

Counts were read after anaerobic incubation at 37°C for 48h. Fecal counts below the LOQ (3.2 log10 

CFU/g of feces) were imputed to the LOQ. 

Measure of antibiotic concentrations 

Fecal concentrations of free and active antibiotic were determined on fecal samples collected at D0 

and D3 (on the pool H0 to H12) by a microbiological bioassay. On the day of the assay, feces were 

weighted, homogenized in sterile saline, and debris were eliminated by centrifugation. Fecal active 

moxifloxacin concentrations were measured using B. subtilis ATCC 6633 after incubation at 37°C for 

24 hours (30). Fecal concentrations of active clindamycin were measured using M. luteus ATCC 9341 

after incubation at 37°C for 24 hours (31). Data below the limit of quantification were imputed to 0. 

16S rRNA gene bacterial community profiling 

Both D0 and D3 (pool H0 to H12) samples were analyzed using 16S rRNA gene profiling. Microbial 

DNA was extracted using an extraction protocol optimized at GenoScreen, partially based on 

commercially available extraction kits (QIAamp DNA stool Kit, Qiagen, Germany) with the addition of 

chemical and mechanical lysis steps.   

The V3-V4 region of the 16S rRNA gene was then amplified using an optimized and standardized 

amplicon-library preparation protocol (Metabiote®, GenoScreen, Lille, France). Positive (Artificial 

Bacteria Community comprising 17 different bacteria, ABCv2) and negative (sterile water) controls 

were also included. Briefly, PCR reactions were performed using 5 ng of genomic DNA and in-house 

fusion barcoded primers (final concentrations of 0.2 μM), with an annealing temperature of 50°C for 
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30 cycles. PCR products were purified using Agencourt AMPure XP magnetic beads (Beckman Coulter, 

Brea, CA, USA), quantified according to GenoScreen’s protocol, and mixed in an equimolar amount. 

Sequencing was performed using 250-bp paired-end sequencing chemistry on the Illumina MiSeq 

platform (Illumina, San Diego, CA, USA) at GenoScreen.   

For the moxifloxacin study, a total of 25,284,850 raw sequences were obtained (16,421 to 57,650 

sequences per sample) and for the clindamycin study, a total of 24,159,124 raw sequences were 

obtained (22,027 to 84,598 sequences per sample). 

Raw paired-end reads were then demultiplexed per sample and subjected to the following process: 

(1) search and removal of both forward and reverse primer using CutAdapt, with no mismatches 

allowed in the primers sequences; (2) quality-filtering using the PRINSEQ-lite PERL script (32), by 

truncating bases at the 3′ end with Phred quality score <30; (3) paired-end read assembly using 

FLASH (33), with a minimum overlap of 30 bases and >97% overlap identity. After pre-processing, 

17,735,465 and 18,429,753 reads were available for the moxifloxacin and clindamycin studies, 

respectively. 

Taxonomic and diversity analysis were performed using the Metabiote Online v2.0 pipeline 

(GenoScreen, Lille, France) which is partially based on the QIIME software v1.9.1 (34). Following the 

steps of pre-processing, chimera sequences were detected and eliminated (in-house method based 

on the use of Usearch 6.1). Then, clustering of similar sequences (97% identity threshold for an 

affiliation at the genus level on the V3-V4 regions of the 16S rRNA gene) was performed with Uclust 

v1.2.22q (35) through an open-reference OTU picking process and complete-linkage method, finally 

creating groups of sequences or "Operationnal Taxonomic Units" (OTUs). An OTU cleaning step 

corresponding to the elimination of singletons was performed. For each OTU, the most abundant 

sequence was considered as the reference sequence and taxonomically compared to the Greengenes 

database, release 13_8 (www.greengenes.gov) by the RDP classifier method v2.2 (36).  

Various diversity indices were computed using QIIME (34). α-diversity metrics included the Shannon 

diversity index, the number of observed OTUs and the Chao1 index. These indices were computed for 
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each sample after rarefaction of the data (9,217 and 13,938 sequences allowed an exhaustive 

description of the bacterial diversity in the moxifloxacin and the clindamycin study, respectively). In 

order to study the evolution of the bacterial diversity after the beginning of antibiotic treatment, we 

computed for each animal the difference between the values of these indices at D3 and D0. For β-

diversity metrics, we computed the unweighted and weighted UniFrac distances, as well as Bray-

Curtis dissimilarity for each animal between the samples collected at D3 and D0. 

Statistical analysis 

For each study, we compared mortality rates at D16 and diversity indices across groups using 

nonparametric Fisher exact or Kruskall-Wallis tests, as appropriate. Fecal free antibiotic 

concentrations and fecal counts of C. difficile at D3 were compared according to DAV131A unit dose 

in antibiotic-treated hamsters using the Kruskall-Wallis test. In case of significant difference, post-hoc 

comparisons of each of the antibiotic-treated groups to the control group were performed using non 

parametric Fisher exact or Wilcoxon test with Benjamini-Hochberg’s correction for multiple testing. 

The correlations between active moxifloxacin or clindamycin fecal concentrations and diversity 

indices were studied using the Spearman rank correlation coefficient among antibiotic-treated 

hamsters. 

We then compared for each study the fecal free antibiotic concentrations or diversity indices at D3 

according to the vital status at D16 in antibiotic-treated hamsters, using the non-parametric Wilcoxon 

test. The predictability of death by D16 of the fecal free antibiotic concentration and of each studied 

diversity index was evaluated using the area under the Receiving Operator Curve (ROC) curve 

(AUROC) and its 95% confidence interval, computed using 2000 paired-bootstrap replicates. In the 

context of the present work, the AUROC can be interpreted as the probability that the diversity index 

will correctly rank 2 randomly chosen animals, 1 which would die by D16, and 1 which would survive 

(37). 

In order to further analyze the link between microbial diversity and mortality by D16, we pooled the 

data of the 2 studies and performed a logistic regression of mortality by D16 according to diversity 
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index in all antibiotic-treated hamsters. Diversity indices studied were those with the best predictive 

capacity among α- and β-diversity indices. Predictability was estimated using the AUROC and its 95% 

confidence interval. AUROCs of the 2 indices were compared using 2000 paired-bootstrap replicates. 

The best cut-off value for discriminating between hamsters which died and which survived at D16 was 

determined as the value allowing the maximization of both sensitivity and specificity, using the 

Youden index (38) and its 95% confidence interval. In the frame of the present study, sensitivity 

represents the probability of change of diversity between D0 and D3 being higher than a cut-off value 

in hamsters who will die by D16, and specificity is the probability of the change of diversity being 

lower than a cut-off value in hamsters who will survive until D16. The Youden index is computed as 

sensitivity + specificity – 1, and ranges between -1 and 1. A logistic model was then used to 

determine the diversity index values required to reduce mortality to various rates ranging from 1% to 

10%. 

Data are presented as number of observations n (%) or median (min; max). All tests were 2-sided 

with a type-I error of 0.05. All analyses were performed using R software v3.2.2. 

Nucleotide sequence accession number 

Sequence data have been submitted to the NCBI database under accession number PRJNA478191.  
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Tables 1 

Table 1. Mortality rates, fecal counts of C. difficile at D3, fecal concentrations of active antibiotic at D3, change of Shannon index between D0 and D3 and 2 

unweighted UniFrac distances between D0 and D3 according to treatment groups in the moxifloxacin and clindamycin studies. Data are presented as n (%) 3 

or median (min; max) as appropriate. q-values refer to the comparison of the corresponding treatment group with the antibiotic + DAV131A placebo 4 

treatment group (MXF/0 or CLI/0), after Benjamini-Hochberg correction. The p-values for the comparison of all treatment groups using Fisher exact or 5 

Kruskall-Wallis tests are reported in the “All groups” line. In the analysis of concentrations, only antibiotic-treated groups were included. 6 

Treatment 
group 

n Mortality q-value 
C. difficile counts 

(log10 CFU/g) 
q-value Concentration (µg/g) q-value 

Shannon index 
change 

q-value 
Unweighted 

UniFrac  
q-value 

Moxifloxacin study 
controls 10 0 (0) - 3.2 (3.2; 3.2) - - - -0.1 (-0.6; 2.3) - 0.28 (0.24; 0.69) - 
MXF/0 10 10 (100) - 7.7 (6.9; 8.0) - 110.0 (70.5; 172.7) - -1.7 (-3.0; -1.0) - 0.61 (0.56; 0.76) - 

MXF/200 20 0 (0) <10
-7

 3.2 (3.2; 5.3) <10
-4

 94.6 (43.0; 162.1) 0.14 -1 (-1.9; 0.1) 0.00065 0.56 (0.49; 0.65) 0.00075 
MXF/300 20 0 (0) <10

-7
 3.2 (3.2; 4.8) <10

-4
 57.2 (20.2; 107.4) <10

-4
 -1 (-1.5; -0.2) 0.00026 0.51 (0.45; 0.57) <10

-6
 

MXF/600 10 0 (0) <10
-4

 3.2 (3.2; 4.6) <10
-5

 4.2 (1.1; 20.3) <10
-4

 -0.8 (-1.3; -0.3) 0.00023 0.45 (0.42; 0.56) <10
-4

 
MXF/900 10 0 (0) <10

-4
 3.2 (3.2; 3.2) <10

-5
 0.0 (0.0; 1.3) 0.00033 -0.8 (-1.6; -0.2) 0.0022 0.41 (0.37; 0.51) <10

-4
 

All groups 80 10 (12.5) <10
-11

 3.2 (3.2; 8.0) <10
-8

 59.4 (0.0; 172.7) <10
-9

 -1 (-3; 2.3) <10
-5

 0.51 (0.24; 0.76) <10
-9

 

Clindamycin study 
controls 9 0 (0) - 3.2 (3.2 ; 3.2) - - - 0.0 (-0.3; 0.5) - 0.31 (0.27; 0.38) - 

CLI/0 10 10 (100) - 7.6 (4.3 ; 7.8) - 10.1 (0.0; 37.8) - -3.9 (-4.3; -2.6) - 0.77 (0.72; 0.84) - 
CLI/300 10 9 (90) >0.99 6.1 (3.2 ; 7.8) 0.075 4.2 (0.0; 14.2) 0.061 -2.1 (-2.6; -1.5) <10

-4
 0.69 (0.62; 0.74) <10

-4
 

CLI/450 10 6 (60) 0.11 4.9 (3.2 ; 8.0) 0.066 0.0 (0.0; 6.5) 0.0041 -1.4 (-2.5; -1.0) <10
-4

 0.66 (0.63; 0.71) <10
-4

 
CLI/600 10 3 (30) 0.0052 3.9 (3.2 ; 5.3) 0.0041 0.0 (0.0; 30.0) 0.024 -1.1 (-1.6; -0.4) <10

-4
 0.61 (0.55; 0.65) <10

-4
 

CLI/750 10 0 (0) <10
-4

 4.7 (3.2; 6.0) 0.0074 0.0 (0.0; 0.0) 0.0019 -0.8 (-1.4; 0.0) <10
-4

 0.57 (0.55; 0.61) <10
-4

 
CLI/900 10 0 (0) <10

-4
 3.6 (3.2; 4.6) 0.0041 0.0 (0.0; 0.0) 0.0019 -0.9 (-1.5; 0.7) <10

-4
 0.57 (0.49; 0.63) <10

-4
 

All groups 69 28 (40.6)  <10
-10

 4.4 (3.2; 8.0) <10
-5

 0.0 (0.0; 37.8) <10
-4

 -1.1 (-4.3; 0.5)  <10
-9

 0.62 (0.27; 0.84)  <10
-10

 

 7 
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Table 2. Median (min; max) values of free antibiotic concentration and change of α- (Shannon index, 8 

number of OTUs and Chao1 index) and β- (unweighted and weighted UniFrac distances, and Bray-9 

Curtis dissimilarity) diversity indices between D0 and D3 according to vital status at D16 in antibiotic-10 

treated groups for each study, and their respective area under the ROC curve (AUROC) for predicting 11 

occurrence of death by D16. P-values refer to non-parametric Wilcoxon test. 12 

  Died Survived 
p-value  AUROC [95% CI] 

Moxifloxacin study N=10 N=60 

Concentration 110.0 (70.5; 172.7) 52.9 (0.0; 162.1) 0.00025 0.87 [0.76; 0.95] 

α-diversity 

Change of Shannon index -1.7 (-3.0; -1.0) -1.0 (-1.9; 0.1) <10
-4

 0.91 [0.80; 0.98] 

Change of Number of OTUs -135.9 (-207.3; -52.2) -72.9 (-201.0; 74.5) 0.001 0.83 [0.67; 0.95] 

Change of Chao1 index -137.9 (-213.4; -46.2) -75.5 (-229.3; 83.5) 0.002 0.81 [0.64; 0.93] 

β-diversity 

Unweighted UniFrac 0.61 (0.56; 0.76) 0.51 (0.37; 0.65) <10
-5

 0.95 [0.90; 0.99] 

Weighted UniFrac 0.33 (0.24; 0.48) 0.26 (0.13; 0.57) 0.02 0.73 [0.58; 0.87] 

Bray-Curtis dissimilarity 0.78 (0.63; 0.86) 0.60 (0.31; 0.87) <10
-4

 0.91 [0.81; 0.99] 

Clindamycin study N=28 N=32     

Concentration 5.0 (0.0; 37.8) 0.0 (0.0; 4.4) <10
-6

 0.81 [0.72; 0.91] 

α-diversity 

Change of Shannon index -2.2 (-4.3; -0.4) -1.1 (-2.6; 0.0) <10
-6

 0.88 [0.78; 0.96] 

Change of Number of OTUs -223.9 (-344.6; -75.8) -106.8 (-202.2; -22.0) <10
-5

 0.86 [0.75; 0.95] 

Change of Chao1 index -227.7 (-358.2; -73.8) -110.0 (-209.0; -22.7) <10
-6

 0.86 [0.76; 0.95] 

β-diversity 

Unweighted UniFrac 0.71 (0.59; 0.84) 0.60 (0.49; 0.68) <10
-10

 0.94 [0.88; 0.99] 

Weighted UniFrac 0.42 (0.24; 0.62) 0.30 (0.24; 0.59) <10
-6

 0.87 [0.76; 0.96] 

Bray-Curtis dissimilarity 0.86 (0.71; 0.98) 0.70 (0.61; 0.87) <10
-9

 0.92 [0.84; 0.97] 

  13 
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Figures 14 

Figure 1. Experimental design of the studies.  15 

Male Syrian Golden hamsters were treated with moxifloxacin (MXF, n=70) or clindamycin (CLI, n=60) 16 

once a day (OAD) by the subcutaneous route for 5 days and received various doses of DAV131A bis in 17 

die (BID) by the oral route for 8 days, that would result in the exposition of the microbiota to various 18 

antibiotic concentrations and different bacterial environment. Toxigenic strain of C. difficile UNT103-19 

1 was inoculated at D3. Fecal samples were obtained just before the beginning of treatment, and at 20 

the 3rd treatment day. Microbiota analysis was performed by 16S rRNA gene sequencing on both 21 

samples, and fecal concentration of active antibiotic was determined at D3 by microbiological assay. 22 

Survival was monitored up to D16. 23 

  24 



  Page 24 of 26 

 

Figure 2. Mortality rate, fecal concentration of free antibiotic at D3, C. difficile counts at D3, change of 25 

Shannon index and unweighted UniFrac distance between D0 and D3 according to treatment group in 26 

the moxifloxacin (left panel) and clindamycin (right panel) studies.  27 

Barplots of the mortality rates are presented with their 95% binomial confidence intervals. For 28 

concentrations, Shannon index and unweighted UniFrac distances, the boxes present the 25th and 29 

75th percentiles and the horizontal black bar report the median value, while whiskers report 5th and 30 

95th percentiles. 31 

  32 
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Figure 3. Change of Shannon index (top panel) and unweighted UniFrac distance (bottom panel) 33 

between D0 and D3 according to the occurrence of death by D16 in the moxifloxacin (left panel) or 34 

clindamycin (right panel) study.  35 

The boxes present the 25th and 75th percentiles and the horizontal black bar report the median value, 36 

while whiskers report 5th and 95th percentiles. 37 

  38 
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Figure 4. Logistic models of mortality according to the change of Shannon index (left panel, p<10-15) 39 

and unweighted UniFrac distance (right panel, p<10-15) between D0 and D3 after pooling data from 40 

antibiotic-treated animals in the moxifloxacin and clindamycin studies.  41 

Red bars represent the mortality rates and their 95% confidence intervals of deciles of the observed 42 

diversity indices. The shadded area present the 95% confidence interval of the predicted probability 43 

of death. 44 

 45 


