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Abstract 37 

Over the past two decades a growing body of evidence has demonstrated an important role 38 

of tight junction (TJ) proteins in the physiology and disease biology of gastrointestinal (GI) 39 

and liver disease. On one side, TJ proteins exert their functional role as integral proteins of 40 

TJs in forming barriers in the gut and the liver. Furthermore, TJ proteins can also be 41 

expressed outside TJs where they play important functional roles in signaling, trafficking and 42 

regulation of gene expression. A hallmark of TJ proteins in disease biology is their functional 43 

role in epithelial-to-mesenchymal transition. A causative role of TJ proteins has been 44 

established in the pathogenesis of colorectal cancer and gastric cancer. Among the best 45 

characterized roles of TJ proteins in liver disease biology is their function as cell entry 46 

receptors for hepatitis C virus – one of the most common causes of hepatocellular 47 

carcinoma. At the same time TJ proteins are emerging as targets for novel therapeutic 48 

approaches for GI and liver disease. Here we review our current knowledge of the role of TJ 49 

proteins in the pathogenesis of GI and liver disease biology and discuss their potential as 50 

therapeutic targets. 51 

  52 
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Tight junctions (TJs) are intercellular adhesion complexes that are essential to the barrier 53 

function of epithelia and endothelia. They maintain cell polarity by limiting the movement of 54 

proteins within the plasma membrane and by regulating paracellular solute and water flux 55 

(for a recent review see[1]). Their functions are however not limited to these important 56 

structural gate and fence functions as TJs also act as signaling hubs[1, 2]. TJs are highly 57 

dynamic structures that constantly enable cells to adapt to their environment. Not 58 

surprisingly, perturbation of TJ protein expression or function and/or disruption of TJ integrity 59 

is associated with a variety of diseases, including skin, intestinal and lung diseases, and 60 

cancers[1, 3] (Table 1). Furthermore, pathogens have evolved strategies to overcome 61 

epithelial and endothelial barriers by using TJ components for their infection/invasion[1, 4]. 62 

TJs are composed of transmembrane proteins, including different claudins (CLDNs), tight 63 

junction-associated marvel proteins (TAMPs) such as occludin, junctional adhesion 64 

molecules (JAMs) as well as cytosolic proteins, which form what has been termed the 65 

junctional plaque and connect transmembrane components to the cytoskeleton[1] (Figure 1).  66 

 OCLN was the first identified integral membrane protein forming TJs. OCLN is a 65-67 

kDa protein with 4 transmembrane domains. Posttranscriptional modification leads to several 68 

splice variants. OCLN contains a small intracellular loop and two extracellular loops (ECLs), 69 

ECL1 and ECL2, the latter being involved in homophilic interactions between OCLNs 70 

expressed on adjacent cells. The N- and C-terminal parts are both located within the cell. 71 

The C-terminal part is longer than the N-terminal part and its role in the modulation of TJ 72 

assembly, structure and function via posttranslational modifications of OCLN as well as for 73 

interaction with other TJ components and the cytoskeleton has been well studied[5] (Figure 74 

1). OCLN contains a conserved four transmembrane marvel domain and is thus a member of 75 

the tight junction-associated marvel proteins (TAMPs) that also include tricellulin and 76 

marvelD3[6]. It has been shown that the three TAMPs have distinct but overlapping functions 77 

at the TJ. Tricellulin localizes at tricellular junctions formed by the corners of three epithelial 78 

cells while OCLN localizes at bicellular junctions. MarvelD3 has been reported to interact 79 

with tricellulin and OCLN, suggesting that it may be present at bi- and tricellular junctions[6].  80 
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 The observation that TJs can form in the absence of OCLN[7] has led to the 81 

identification of CLDNs as integral TJ components. CLDNs form a family of 25-27 kDa 82 

proteins that in mammals comprises up to 27 members with high sequence homology. Like 83 

OCLN, CLDNs can also be subject to posttranslational and postranscriptional regulation. 84 

Their structure also resembles the one of OCLN, except for a shorter C-terminal part. The 85 

ECLs contribute through homophilic or heterophilic interactions with CLDNs or other integral 86 

membrane proteins located on adjacent cells to TJ formation[8]. The C-terminal part links the 87 

protein to intracellular TJ components and the actin cytoskeleton (Figure 1). Interestingly, 88 

CLDN expression patterns vary between different organs and cancers. CLDNs have thus 89 

been suggested as diagnostic markers and targets for cancer therapy[9, 10, 11]. 90 

 Beside CLDNs and TAMPs that form TJ strands, additional transmembrane barrier 91 

proteins, including JAMs and related proteins, have been described (reviewed in[12, 13]. The 92 

best characterized JAM in the regulation of TJ barrier function is JAM-A, a member of the 93 

immunoglobulin (Ig) superfamily. The dimerization of two JAM-A molecules expressed on the 94 

same cell (cis-dimerization) contributes to the formation of a complex between 95 

transmembrane TJ proteins and cytoplasmic scaffold proteins[12] (Figure 1). Furthermore, 96 

JAM-A has been shown to act as a landmark for bicellular TJ formation[14] while lipolysis-97 

stimulated lipoprotein receptor (LSR)/angulin-1, another member of the Ig superfamily of 98 

proteins, defines cell corners for tricellular TJ formation[15].  99 

The best studied cytoplasmic proteins of TJs are zona occludens (ZO) proteins. ZO-1, 100 

-2, and -3 can interact with each other as well as with several transmembrane proteins 101 

(OCLN, CLDNs, JAM-A) and F-actin (Figure 1). Cytoplasmic proteins of TJs have thus been 102 

suggested to act as scaffolds linking TJs to the actin cytoskeleton and microtubules[12].  103 

Importantly, TJ proteins have been reported to be also localized at sites outside TJs 104 

(non-junctional expression). Indeed, CLDN, OCLN and ZO proteins can be expressed at the 105 

basolateral membrane, in the cytoplasm and/or the nucleus where they have important 106 

functions in addition to those observed in TJs. For TJ protein expressed at the basolateral 107 

membrane these non-canonical functions include endosomal trafficking, signaling and 108 
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additional ion transport functions while TJ proteins in the nucleus have been shown to 109 

regulate gene transcription (reviewed in[16]). Noteworthy, non-junctional TJ proteins do not 110 

diffuse in a random manner throughout the membrane. Rather, by interacting with defined 111 

molecules within the membrane and/or their phosphorylation, non-junctional CLDNs have 112 

been shown to be stabilized in discrete domains within the basolateral membrane and 113 

contribute to cell adhesion through interactions with the extracellular matrix[17, 18]. 114 

Furthermore, CLDNs can regulate the expression/activity of matrix metalloproteases (MMPs) 115 

that contribute to matrix remodelling[19, 20, 21, 22]. These functions can contribute to 116 

epithelial-to-mesenchymal transition (EMT), a process by which polarized epithelial cells lose 117 

their contacts to neighbouring cells and enable them to migrate. EMT has been shown to 118 

play an important role in organogenesis (EMT type 1), homeostasis, inflammation and 119 

fibrosis (e.g. wound healing, fibrogenesis; EMT type 2) but can also promote tumorigenesis, 120 

invasion and metastasis (EMT type 3).  121 

 The role of TJ proteins in the physiology and disease biology of the GI system and 122 

the liver deserves special emphasis. The GI tract epithelium has to maintain a delicate 123 

however dynamic balance in allowing specific substances (food, ions and solutes) to pass 124 

through the epithelium while not allowing many others (e. g. pathogens) in order to maintain 125 

the delicate balance between immune tolerance and activation. These considerations are 126 

further enriched by the recent findings that a feed-forward loop may exist between the gut 127 

microbiota and mucosal barrier function in such regulatory schemes[23]. Moreover, studies 128 

have now also revealed non-canonical roles of specific TJ integral proteins in regulating 129 

cellular differentiation, proliferation and migration; cellular mechanisms implicated in normal 130 

repair/regeneration as well as the oncogenic growth during tumorigenesis[24, 25]. 131 

Accordingly, a causal role of TJ proteins in GI disease, including esophagitis, inflammatory 132 

bowel disease (IBD) and cancers has been demonstrated. Similar to the GI tract, the liver 133 

endothelial junctions are important for liver functions and TJ dysregulation has been 134 

observed in chronic liver disease and hepatocellular carcinoma (HCC). Interestingly, TJ 135 

proteins CLDN1 and OCLN have been shown to be essential entry factors for the hepatitis C 136 
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virus (HCV)[26, 27]. Here we review our current knowledge of the role of TJ proteins in GI 137 

and liver disease and discuss their potential as therapeutic targets focussing on GI cancer 138 

and viral infection of the liver. 139 

 140 

TJ proteins and the GI tract 141 

The functional role of TJ proteins in the physiology of the GI system  142 

The GI mucosal barrier plays an important role in the separation of the inside of the body 143 

from the outside environment. TJs are present on the apical end of the lateral membrane 144 

surface in epithelial cells and regulate paracellular transport and apicobasal cell polarity. The 145 

expression of different TJs in the gut varies according to the gut’s functional properties as 146 

well as localization in villus or crypt (small bowel vs colon). The proteins can be localized 147 

strictly at the apical cell-cell adhesion or extend to the lateral or basolateral surfaces[28, 29, 148 

30, 31]. Moreover, expression and cellular distribution of the TJ proteins – such as the CLDN 149 

family of proteins – is associated with regulation of differentiation of the intestinal 150 

epithelium[32, 33, 34]: CLDN1 is mainly expressed at the apex of the epithelial cells with a 151 

reticular pattern in the colon. CLDN2 is expressed in both villus and crypt cells of the small 152 

intestine but restricted to undifferentiated crypt cells in the colon. CLDN3, -4, -7 and -8 are 153 

predominantly expressed in the distal parts (colon, sigmoid and rectum) of the GI tract while 154 

CLDN10 and -12 show an ubiquitous expression pattern throughout the GI tract.  155 

Loss- and gain-of-function studies in mice have revealed specific roles for a number 156 

of CLDNs in the TJ barrier function, selective ion permeability, as well as their related 157 

pathological phenotypes. For instance, knockout of CLDN7 in mice has severe intestinal 158 

defects including mucosal ulcerations, epithelial cell sloughing and inflammation, which leads 159 

to the death of the mice[35, 36]. Similarly, constitutive overexpression of CLDN1 in the 160 

mouse gut epithelium (to mimic upregulated CLDN1 expression in colon cancer) 161 

demonstrated a key role of CLDN1 in normal colonic epithelial homeostasis by regulating 162 

Notch-signaling[21], while in combination with APC (adenomatous polyposis coli) mutation 163 

(APCmin mice) CLDN1 overexpression induced colon tumorigenesis[37]. Similarly, 164 
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upregulated CLDN2 expression in the mouse gut epithelium demonstrated a critical and 165 

complex role of CLDN2 in intestinal homeostasis by regulating epithelial permeability, 166 

inflammation and proliferation[38, 39]. Moreover, CLDN8 contributed to regulation of 167 

paracellular Na+ permeability, protecting the leakage of Na+ into the intestinal lumen[40]. 168 

CLDN16 is responsible for the defective absorption of Ca2+ in the intestine causing primary 169 

hypercalciuria[41]. Furthermore, the interdependence between CLDN proteins in regulating 170 

intestinal homeostasis is well demonstrated by in vivo loss-of-function studies for CLDN15. 171 

CLDN15 knockout mice grow normally despite having a mega-intestine[42]. However, a 172 

double knockout of CLDN15 with CLDN2 chronically reduces the paracellular flow of Na+ 173 

from the intestinal submucosa into the lumen resulting in shunting of the nutrient absorption, 174 

malnourishment and death [43]. Of note, both CLDN2 and -15 are paracellular transporters 175 

of Na+[44]. Overall, these findings show a critical functional role of these proteins in 176 

regulating intestinal homeostasis.  177 

Furthermore, OCLN and JAMs have been shown to contribute to regulate intestinal 178 

homeostasis. For example, mice lacking JAM-A display an alteration of intestinal 179 

homeostasis as shown by perturbed regulation of epithelial permeability, inflammation, and 180 

proliferation, and significant alteration in CLDN protein expression[45]. Next generation gene 181 

editing technology such as CRISPR and fluorescent gene-reporter tags will enable to better 182 

understand the details of the function of TJ proteins in regulating GI physiology. 183 

 184 

Functional role of TJ proteins during GI neoplastic transformations and growth 185 

During neoplastic transformation in GI cancer, the expression and localization of TJ proteins 186 

is perturbed by several mechanisms occuring at the transcriptional, translational and post-187 

transcriptional level (Figure 2). Signaling mechanisms that are known to promote neoplastic 188 

growth and cancer malignancy, including receptor tyrosine kinase signaling, inflammatory 189 

signaling cascades and non-coding RNAs, have been shown to perturb TJ protein 190 

expression and function. Perturbed TJ protein expression or function alters downstream 191 

signaling that targets cellular pathways relevant for epithelial homeostasis, invasion, chronic 192 
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inflammation and cancer (Zeb-1/E-cadherin, Wnt signaling, MMP9/Notch signaling and 193 

Src/PI3K/Akt signaling). Furthermore, disruption of TJs during infection or injury can result in 194 

increased permeability with translocation of bacteria and luminal antigen, which in turn 195 

increase IL-6/Stat3 signaling contributing to carcinogenesis (Figure 2). Delocalization of TJ 196 

proteins from their normal membrane-tethered expression appears to be common among 197 

inflammatory diseases and GI cancers. Aberrant cell signaling may contribute to this 198 

process. Notably, in Ras-overexpressing MDCK cells, CLDN1, OCLN, and ZO-1 were absent 199 

from the cell-cell contact sites however were present in the cell cytoplasm[46]. Inhibition of 200 

MEK1 activity recruited all three proteins to the cell membrane leading to a restoration of the 201 

TJ barrier function in these cells. In line with this, it has been shown that growth factor 202 

receptors, including EGF, HGF and IGF receptors, as well as proinflammatory and tumor 203 

promoting cytokines, including TNF-α, IFN-γ, IL-13, and IL-22, contribute to regulate CLDN 204 

expression[47, 48, 49, 50, 51]. It has also been reported that nonsteroidal anti-inflammatory 205 

drugs regulate CLDN expression in association with p38 MAPK activation in gastric epithelial 206 

cancer cells[52]. Furthermore, protein modifications by phosphorylation, sumoylation, 207 

palmitoylation[53, 54, 55] and endocytic recycling have emerged as potential mechanisms of 208 

regulating TJ protein function and expression [56, 57, 58]. 209 

Transcription factors known to be associated with cellular differentiation and EMT, 210 

including Snail, Cdx-2, HNF-α, and GATA-4[34, 59, 60], can bind to the promoter regions of 211 

specific CLDN genes to affect their expression in intestinal epithelial cells. In colon cancer 212 

cells, caudal homeobox proteins (Cdx1 & Cdx2) and GATA-4 in cooperation with the Wnt 213 

pathway are involved in CLDN1 promoter activation[34]. CLDN1 transcripts are regulated by 214 

Smad-4 (a known tumor suppressor) and HDAC inhibitors supporting a complex multiprotein 215 

regulatory scheme[61, 62]. Furthermore, transcription factor RUNX3, which is a gastric tumor 216 

suppressor, upregulates CLDN1 expression by binding to the promoter region of CLDN1 in 217 

gastric epithelial cells[63] and a similar regulatory scheme involving Cdx-proteins, GATA-4 218 

and HNF-a has been demonstrated for CLDN2 and -4. Additionally, various epigenetic 219 

regulatory mechanisms likely also contribute to the transcriptional regulation of CLDN 220 



 10 

expression (Table 2). Indeed, it has been shown that DNA hypermethylation associated with 221 

the downregulation of CLDN11 in gastric cancer cells[64] and CLDN7 in colon cancer 222 

cells[34]. Furthermore, loss of repressive histone methylations, including H3K27me3 and 223 

H4K20me3, is associated with the overexpression of CLDN4 in gastric cancer[65, 66].  224 

Finally, microRNAs (miRNAs) post-transcriptionally regulate TJ formation and barrier 225 

function[67]. Indeed, different miRNAs have been shown to modulate CLDN1 expression 226 

(Table 2): targeting of CLDN1 mRNA by miR-29 has been shown to regulate intestinal 227 

permeability[68], while the regulation of CLDN1 mRNA by miR-155 plays an important role in 228 

promoting colorectal cancer (CRC) cell migration and invasion[69]. Moreover, the histone 229 

deacetylase has been shown to regulate CLDN1 mRNA stability in CRC cells through 230 

modulating the binding of the human antigen R and tristetraprolin to the 3′ UTR of CLDN1 231 

mRNA[70].  232 

 233 

TJ proteins and colorectal disease and cancer  234 

Perturbation of the epithelial barrier function as well as TJ protein function and expression 235 

are hallmarks of GI disease including CRC. The breakdown of polarized epithelial barrier 236 

leads to the activation of specific signaling pathways as a response to injury. However, 237 

chronic activation of these signaling pathways can also promote cancer formation in 238 

premalignant epithelial tissues when TJs are chronically leaky. Furthermore, TJ proteins, 239 

especially CLDNs, have now been demonstrated to play an essential role in cell proliferation 240 

and neoplastic transformation during tumorigenic growth.  241 

Understanding how these complex signaling networks are altered in cancer cells 242 

represents a major challenge for the success of anti-cancer therapies. Upregulation or 243 

aberrant tissue expression of CLDNs may contribute to neoplasia by altering TJ structure 244 

and function or affecting cell signaling pathways. As stated above, the loss of cell polarity, 245 

due to TJ deregulation can abrogate the normal check-points. Moreover, studies linking EMT 246 

with the acquisition of stem cell characteristics have demonstrated important role of CLDNs 247 

in regulating the EMT process and cancer progression[16, 71, 72, 73]. In addition to 248 
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regulating the barrier properties, TJs also serve as hubs for a multitude of signaling proteins 249 

including known tumor suppressor molecules like APC, PTEN (phosphatase and tensin 250 

homolog) and polarity proteins like Par-3[74, 75, 76]. Silencing of the expression and/or 251 

function of these proteins modulates CLDN expression and induces loss of polarity and EMT. 252 

Interestingly, genetic modulation of CLDN proteins in mice or cancer cells can similarly affect 253 

these signaling cascades, suggesting a feedback regulation. 254 

Junctional proteins are known to play an important role or assist in cellular 255 

transformation when mislocalized from their normal membrane localization and could serve 256 

as oncogenic molecules. In this regard, the Wnt signaling pathway, essential for the 257 

differentiation of epithelial cells and imbalanced during intestinal epithelial oncogenic 258 

transformation is a major regulator of TJ protein expression[77]. For example, CLDN1 and 259 

CLDN2 proteins are known target genes of the Wnt/β-catenin signaling pathway with binding 260 

sites in the promoter of these genes[34, 59]. CLDN1 expression not only decreased 261 

significantly in response to the reduction of intracellular β-catenin by adenovirus-mediated 262 

transfer of wild-type APC into the APC-deficient colon cancer cells, but also two putative Tcf4 263 

binding elements in the 5' flanking region of CLDN were confirmed to be responsible for 264 

activating its transcription[34]. Importantly, in the intestine CLDN1 is weakly expressed at the 265 

apical border of the lateral membrane of normal enterocytes but is strongly expressed at cell-266 

cell boundaries as well as in the nucleus/cytoplasm of CRC cells. Many studies have 267 

demonstrated that the expression of CLDN1 at the mRNA and protein levels is increased in 268 

CRC tissue and correlates with tumor depth[78]. Additional studies using gene editing have 269 

further shown that an intricate interdependence between the Notch and Wnt-signaling 270 

upregulating CLDN1 expression to augment CRC progression[37] (Table 2). A role of the 271 

nuclear effectors of the Wnt signaling pathway is to bind directly to the CLDN2 promoter 272 

region and thereby enhance CLDN2 promoter activity. Also, a crosstalk between the Wnt 273 

signaling and Cdx related transcriptional activation machinery has been implicated in 274 

regulating CLDN2 promoter-activation[59]. Recent studies have also demonstrated that 275 

levels of CLDN1 and CLDN2 are elevated in IBD-associated carcinoma[39] (Table 2). 276 
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Kinugasa et al.[79] demonstrated increased staining for CLDN1 in both high-grade dysplasia 277 

and ulcerative colitis (UC)-associated CRC when compared with normal or UC samples. 278 

CLDN1 overexpression modulates Notch-signaling in an MMP9-dependent manner to 279 

modulate barrier properties and immune homeostasis to promote susceptibility to 280 

inflammation-induced colitis and cancer[21]. Here it is worth noting that the outcome from a 281 

series of studies have now provided ample evidence for a role of deregulated CLDN1 282 

expression in promoting invasive and metastatic abilities of the colon cancer cells. Notably, 283 

CLDN1 expression was sufficient to induce metastatic abilities in a colon cancer cell line that 284 

normally does not metastasize well in vivo. In contrast, stable genetic inhibition of CLDN1 in 285 

a poorly differentiated, highly metastatic and CLDN1 high colon cancer cell significantly 286 

inhibited its metastatic abilities in a splenic model of CRC metastasis[78]. An increase in 287 

CLDN2 expression also participates in promoting colorectal carcinogenesis potentially 288 

dependent on the EGFR/ERK1/2 signaling[80, 81]. Here, overexpression of CLDN2 in 289 

CLDN2 deficient CRC cells resulted in increased cell proliferation, anchorage-independent 290 

growth and tumor growth[81]. A similar effect of the Wnt-/b-catenin signaling upon gene 291 

expression of yet another component of the TJ complex, ZO-1, in human colonic cancer cell 292 

lines with low endogenous β-catenin has been reported suggesting potential contribution to 293 

the loss of epithelial polarization in neoplastic cells[59] (Table 2). Decreased ZO-1 294 

expression was noted in the human digestive tract[82]. Using tissue biopsy samples, Mees et 295 

al.[83] also found that CRC in human exhibits significantly elevated expression levels of 296 

CLDN1 and -4 compared with normal mucosa. However, CLDN expression in colon cancer 297 

tissues is differential and downregulation of CLDN7 and -8 has been reported in colorectal 298 

adenoma samples compared with the normal intestinal tissues[84]. Collectively, these 299 

studies suggest that these proteins may serve as potential biomarkers for CRC progression 300 

and therapy resistance. 301 

 302 

 303 

 304 
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CLDNs and esophageal and gastric cancer 305 

Similar to CRC, TJ proteins are also regulated aberrantly in the esophageal and gastric 306 

cancers and this abnormal expression correlates with specific clinicopathologic parameters. 307 

In the esophageal adenocarcinoma (EA), CLDN expression has been tested as potential 308 

biomarker for the transition of the Barrett’s esophagus to the EA. Indeed, CLDN2, -3, −4 and 309 

−7 are reported to have increased expression in EA compared to precancerous lesions and 310 

normal esophageal squamous mucosa[85, 86]. JAMs, which comprise the integral parts of 311 

TJs in the gastric epithelium, have been shown to promote proliferation, invasion, and inhibit 312 

apoptosis. JAM-B was upregulated significantly in tumor samples compared with adjacent 313 

normal tissues and was higher in high grade tumors than in the low grade and intermediate 314 

grade tumors[87].  315 

An increased expression of CLDN2 is also associated with gastric cancer 316 

progression[88]. Additionally, expression of CLDN11 and -23 is downregulated in gastric 317 

cancer[89] and miR-421 was implicated in regulating CLDN11 expression to promote the 318 

proliferation, invasion and metastasis of gastric cancer cells[90] (Table 2). In contrast, 319 

CLDN23 positive expression was associated with poor prognostic outcomes of gastric cancer 320 

patients and may therefore serve as an independent predictor of patient survival. Similarly, 321 

upregulated expression of CLDN4 in gastric cancer was associated with cancer progression 322 

and poor prognosis[91]. Furthermore, CLDN4-expressing gastric adenocarcinoma AGS cells 323 

were found to have increased MMP2 and -9 expression, indicating that CLDN-mediated 324 

increased invasion may be mediated through the activation of MMPs[91]. Overall, these 325 

results suggest that CLDN4 overexpression may promote gastric cancer metastasis through 326 

the increased invasion of gastric cancer cells. Yet another CLDN family protein, CLDN18 is 327 

significantly downregulated in gastric cancer tissues and cell lines, which was associated 328 

with tumor size, location invasion, histologic type and tumor-node-metastasis stage. miR-329 

1303 was demonstrated to have putative binding sites in CLDN18 mRNA 3'-UTR and visibly 330 

lower the expression of CLDN18[92] (Table 2). On the other hand, CLDN18.2 (isoform 2 of 331 

claudin-18) was retained on malignant transformation and was expressed in a significant 332 
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proportion of primary gastric cancers and its metastases[9]. The expression of CLDN7 has 333 

also been reported to have the potential of serving as an independent indicator of the poor 334 

prognosis in gastric cancer[93].  335 

Taken together, TJ proteins are tissue-specific regulators of the epithelial and 336 

endothelial barrier function and EMT, which cumulatively perturb the epithelial and immune 337 

homeostasis leading to carcinogenesis in CRC as well as gastric and esophageal cancer.  338 

 339 

TJ proteins and the liver 340 

The liver plays an essential role in homeostasis by its metabolic and storage functions. It is 341 

composed of different cell types, including two types of epithelial cells: hepatocytes and 342 

cholangiocytes. Liver epithelial junctions are important for liver function. Hepatocytes are 343 

liver parenchymal cells that exhibit a complex honeycomb morphology displaying at least two 344 

basolateral membranes (facing the sinusoidal blood) and two intercellular apical membranes 345 

(forming the bile canaliculi) separated by TJs. This peculiar architecture creates what has 346 

been termed the blood-biliary barrier[94] and enables hepatocytes to perform distinct 347 

secretory functions at the same time[95]. Hepatocytes produce and secrete bile into the bile 348 

canaliculi from where it is transported via intrahepatic and extrahepatic bile ducts, formed by 349 

cholangiocytes, to the gallbladder. Cholangiocytes contribute to modify the bile during its 350 

transport to the latter. Hepatocyte polarity and bile duct TJs play a major role in the liver[96, 351 

97] and thus defects in hepatocyte and/or cholangiocyte TJ integrity can result in 352 

pathophysiological consequences.  353 

Several lines of evidence indicate that disruption or loss-of-function of TJs contributes 354 

to the pathogenesis of cholestatic diseases including primary biliary cholangitis and primary 355 

sclerosing cholangitis[98, 99]. Interestingly, mutations in CLDN1 are associated with 356 

neonatal ichthyosis and sclerosing cholangitis (NISCH) syndrome where deficient CLDN1 357 

expression may contribute to paracellular bile leakage through deficient TJs[100]. Mutations 358 

in ZO-2 have been described in familiar hypercholanemia[101]. The loss-of-function of TJ 359 
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proteins is not lethal and the clinical manifestation is variable including very mild 360 

symptoms[102]. A comprehensive description of TJ protein alterations in biliary diseases is 361 

reviewed in reference[97].  362 

Recent studies demonstrate that TJ protein expression is altered in HCC (primary 363 

liver cancer) and cholangiocarcinoma (biliary tract cancer). For example, CLDN1 has been 364 

shown to be up-regulated in advanced liver disease and HCC[103] and differential CLDN4 365 

expression can help to distinguish these two forms of cancer at a molecular level[104]. Of 366 

note, TJ alteration in epithelia outside the liver can also contribute to liver disease. Indeed, 367 

dysfunction of the intestinal epithelial barrier - due to or unrelated to (aetiological factor(s) of) 368 

the underlying liver disease - has been associated with the pathogenesis of chronic liver 369 

disease and the development of complications in cirrhosis by favouring translocation of 370 

bacteria and bacterial products from the intestinal lumen into the systemic circulation[105].  371 

 372 

CLDN1 and OCLN mediate hepatocyte entry of HCV 373 

Ten years ago, expression cloning experiments uncovered CLDN1 to be required for HCV 374 

infection[26]. The role of OCLN in HCV infection was uncovered two years later using 375 

different approaches[27, 106, 107]. Subsequently several studies have characterized the 376 

underlying molecular mechanisms and highlighted the essential function played by these 377 

proteins in HCV entry and infection[4, 108, 109]. While over the past 20 years many host 378 

factors have been reported to contribute to the early steps of HCV infection[108, 110], 379 

CLDN1 and OCLN are regarded as two of the four major HCV host entry factors together 380 

with CD81[111] and scavenger receptor BI (SR-BI)[112] (Figure 3).  381 

 First binding studies indicated that CLDN1 was unable to bind the HCV envelope 382 

glycoprotein E2[26], suggesting that CLDN1 does not play the role of a primary receptor but 383 

rather of a co-receptor, which contributes to (a) step(s) subsequent to viral binding[26]. This 384 

was further confirmed in kinetic assays using anti-CLDN1 antibodies[113]. Several years 385 

later it was shown that in contrast to soluble E2, HCV E1E2 complexes can interact with the 386 

CLDN1 ECL1 and that this interaction is involved in viral fusion[114]. Based on the 387 
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Coxsackie B virus cell entry model, it was suggested that HCV may first interact with host 388 

factors on the basolateral surface of hepatocytes and then move to the TJ co-entry factor(s), 389 

e.g. through CD81-lateral membrane movements[26, 115]. Elegant fluorescence resonance 390 

energy transfer studies showed that CLDN1 interacts with CD81 to promote viral 391 

internalization[116, 117, 118]. Interestingly, no cellular function for CD81-CLDN1 interaction 392 

has been reported so far and disruption of these complexes by defined anti-CLDN1 393 

antibodies prevents HCV infection without affecting TJ integrity or any detectable adverse 394 

effect[113, 119, 120]. Indeed, several lines of evidence support a model in which the non-395 

junctional form of CLDN1 rather than CLDN1 localized within TJ mediates HCV entry[117, 396 

121]. The major pool of CLDN1 is expressed at TJs of hepatocytes and polarized hepatoma 397 

cells but a minor fraction is also located at the basal membranes of these cells[117, 122]. Of 398 

note, CD81-CLDN1 co-receptor association could only be detected at the basal membranes 399 

but not in TJ-associated pools of CLDN1 and CD81[117]. Furthermore, the ECL1 appears to 400 

be the critical part of the protein for HCV entry while the intracellular C-terminal part of 401 

CLDN1 that plays an important role for its interaction with intracellular TJ components is not 402 

required for this process[26, 121]. Interestingly, CLDN6 and CLDN9 - but not other members 403 

of the CLDN family of proteins - have been shown to be able to promote HCV entry into 404 

CLDN-deficient 293T-derived cell lines[123, 124]. This is most likely due to their ability to 405 

form co-receptor associations with CD81 like CLDN1[118]. It is of interest to note that in 406 

experimental model systems using a liver tumor cell lines some HCV genotypes have been 407 

reported to be able to use either CLDN1 or CLDN6[125] through mutation in the HCV E1 408 

envelope protein[126]. Whether CLDN6 or 9 can replace CLDN1 in the liver of HCV-infected 409 

patients remains questionable since CLDN6 and CLDN9 expression is very low or absent in 410 

human liver tissues[124, 125, 127]. Furthermore, treatment of HCV infection in human liver 411 

chimeric mice with a monoclonal CLDN1-specific antibody did not reveal any detectable 412 

escape (for a detailed review of the role of CLDN6 and CLDN9 in HCV entry please 413 

see[128]).  414 
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 Like CLDN1, OCLN does not appear to play the role of a primary HCV attachment 415 

receptor but rather is required for late postbinding event(s) during the HCV entry 416 

process[107, 129] (Figure 3). Nevertheless, HCV might interact with OCLN during viral entry 417 

and/or in infected cells. Indeed, imaging studies evidenced a co-localization between OCLN 418 

and HCV E2 in the endoplasmic reticulum of hepatoma cells[130]. Furthermore, it was shown 419 

that an anti-E2 antibody could immunoprecipitate OCLN while GST-OCLN could pull down 420 

E2[129, 130]. The OCLN ECL2 appears to be important for this interaction with HCV E2 as 421 

well as for HCV entry[129]. However, the OCLN ECL2 was unable to pull down E2, 422 

suggesting that either this interaction might not be direct or not be visualized in the utilized 423 

experimental design[129]. Experiments using OCLN engineered to be recognized by anti-424 

FLAG antibodies are in favour of a HCV-OCLN interaction as different clones displaying the 425 

FLAG epitope at different locations within ECL1 or ECL2 exhibited HCV isolate-dependent 426 

host factor activity[131]. Using kinetic assays in polarized cells, this study also showed that 427 

OCLN plays a role subsequent to SR-BI, CD81 and CLDN1[131]. These results were 428 

recently confirmed in kinetic assays using anti-OCLN mAbs directed against either the ECL1 429 

or ECL2 of OCLN[132]. How and where HCV interacts with OCLN as well as what pool(s) of 430 

OCLN is(are) involved in this process remain to be further characterized. Although in liver 431 

sections OCLN has been located at apical surfaces of hepatocytes[117], a minor pool of this 432 

protein is expressed on the basolateral surface of hepatocytes. Indeed, OCLN is known to 433 

traffic through the basolateral membrane towards TJs[133] and its subcellular localization 434 

appears to be dependent on its phosphorylation status: phosphorylated forms of OCLN 435 

mainly are found in TJs of epithelial cells, while less phosphorylated forms are localized at 436 

the basolateral membrane and in the cytosol[134]. This is in line with a recent report showing 437 

that tumor-associated calcium signal transducer 2 (TACSTD2) regulates HCV entry by 438 

leading to the phosphorylation of CLDN1 and OCLN and regulates their subcellular 439 

localization[135]. The importance of the subcellular localization of OCLN for HCV entry is 440 

also underscored by the fact that only OCLN and its splice variant OCLN-ex7ext that both 441 

localize to the plasma membrane are able to promote HCV entry in contrast to other OCLN 442 
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splice variants that exhibit an intracellular localization[136]. Of note, OCLN together with 443 

CD81 define the HCV species specificity as HCV non-permissive mouse cells acquire HCV-444 

permissivity subsequent to human CD81 and OCLN expression both in vitro and in vivo[27, 445 

137, 138, 139]. The species-specific determinants appear to be located within the second 446 

extracellular loop of OCLN[27, 139]. 447 

 Beside cell-free HCV entry, CLDN1 and OCLN have also been shown to be important 448 

for HCV cell-to-cell transmission (Figure 3), a major mode of viral dissemination that enables 449 

the virus to avoid the host's immune surveillance and to establish chronic infection[140, 141, 450 

142, 143]. The exact localization at the plasma membrane of this process as well as the 451 

form(s) of CLDN1 that contribute(s) to HCV cell-to-cell transmission remain unknown. The 452 

importance of CLDN1 and OCLN for the pathogenesis of HCV infection in vivo has been 453 

confirmed by observations of liver tissues from HCV-infected liver transplant patients. HCV 454 

recurrence was associated with an increase in CLDN1 and OCLN expression levels in 455 

hepatocytes over time after transplantation[144]. This is in line with findings indicating 456 

increased CLDN1 and OCLN expression levels in HCV-infected livers[122, 145, 146]. In 457 

contrast, in cell-based studies HCV infection was shown to downregulate CLDN1 and OCLN 458 

expression to prevent superinfection[106]. Differences in TJ protein expression upon HCV 459 

infection may thus exist depending on the analyzed samples. 460 

 461 

CLDNs and HCC 462 

The expression of several TJ proteins has been reported to be perturbed in liver tissue from 463 

HCC patients. Many studies have shown different expression levels of the individual CLDNs 464 

and OCLN and CLDN1 are being investigated as biomarkers for liver disease 465 

progression[103, 122, 147, 148, 149, 150, 151]. From these studies, it appears that 466 

expression of CLDNs is associated with more severe disease and/or bad prognosis in HCC 467 

patients (Table 2): epigenetic silencing of CLDN14 was significantly associated with 468 

advanced tumor state and tumor aggressiveness[152]; CLDN11 downregulation by miR-99 469 

has been associated with metastasis of HCC[153]; and CLDN3 downregulation has been 470 
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suggested to promote EMT via Wnt-b-catenin signaling[154]. However, more data are 471 

needed to decipher the role of these TJ proteins in the pathogenesis of HCC. Several studies 472 

have shown an increase in CLDN1 expression on basolateral and apical hepatocyte 473 

membranes in cirrhotic livers and HCC compared to normal livers[103, 122, 149]. 474 

Interestingly, this increase was observed in tissues from both HCV-positive and -negative 475 

patients, although it appeared to be stronger in tissues from HCV-infected patients, as well 476 

as in HCC that developed on either cirrhotic or non-cirrhotic livers[103] and in paediatric 477 

HCC[149]. In advanced HCC down-regulation of CLDN1 has been observed[147, 151] which 478 

may correspond to the de-differentiation of cancer cells. Of note, a greater cytoplasmic 479 

localization of CLDN1 was observed in some HCC in line with reports indicating that CLDN 480 

localization has a causal role in cellular transformation[78, 155].  481 

 CLDN1 likely contributes to proliferation, motility and invasion by modulating cellular 482 

signaling. Overexpression of CLDN1 increases the migration and invasiveness of human 483 

hepatoma cells as well as normal liver cells through expression of MMP2 via the c-Abl-PKC 484 

pathway[20] (Figure 4). Furthermore, increased CLDN1 expression has been associated with 485 

mitochondrial dysfunction and invasiveness of hepatoma cells, and reactive oxygen species-486 

mediated activation of heat shock factor 1 (HSF1) was demonstrated to increase CLDN1 487 

expression in these cells[156, 157] (Table 2). These data are in line with reports indicating 488 

that CLDN1 enhances cell growth, migration and/or invasiveness of other cancer cell types 489 

such as oral squamous cell carcinoma cells, CRC cells, ovarian cancer-initiating cells or 490 

melanoma cells[69, 158, 159, 160, 161]. Taken together, these data suggest that by 491 

promoting cell migration and increasing the invasive behaviour of cancer cells, CLDN1 can 492 

contribute to cancer spread. Of note, CLDN1 has been shown to promote EMT in normal 493 

liver cells and HCC cells that thereby acquire an invasive phenotype[162]. This process is 494 

mediated by the c-Abl-Ras-Raf-1-ERK pathway and involves the transcription factors Slug 495 

and Zeb1[162] (Figure 4). Confirming the functional role of these signaling pathways, an 496 

CLDN1-specific antibody inhibits the HCV-induced increase in ERK1/2 phosphorylation in 497 
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human liver tissue [120]. Further studies are needed to understand the detailed role of 498 

CLDNs in pathogenesis of liver disease and cancer. 499 

 500 

Targeting TJ proteins for therapeutic approaches in the gut and the liver  501 

CLDNs as targets for CRC 502 

While the field related to the role and regulation of TJ proteins in GI pathologies and 503 

oncogenic growth has taken a significant leap forward, therapeutic application of this 504 

knowledge is now emerging. Significant progress has been made at several fronts including 505 

the development of prognostic biomarkers, imaging and targeting. In this regard, CLDN 506 

proteins are currently investigated as potential biomarkers for disease progression and 507 

therapy resistance. A recent study has shown that serum levels of CLDN1 and CLDN7 may 508 

be a useful tool in the differential diagnosis of CRC[163]. Furthermore, a progressive 509 

increase in CLDN1 expression in colon cancer and the recent findings that infra-red imaging 510 

using CLDN1-targeted conjugated peptide can enhance the ability of conventional 511 

colonoscopy for detecting human colonic adenomas strongly supports the potential impact of 512 

CLDN1 as a biomarker[164]. CRC has been found to arise from missed polypoid and flat 513 

precancerous lesions which are more difficult to visualize by colonoscopy and the new 514 

CLDN1 targeted fluorescent peptides may be used to improve screening of high-risk patients 515 

with multiple polyps, inflammatory bowel disease, Lynch syndrome, or a family history of 516 

CRC. 517 

Aiming to develop targeted therapies, several antibodies against the extracellular 518 

domain of CLDNs have been developed. Their therapeutic effects for cancer and metastasis 519 

are summarized in Table 3. Ideal monoclonal antibodies (IMAB) specific to the proteins 520 

expressed only on the tumor and hence avoiding potential off-target effects are actively being 521 

developed. Currently, monoclonal antibodies (mAbs) have been generated against CLDN1,-522 

2, -3, -4, -6, and -18.2. The antibody against CLDN18.2 (claudiximab) is in clinical 523 

development for gastric cancer[9]. Interestingly, claudiximab significantly extends median 524 

survival when added to standard chemotherapy (13.2 vs 8.4 months) in patients with 525 
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advanced gastric cancer[9]. Importantly, this target is not present in any healthy tissues 526 

except the lining of the stomach, thereby minimizing treatment side effects. In addition, 527 

recent studies have investigated the anti-tumor effect of anti-CLDN1 and anti-CLDN2 mAbs 528 

using cancer cell models[11, 165] (Table 3). Importantly, anti-CLDN mAbs have been shown 529 

to be safe and no relevant off-targets have been reported. Their marked therapeutic effects 530 

combined with excellent safety profiles are highly encouraging for their development in 531 

clinical applications.  532 

 533 

CLDN1 and OCLN - targets for cure of HCV infection  534 

CLDN1 was the first TJ protein to be explored as a therapeutic target for HCV infection using 535 

anti-CLDN1 antibodies directed against its extracellular domain(s) (Table 3). Such antibodies 536 

could be used to prevent liver graft infection in HCV-positive transplant recipients and as a 537 

promising alternative for patients who fail current anti-HCV therapies[166]. The first 538 

antibodies directed against human CLDN1 and blocking HCV infection were generated by 539 

genetic immunization in rats[113, 119]. They recognize a conformational-dependent epitope 540 

within the ECL1 and prevent CD81-CLDN1 co-receptor association at the basolateral 541 

membrane[113, 119]. They are characterized by pan-genotypic inhibition of the infection by 542 

all major HCV genotypes by blocking both cell-free virus entry and viral cell-to-cell 543 

transmission[119, 143]. Of note, studies in human liver-chimeric mice demonstrated that the 544 

lead antibody OM-7D3-B3 was not only able to prevent acute de novo infection with HCV 545 

(i.e. the anticipated effect of an entry inhibitor) but also to cure already established chronic 546 

HCV infection without detectable side or off-target effects[120]. These results highlighted the 547 

importance of viral dissemination for maintenance of chronic HCV infection. It is of interest to 548 

note that this antibody interfered with MAPK signalling suggesting an important role in this 549 

pathway potentially also contributing to its antiviral effect[120]. The therapeutic potential of 550 

this antibody is further underscored by the fact that it acts in synergy with HCV direct-acting 551 

antivirals (DAAs), the current state-of-the-art antiviral therapy, to clear viral infection and is 552 

also active on viral variants escaping DAAs[143, 167]. This antibody has recently been 553 
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successfully humanized (IgG4) for further clinical development[168]. Subsequently, other 554 

CLDN1-specific antibodies inhibiting HCV infection have been reported: clones 3A2 and 7A5, 555 

generated in mice and recognizing the human CLDN1 ECL2 can prevent HCV infection of 556 

human liver-chimeric mice[169] while several antigen-binding fragments (Fab) and single 557 

chain antibody fragments selected using phage display were demonstrated to inhibit HCV 558 

infection in vitro when converted into human IgG1 or IgG4[170, 171]. Administration of 559 

CLDN1-specific antibodies has been shown to be very safe in various animal and human-cell 560 

based models without any adverse effects on the liver or other organs such as the gut or 561 

skin[120, 168, 172]. This is most likely to the mechanism of action of CLDN1-specific 562 

antibodies targeting the non-junctional expressed CLDN1 on the hepatocyte basolateral 563 

membrane without affecting TJ barrier function as shown in several TJ model systems[120, 564 

168, 172].  565 

 Antibodies directed against OCLN have been more difficult to generate than anti-566 

CLDN mAbs but very recently five mAbs with anti-HCV activity were described by two 567 

different groups[132, 173]. The mouse mAb (67-2) - raised against a linear peptide within 568 

OCLN ECL2 - was shown to recognize an epitope present in the ECL2 of both human and 569 

mouse OCLN[173]. Interestingly, this mAb hardly inhibited the infection of human hepatoma 570 

Huh7.5.1 cell monolayers with HCV when applied to the apical membrane of cells while it 571 

was able to efficiently prevent HCV infection when applied to the basolateral membrane of 572 

cells using a double-chamber culture system or a 3D culture model[173]. Of note, in line with 573 

the hypothesis that mAb 67-2 interacts with OCLN monomers expressed on the basolateral 574 

membrane, this mAb had no effect on TJ function in Eph4 cells[173]. Four rat mAbs - 575 

generated by genetic immunization and directed against either the ECL1 or ECL2 of OCLN – 576 

inhibited the entry of HCV into human hepatoma cells without affecting TJ barrier function of 577 

polarized cells. Since the mAb directed against ECL2 appeared to be more potent in 578 

inhibiting HCV infection than mAbs directed against ECL1 and in line with previous studies 579 

using OCLN mutants/chimeras having demonstrated the essential function of ECL2 for HCV 580 

infection[27, 129, 174], the authors hypothesized that the mAb directed against ECL2 may 581 
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block an essential function of OCLN in the HCV entry process while mAbs directed against 582 

ECL1 may block HCV infection through steric hindrance. Two of those mAbs targeting either 583 

ECL1 or ECL2 (1-3 and 37-5) were shown to inhibit HCV infection in human liver chimeric 584 

mice without apparent side effects highlighting the possibility to target OCLN in vivo[132].  585 

The positioning of CLDN1- and OCLN-specific antibodies in the widening arsenal of 586 

anti-HCV therapies is most likely for patients with multi-resistance to DAAs or in organ 587 

transplantation including HCV-positive donors where prevention of de novo infection may be 588 

preferable to cure of an established HCV infection. They may offer also perspectives to 589 

further shorten therapy regimens when combined with DAAs[175, 176].  590 

 591 

Conclusions and future perspectives 592 

Research in the last two decades has demonstrated an important role of TJ proteins in the 593 

physiology and disease biology in GI and liver disease. TJ proteins exert their functional role 594 

as integral proteins of TJs in forming barriers in the gut and the liver. Furthermore, TJ 595 

proteins are expressed non-junctionally where they play important roles in signaling, 596 

trafficking and regulation of gene expression outside the TJs. A hallmark of TJ proteins in 597 

disease biology is their role in EMT, which is relevant for organogenesis and differentiation 598 

(EMT type 1), inflammation and fibrosis (EMT type 2) and cancer metastasis/invasion (EMT 599 

type 3). A causative role of TJ proteins has been established in the pathogenesis of CRC 600 

and gastric cancer. Among the best characterized role of TJ proteins in liver disease biology 601 

is their function as cell entry receptors for HCV – one of the most common causes of HCC. 602 

At the same time TJ proteins are emerging as targets for novel therapeutic approaches for GI 603 

and liver disease: these include treatment of CRC and gastric cancer as well as antiviral 604 

therapy for chronic HCV infection complementing DAAs. Further studies are needed to study 605 

their role in chronic inflammation, fibrosis and their role as drivers for carcinogenesis. The 606 

understanding of these mechanisms offers new perspectives for novel therapeutic 607 

approaches for key unmet medical needs in the gut including CRC and gastric cancer as well 608 

as chronic liver disease and HCC.  609 
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Table 1. Role of TJ proteins in disease. Examples of TJ protein-disease associations and 1264 

the underlying mechanisms are shown. CLDN: claudin, JAM: junctional adhesion molecule, 1265 

TJ: tight junction, ZO: zona occludens 1266 

TJ protein  Disease  TJ protein 
expression 

Described mechanism References  

JAM-A Cancer 
Brain 
Breast 
Gastric 
Lung 
Endometrial 
Pancreatic  
 
 
Hereditary 
diseases 
Cystic fibrosis  
 
Viral infection 
Retroviral 
infection 
(hydrocephalus, 
encephalitis) 

 
↑ 
↑↓ 
↑ 
↑ 
↓ 
↓ 
 
 
 
 
↓ 
 
 
↑ 

 

PI3K/MAPK signaling, 
Notch signaling, TGF-β1 
signaling 

[177, 178, 179, 
180, 181, 182, 
183, 184, 185]  
 
 
 
 
 
 
[186]  
 
 
 
[187] 

JAM-C Cancer 
Fibrosarcoma 
Lung 
Melanoma 
Ovarian 

 
↑ 
↑ 
↑ 
↑ 

LRP5/AKT/β-
catenin/CCND1 signaling, 
PI3K/MAPK signaling 

[188, 189, 
190, 191, 
192, 193, 
194, 195] 

Coxsackie 
virus and 
adenovirus 
receptor 
(CAR) 

Cancer 
Breast 
Endometrial 
Lung 
Oral 
Ovarian 
Thyroid 

 
↑ 
↑ 
↑ 
↑ 
↑ 
↑ 

MyD88/IRAK-4/NF-kB, 
ERK1/2 signaling, 
estrogen signaling 

[196, 197, 
198, 199, 
200, 201, 
202, 203, 
204] 

CLDN1 Cancer 
Breast 
Cervical 
Colorectal 
Gastric 
Liver 
Oral 
Ovarian 
Prostate 
Thyroid 
neoplasma 
 
Hereditary 
disease 
Cystic fibrosis 

 
↑↓ 
↑ 
↑↓ 
↑ 
↑ 
↑ 
↑ 
- 
↑ 
 
 
 
 
- 

Reactive oxygen species-
mediated activation of 
heat shock factor 1 
(HSF1) 
 

[34, 78, 156, 
157, 205, 
206, 207, 
208, 209, 
210, 211, 
212, 213, 
214, 215, 
216, 217, 
218, 219, 
220, 221]  
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[186] 

CLDN2 Cancer 
Breast 
Colorectal 
Lung 
Skin 
Prostate 
 
Inflammation 
Inflammatory 
bowel disease: 
Morbus Crohn 
Collagenous 
colitis 

 
↑↓ 
↑ 
↑ 
↑ 
↓ 
 
 
 
 
↑ 
↑ 

EGFR/MEK/ERK signaling 
PI3K signaling 
 
 

[212, 221, 
222, 223, 
224, 225, 
226, 227, 
228, 229] 
 
 
 
[230, 231] 

CLDN3 Cancer 
Breast 
Colorectal 
Endometrial 
Gastric 
Kidney 
Lung 
Ovarian 
Prostate 
Uterine 
 
Inflammation 
Inflammatory 
bowel disease: 
Morbus Crohn 
 
Bacterial toxins 
Clostridium 
perfringens 
enterotoxin 

 
↑ 
↑ 
↑↓ 
↑ 
↑ 
↑ 
↑ 
- 
↑ 

 
 
 
 

↓ 
 
 

↓ 

EGFR/MEK/ERK signaling 
PI3K/Akt signaling 
Wnt signaling 
Stat3 

[19, 217, 232, 
233, 234, 
235, 236, 
237, 238] 
 
 
 
 
 
 
 
 
[230, 239] 
 
 
 
 
[240] 

CLDN4 Cancer 
Breast 
Endometrial 
Gastric 
Kidney 
Lung 
Nasopharyngeal 
Ovarian 
Pancreatic 
Uterine 
 
Inflammation 
Collagenous 
colitis  
 
Hereditary 
diseases 
Cystic fibrosis  
 
Bacterial toxins 

 
↑ 
↑ 
↑↓ 
↑ 
↑ 
↑ 
↑ 
↑ 
↑ 
 
 
↓ 

 
 

 
 
↓ 

 
 

ERK signaling 
AMPK signaling 

[19, 91, 217, 
232, 235, 
241, 242, 
243] 
 
 
 
 
 
 
 
 
[231] 
 
 
 
[186] 
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Clostridium 
perfringens 
enterotoxin 

↓ 
 

 
[240] 

CLDN7 Cancer 
Breast 
Cervical 
Colon 
Gastric 
Liver 
Lung 
Nasopharyngeal 
Ovarian 
Pancreatic 
Prostate 
Thyroid 
neoplasma 
 
Inflammation 
Crohn's disease 
Ulcerative colitis  
Celiac disease 

 
↓ 
↑ 
↑ 
↑ 
↑ 
↑ 
↑ 
↑ 
↑ 
↑ 
↑ 
 
 
 
- 
↓ 
- 

ERK/MAPK signaling  
Wnt signaling 
Integrin/FAK signaling  
 

[211, 217, 
218, 232, 
241, 243, 
244] 
 
 
 
 
 
 
 
 
 
 
 
[239] 
 

CLDN11 Cancer 
Gastric 

 
↑ 

TGF-b, ERK, p38 
signaling 

[88] 

CLDN16 Cancer 
Breast 
Ovarian 
Renal 
 
Hereditary 
diseases 
Familial 
hypomagnesemia 

 
↑ 
↑ 
↑ 
 
 
 

Mutation 

 [245, 246, 
247] 
 
 
 
 
[248] 

CLDN20 Cancer 
Breast 

 
↑ 

 [249] 

OCLN Cancer 
Thyroid 
neoplasma 
 
Inflammation 
Crohn's disease 
Ulcerative collitis  
Celiac Disease 
 
Hereditary 
diseases 
Cystic fibrosis 
 
Vision loss 
Diabetic eye 
disease: diabetic 
retinopathy 
 
 

 
Diverse 

expression 
 

↓ 
↓ 
↓ 

 
 
 
 

↑ 
 
 

↑ 
 

PI3K signaling 
MAPK signaling 

[218, 221] 
 
 
 
[231, 239, 
250] 
 
 
 
 
[186] 
 
 
 
[251] 

ZO-1 Cancer 
Breast 

 
↓ 

PI3K signaling 
MAPK signaling 

[207, 221]  
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Inflammation 
Inflammatory 
bowel disease: 
Morbus Crohn 
 
Vision loss 
Diabetic eye 
disease: diabetic 
retinopathy 

 
 
 
↓ 

 
 
 

↑ 
 

 
[230] 
 
 
 
 
[251] 

 1267 

  1268 
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Table 2. Perturbation of tight junction protein expression in gastrointestinal and liver 1269 

disease. Examples of perturbed CLDN and ZO protein expression in gastrointestinal and 1270 

liver disease as well as the underlying mechanism are shown. CLDN: claudin, miR: micro-1271 

RNA, TJ: tight junction, ZO: zona occludens 1272 

 1273 

Disease/Cell type TJ protein expression Described mechanism References  

Gastric cancer CLDN4 ↑ Loss of repressive histone 

methylation (H3K27m3, 

H4K20m3) 

[65, 66] 

 CLDN11 ↓ DNA hypermethylation 

miR-421 
[64] 

[90] 
 CLDN18 ↓ miR-1303 [92] 
Intestinal bowel 
disease-
associated 
carcinoma 

CLDN1 ↑ 

CLDN2 ↑ 

β-catenin activation [39] 

Colorectal cancer CLDN1 ↑ 

 

miR-155 

Histone deacetylase-

mediated binding of 

human antigen R and 

tristetraprolin to CLDN1 

mRNA  

Increased Notch and Wnt 

signaling 

[37, 59, 69, 70] 

 CLDN2 ↑ Increased Notch and Wnt 

signaling 
[37, 59] 

 CLDN7 ↓ DNA hypermethylation [34] 
 ZO-1 ↑ β-catenin activation [59] 
Hepatocellular 
carcinoma 

CLDN1 ↑ Reactive oxygen species-

mediated activation of 

heat shock factor 1 

(HSF1) 

[156, 157] 

 CLDN11 ↓ miR-99 [153] 
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Table 3. Preclinical and clinical development of antibodies directed against tight 1275 

junction proteins. The respective target, names of monoclonal antibodies (that have at least 1276 

reached preclinical stage of development), clinical indication, and stage of development are 1277 

shown. CLDN: claudin, HCV: hepatitis C virus, OCLN: occludin 1278 

 1279 

Targets Monoclonal 
antibodies 

Clinical indication Stage of 
development 

References  

CLDN1 OM-7D3-B3 and 

H3L3 

HCV infection Preclinical [120] 

[168] 
 3A2 HCV infection Preclinical [169] 
 6F6 Colorectal cancer Preclinical [11] 
CLDN2 xi-1A2 Cancer Preclinical [165] 
CLDN3 
and 
CLDN4 

KM3907 Cancer Preclinical [252] 

 5A5 Cancer Preclinical [253] 
CLDN4 KM3900 Pancreatic and ovarian 

cancers 

Preclinical [254] 

CLDN6 IMAB027 Ovarian cancer Phase I/II NCT02054351 

CLDN18.2 IMAB362 

(claudiximab) 

Gastroesophageal 

cancer 

Phase II NCT01630083 

OCLN 1-3 and 37-5 HCV infection Preclinical [132] 

 1280 

 1281 

  1282 
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Figures legends 1283 

Figure 1. Schematic representation of the expression and function of the major tight 1284 

junction proteins addressed in this review. This simplified cartoon only displays the 1285 

localization and interactions of the major tight junction (TJ) protein families that are 1286 

addressed in this review. TJs are composed of transmembrane proteins, including different 1287 

claudins (CLDNs), tight junction-associated marvel proteins (TAMPs, e.g. OCLN), junctional 1288 

adhesion molecules (JAMs e.g. JAM-A) as well as cytosolic proteins (e.g. ZO-1, -2 and -3), 1289 

which connect transmembrane components to the cytoskeleton (actin filaments, 1290 

microtubules). For a more detailed description please refer to reference[1].  1291 

Figure 2. Schematic representation of differential regulation of tight junction proteins 1292 

and associated signaling in gastrointestinal cancer. Signaling and molecular 1293 

mechanisms that are known to promote neoplastic growth and cancer malignancy include 1294 

the receptor tyrosine kinase signaling, inflammatory signaling cascades and non-coding 1295 

RNAs that perturb tight junction (TJs) expression and function. TJ perturbation alters 1296 

downstream signaling that target important cellular events in epithelial homeostasis, 1297 

invasion, chronic inflammation and cancer (Zeb-1/E-cadherin, Wnt signaling, MMP9/Notch 1298 

signaling and Src/PI3K/Akt signaling). Furthermore, disruption of TJs can result in increased 1299 

permeability to promote translocation of bacteria and luminal antigens, which then activate 1300 

IL-6/Stat3 signaling to induce carcinogenic processes. 1301 

Figure 3. Functional roles of CLDN1 as hepatitis C virus entry factor. CLDN1 is one of 1302 

the four main hepatitis C virus (HCV) host factors (i.e. SR-BI, CD81, CLDN1 and OCLN) 1303 

essential for the early steps of HCV infection. Several other host factors (e.g. highly 1304 

sulphated heparan sulfate (HS), low-density lipoprotein receptor (LDLR), epidermal growth 1305 

factor receptor (EGFR), integrin beta 1 (ITGB1), transferrin receptor 1 (TfR1) and Niemann 1306 

Pick C1 like 1 (NPC1L1)) contribute to viral binding and entry. EGFR-mediated signaling 1307 

leads to the formation of a CD81-CLDN1 co-receptor complex that ultimately leads to viral 1308 

internalization[116, 118]. HCV infection induces CLDN1-depend signaling via the ERK1/2 1309 
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pathway[120]. HCV infection increases CLDN1 expression[122, 145]. TJ proteins involved in 1310 

the HCV entry process are depicted in black, non-TJ host entry factors are depicted in white. 1311 

 1312 

Figure 4. Functional role of CLDN1 in signal transduction and EMT in liver disease. In 1313 

transformed liver cells, CLDN1 over-expression activates the c-Abl-PKCd pathway to 1314 

increase cellular migration and invasion via MMP2 activation[20] as well as the c-Abl-Ras-1315 

Raf-ERK pathway to promote EMT via the transcription factors Slug and Zeb1[162].  1316 





Growth promotin
g

signaling (EGFR/MET/Wnt)

Epigenetic 
regulation

Cytokine/chemokine 
signaling

miRNA-dependent

regulation

Notch
signaling

Zeb-1/Wnt
signaling

Src

PI3K/Akt

Bcl2

MMP2/MMP9

E-cadherin/ 
N-cadherin (EMT)

Altered epithelial homeostasis, invasion, anoikis Cancer

Disruption of 
tight junction integrity 

Perturbation of 
tight junction protein expression and function 

Commensal
microbiota

Increased permeability

Chronic
inflammation

IL-6/ gp130/ Stat3

Infection 
Injury

Figure 2



EGFR

CLDN1

OCLN
HRas

HCV infection

CLDN1 
expression

Hepatocyte

Bile 
canaliculi

HCV

ERK

Cell-free 
HCV entry

HS LDLR

NPC1L1

Lipoviroparticle
Figure 3

HCV cell-to-cell
transmission

SR-BI CD81 CLDN1 ITGB1 TfR1



c-Abl

Slug, Zeb1

Ras

Raf

ERK

MMP2

Cell migration and 
invasion

PKCd

Hepatocyte

Bile 
canaliculi

Nucleus

Figure 4

EMT-mediated
invasiveness

CLDN1


	Zeisel, Dhawan and Baumert Gut 2018.pdf
	Zeisel, Dhawan and Baumert Gut review R1 2018 Figure 1
	Zeisel, Dhawan and Baumert Gut review 2018 Figure 2
	Zeisel, Dhawan and Baumert Gut review 2018 Figure 3
	Zeisel, Dhawan and Baumert Gut review 2018 Figure 4

