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Abstract

During meiosis homologous chromosomes pair, recombine, and synapse, thus ensuring accurate chromosome segregation
and the halving of ploidy necessary for gametogenesis. The processes permitting a chromosome to pair only with its
homologue are not fully understood, but successful pairing of homologous chromosomes is tightly linked to
recombination. In Arabidopsis thaliana, meiotic prophase of rad51, xrcc3, and rad51C mutants appears normal up to the
zygotene/pachytene stage, after which the genome fragments, leading to sterility. To better understand the relationship
between recombination and chromosome pairing, we have analysed meiotic chromosome pairing in these and in dmc1
mutant lines. Our data show a differing requirement for these proteins in pairing of centromeric regions and chromosome
arms. No homologous pairing of mid-arm or distal regions was observed in rad51, xrcc3, and rad51C mutants. However,
homologous centromeres do pair in these mutants and we show that this does depend upon recombination, principally on
DMC1. This centromere pairing extends well beyond the heterochromatic centromere region and, surprisingly, does not
require XRCC3 and RAD51C. In addition to clarifying and bringing the roles of centromeres in meiotic synapsis to the fore,
this analysis thus separates the roles in meiotic synapsis of DMC1 and RAD51 and the meiotic RAD51 paralogs, XRCC3 and
RAD51C, with respect to different chromosome domains.
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Introduction

Sexual reproduction involves the fusion of maternal and paternal

gametes and this means that the parental genetic complement must

be halved in the process of gametogenesis, to avoid it doubling at

each generation. This halving of ploidy is carried out by meiosis, the

specialised eukaryotic cell division that involves one round of DNA

replication followed by two sequential divisions. Errors in

segregation of the genetic material during cell division lead to

aneuploidy, a well known example of which in humans is Down’s

Syndrome, caused by trisomy of chromosome 21 [1]. It is thus

essential that each daughter cell inherits a full complement of the

genetic material and in mitosis this is ensured by centromeric

cohesion established at the preceeding S-phase. This mechanism

also ensures proper chromosomal segregation during the second

meiotic division, however recognition and linking of homologous

chromosomes at the first meiotic division is mediated in the majority

of eukaryotes by recombination during the first meiotic prophase.

While understanding of the mechanisms of homologous recombi-

nation has considerably advanced, the processes permitting chromo-

somes to recognise and pair with only their homologues remain

elusive. Homologue pairing has been shown to depend on a number

of mechanisms including homologous recombination, centromere

coupling, telomere clustering and the interaction of specific pairing

centres with Zinc finger DNA-binding proteins seen in Drosophila

melanogaster and Caenorhabditis elegans [2–6]. In animals and fungi,

clustering of telomeres at the leptotene/zygotene transition into a

‘‘bouquet’’ associated with the microtubule organising center

promotes homologue alignment (reviewed by [7]). Evidence from

budding yeast shows that Zip1- and Rec8-dependent centromere

coupling, or non-homologous centromere pairing, precedes homol-

ogous interactions, which are then stabilised by Spo11-dependent

homologous recombination mechanisms [8–11]. A recent report has

shown that PP4 phosphatase is required to counteract Mec1-

dependent phosphorylation of Zip1 and permit this non-homologous

centromere coupling [12]. Transition to homologous chromosome

interactions leads to co-alignment of homologous chromosome axes

in zygotene, and the fully synapsed chomosomes visible at pachytene.

In wheat, centromeres cluster premeiotically and further associate in

pairs facilitating pairing and recombination in a mechanism

dependent on the Ph1 locus [13,14] and centromere coupling is

observed in the Arabidopsis thaliana phs1 mutant [15]. The role of

centromeres in meiotic pairing is an active subject of research in

many organisms (reviewed by [16]). In this context it is important to

note that the structure of centromeric regions differs considerably

between species, ranging from 125 bp in Saccharomyces cerevisiae to the
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highly repeated DNA of up to several megabases in length found in

multicellular eukaryotes. In Arabidopsis, centromeric DNA contains

long stretches of tandemly repeated DNA sequences, transposons,

retrotransposons and rDNA, and this has meant that full DNA

sequence analysis of Arabidopsis centromeres has not been completed

[17–20]; see review by [21].

Meiotic recombination is initiated by the induction of double-

strand DNA breaks in the chromosomes by Spo11 during the

leptotene stage. Resection at the DSB generates single-stranded

DNA overhangs and these load Rad51 and/or Dmc1 protein into a

helical nucleofilament, which catalyses invasion of, and synapsis

with, an homologous DNA sequence. Repair of DSB in G2 and M-

phase mitotic cells, and the majority of DSB in meiotic cells, involves

primarily the invasion of the sister chromatid. However during

meiosis, a subset of breaks are repaired through recombination with

the homologous chromosome, thus establishing the physical linkage

necessary to ensure proper chromosomal disjunction at the first

meiotic anaphase. How meiotic cells permit synapsis with sister

chromosome, rather than the sister chromatid, is a major question

in meiosis and much research is currently focussed on the

specificities of the Rad51 recombinase and its meiosis-specific

paralogue, Dmc1. Dmc1 has been shown to play similar, but not

identical roles to Rad51 [22], however, while Rad51 is needed for

both meiotic and mitotic recombination, Dmc1 is only required in

meiosis [5,23]. In yeast, current understanding points to action of

the Red1/Hop1/Mek1 complex promoting meiotic inter-homolog

recombination through phosphorylation of the axial element

protein Hop1 [24–26]. Also, Hed1 restricts activity of Rad51

nucleofilaments in meiosis by blocking access of Rad54 [27,28].

These mechanisms attenuate the activity of Rad51 to minimise the

use of the sister chromatid and hence favour Dmc1-dependent

inter-homolog recombination. Dmc1 plays a key role in inter-

homolog recombination in plants, yet the mechanisms through

which RAD51 and DMC1 cooperate to promote the homology

search and chromosome synapsis are unknown [29–31]. Arabi-

dopsis mutants lacking RAD51 or DMC1 are sterile but show

normal somatic growth [29,32]. Both mutants show defects in

pairing and synapsis, however while rad51 mutants exhibit extensive

chromosome fragmentation at late pachytene, dmc1 mutants are

characterised by the presence of intact univalents, showing that

DSBs are repaired in a RAD51-dependent manner using the sister

chromatid as a template in the absence of DMC1 [33]. The precise

roles and mechanisms of action of Dmc1 nonetheless remain poorly

understood and some organisms, such as Drosophila or Caenorhab-

ditis elegans, do not possess an apparent Dmc1 ortholog.

The RAD51 paralogue proteins RAD51C and XRCC3 play

key roles in the homology search together with RAD51, and have

been shown to act as cofactors facilitating loading of RAD51 onto

DNA [34–39]. The lethality of these mutants in vertebrates has

hampered the study in meiosis and the details of their roles in

meiotic homologous pairing remain elusive [40–42]. In Arabi-

dopsis, xrcc3 and rad51C mutants are viable but extensive

chromosome fragmentation in late pachytene results in sterility,

a similar phenotype to that of rad51 mutants [43–47]. Both the

RAD51C and XRCC3 proteins are essential for meiotic

recombination and they have both early and late functions during

meiotic prophase I [40–49]. The specific role(s) of XRCC3 and

RAD51C in homologous recombination and how they cooperate

with the RAD51 and DMC1 recombinases to achieve efficient

homologous chromosome pairing remain subject to debate.

Working with the flowering plant Arabidopsis thaliana, we present

here an analysis of the roles of recombination and key

recombination proteins in this process, showing the existence of

a DMC1-dependent process which stabilises pairing of centro-

meric regions of homologous chromosomes and that, in contrast,

synapsis of chromosome arms requires RAD51 protein and the

RAD51 paralogues, RAD51C and XRCC3.

Results

Arabidopsis xrcc3 and rad51C Recombination-Defective
Mutants Exhibit Partial Chromosome Alignment and
Pairing

Meiosis in Arabidopsis xrcc3 and rad51C mutants progresses up to

the zygotene stage and appears to enter pachytene, but do not show

full chromosomal synapsis at pachytene and we thus call this meiotic

stage zygo-pachytene. Subsequent meiotic stages present fragmented

and fused chromosomes and no viable gametes are produced [43–

47,50]. The presence of pachytene-like figures and the observation of

fragmented bivalents at metaphase I show that some chromosome

pairing does occur in these mutants and we have set out to determine

the nature of this and its dependence on recombination.

Observation of meiotic figures clearly confirms the presence of

partial synapsis at the zygo-pachytene stage in xrcc3 mutants.

Chromosome alignment and pairing is visible as short stretches

and thick chromosome threads typical of synapsed chromosomes

are clearly visible (Figure 1). The thick, synapsed fibres frequently

end in bubble structures in which the two chromosome axes are

clearly visible (Figure 1B–1F). Immunolocalisation of the synapto-

nemal complex (SC) central element protein, ZYP1, shows foci

and short stretches in the xrcc3 mutant, in agreement with the

observed partial synapsis of DAPI-stained chromosomes (Figure

S1). Similar ZYP1 staining patterns have been described in

Arabidopsis rad51, xrcc3, and rad51C mutants [50]. Transmission

electron microscopy studies in rad51 and rad51C mutants also show

short sections of synaptonemal complex and thus evidence of

partial chromosome synapsis [32,47].

Pairing of Chromosome Arms Is Dependent on Xrcc3 and
Rad51C

These observations prompted us to further characterise the

partial synapsis observed in the rad51 paralogue mutants, using

fluorescence in situ hybridisation (BAC-FISH) to examine

pairing in xrcc3 mutants using a BAC probe (F12C20)

recognising a mid-arm region of the long arm of chromosome

Author Summary

Meiosis is a specialised cell division that acts to halve the
chromosome complement, or ploidy, in the production of
gametes for sexual reproduction in eukaryotes. To ensure
that each gamete has a full complement of the genetic
material, homologous chromosomes must pair and then
separate in a coordinated manner during meiosis, and this
is mediated by recombination in the majority of studied
eukaryotes. To better understand the relationship between
recombination and meiotic homologue pairing, we have
analysed meiotic chromosome pairing in plant mutants
lacking key recombination proteins. This work provides
new insights into the homologous chromosome pairing
mechanisms occurring in meiotic prophase of Arabidopsis
thaliana: heterochromatic centromeres and 5S rDNA
regions pair early, and their pairing has different require-
ments for recombination proteins than does that of the
chromosome arms. These data raise a number of questions
concerning the specificities and roles of recombination at
different chromosome and/or chromatin regions in the
synapsis of homologous chromosomes at meiosis.

Recombination and Meiotic Chromosome Pairing
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2 (Figure 2). As expected, in wild-type meiocytes, two separate

signals were observed from leptotene to early zygotene and one

signal (or two paired signals) were observed in pachytene figures

(Figure 2 and Table 1). In contrast, in xrcc3 mutants two signals

were observed in 80 percent of the meiocytes at the zygo-

pachytene stage (Figure 2 and Table 1). Similar results were

obtained using a second BAC probe (F12K11) probing the distal

region of the left-arm (2 Mbp from the telomere) of chromo-

some 1, with more than 90% of xrcc3 meiocytes showing

unpaired chromosomes while 85% of the WT meiocytes were

fully paired (Figure 2 and Table 1). BAC-FISH analyses in

rad51C meiocytes using F12K11 probe confirmed the absence of

pairing observed in the xrcc3 mutant (Table 1). Pairing and

synapsis in these regions is thus dependent on RAD51

paralogue-dependent recombination.

Centromeres Pair in Arabidopsis xrcc3 and rad51C
Mutants

Centromere pairing is an early event in meiotic chromosome

pairing and has been well described in Arabidopsis [51].

Arabidopsis centromeres are unpaired and dispersed during

meiotic interphase up to leptotene, cluster at leptotene/zygotene,

separate and homologous centromeres then associate in pairs and

synapse in zygotene and pachytene. FISH analyses using a 180 bp

centromeric repeat-specific probe were used to follow pairing of

centromeres through meiotic prophase I in xrcc3 and rad51C

mutants (Figure 3). For each stage, meiocytes were placed into one

of four classes according to the number of fluorescent signals from

the centromeric repeat-specific probe : in type 1, 8–10 centromere

signals indicate unpaired centromeres; in type 2 meiocytes, 6–7

signals show partial centromere pairing; type 3 meiocytes have

clustered centromeres (1 to 3 signals) and type 4 meiocytes show

four or five signals and complete centromere pairing (Figure 3).

In wild- type, virtually all leptotene nuclei were of type 1

(unpaired centromeres; Figure 3A and 3D). Zygotene nuclei were

mostly of type 3 or 4, while in pachytene 69% of nuclei were of

type 4 and the remainder of type 3, indicative of complete

centromere pairing (Figure 3A and 3D). Similarly, in xrcc3 and

rad51C mutants, more than 95 percent of the observed leptotene

nuclei showed ten centromere signals (type 1 nuclei). The

proportion of Type 1 nuclei then declined to reach the five

expected signals (type 4) in zygo-pachytene, xrcc3 and rad51C show

centromere pairing with 51% and 50% type 4 nuclei, respectively

(Figure 3B, 3C, 3E and 3F). These results are in accordance with

Figure 1. Arabidopsis xrcc3 mutants exhibit partial chromo-
some alignment and pairing. Chromosome spreads of zygo-
pachytene of WT (A) and xrcc3 mutants (B to F) obtained from
chromosome spreads counterstained with DAPI. Arrowheads point to
paired/aligned chromosomes and thick fibres characteristic of normal
synapsed chromosomes, while arrows depict loop structures correspond-
ing to unpaired regions. Insets in C, E, and F are magnifications of the
boxed areas (white square) showing loop structures. (Scale bar: 10 mm.)
doi:10.1371/journal.pgen.1002636.g001

Figure 2. Chromosome arms do not synapse in the xrcc3
mutant. FISH using BAC probe F12C20 targeting an euchromatic
region of the long arm of chromosome 2 (green). Images of WT
pachytene showing a single FISH signal (arrowed) representative of
paired chromosomes (A) and xrcc3 zygo-pachytene showing two FISH
signals (arrowed) (B). DNA is stained with DAPI. (Scale bar = 10 mm.). C
to F. Percentages of WT (C,E) pachytene and xrcc3 (D,F) zygo-pachytene
nuclei showing one (paired) or two (unpaired) FISH signals. Probe in C,D
is interstitial BAC F12C20 on chromosome 2. Probe in E,F is distal BAC
F12K11 on chromosome 1 (see schemas to right).
doi:10.1371/journal.pgen.1002636.g002

Recombination and Meiotic Chromosome Pairing
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the centromere coupling reported in the Arabidopsis rad51C

mutant [47]. As seen in the frequency distributions, dynamics of

centromere pairing in xrcc3 and rad51C is thus similar to WT with,

51%, 50% and 69%, respectively, of the zygo-pachytene nuclei

showing 4 or 5 centromeric signals (Figure 3D to 3F). We note,

however, that the distribution is a little more spread out in the

mutants than in the wild-type (Figure 3D to 3F) and that the

proportion of meiocytes of both type 2 and type 3 in xrcc3 and

rad51C (47 and 45%, respectively) is higher than in the wild-type

(31%). Centromeres thus pair efficiently in xrcc3 and rad51C

mutants, in contrast to chromosome arms. Given that the 180 bp

DNA repeat region detected by the centromeric FISH probe is

found at all Arabidopsis centromeres, the question remains as to

whether or not the observed centromeric pairing involves

centromeres of homologous chromosomes?

Pairing of Homologous Centromeres and
Pericentromeric Chromosomal Regions in xrcc3 and
rad51C Mutants

5S rDNA loci are present near to the centromeres of

chromosomes 3, 4 and 5 of the Columbia ecotype of Arabidopsis

[52]. As a result, fully synapsed homologous chromosomes in

pachytene nuclei show 3 distinct 5S rDNA FISH foci (Figure 4).

To quantify the extent of homologous or non-homologous

centromere coupling, we examined pachytene meiocytes using

FISH with both the 180 bp repeat and 5S rDNA probes. Three 5S

rDNA foci thus indicate homologous centromere pairing and

more than three, non-homologous centromere coupling. Zygo-

pachytene figures in the mutants showing more than 5 or less than

3 centromeric signals were excluded from the analysis as

centromere pairing was not yet complete in these meiocytes.

Meiocytes exhibiting 2 or 3 5S rDNA signals were considered as

homologously paired while meiocytes with more than 3 5S rDNA

signals and 4/5 centromere signals were considered as non-

homologously coupled.

As shown in Figure 4, 80% of xrcc3 (n = 20) and 72% of rad51C

(n = 68) meiocytes showed homologous pairing. Although reduced

compared to the wild-type (100% paired), homologous centromere

pairing does clearly not fully depend on Xrcc3- and Rad51C-

dependent recombination in Arabidopsis.

In order to confirm our observations and to exclude the

possibility that homologous pairing is restricted only within these

repeated regions, we monitored homologous pairing in xrcc3

mutants using BAC-FISH with a unique pericentromeric probe

(T10F5) located on the long arm of chromosome 2. Two foci were

observed in leptotene and early zygotene in both wild-type and

xrcc3 mutants. Beginning at late zygotene and extending through

pachytene, pairing proceeds and a single focus is seen in more than

Table 1. Chromosome arm pairing during meiotic prophase I in WT, xrcc3, and rad51C plants.

Euchromatic probe F12C20 Euchromatic probe F12K11

Leptotene Zygo-pachytene Leptotene Zygo-pachytene

unpaired paired unpaired paired unpaired paired unpaired paired

WT 95% (18) 5% (1) 21% (3) 79% (11) 100% (11) 0% (0) 15% (10) 85% (56)

xrcc3 97% (35) 3% (1) 79% (23) 21% (6) 90% (9) 10% (1) 92% (150) 8% (13)

rad51C 100% (7) 0% (0) 97% (29) 3% (1)

Percentages of WT, xrcc3, or rad51C meiocytes showing paired or unpaired signals in FISH using mid-arm probes on chromosomes 2 or 1. Numbers of nuclei are given in
brackets.
doi:10.1371/journal.pgen.1002636.t001

Figure 3. Centromere pairing in Arabidopsis xrcc3 and rad51C
mutants. Distributions of centromeric FISH signals in prophase I nuclei
of wild-type (A and D, n = 95), xrcc3 (B and E, n = 66) and rad51C (C and
F, n = 273) mutant plants. Since full pachytene figures are not observed
in the mutants, zygotene and pachytene-like figures were grouped in
the zygo-pachytene class. (A to C) : progression in centromere coupling
through prophase I with 8 to 10 (fully unpaired), 1 to 3 (clustering), 6 to
7 (partially paired) and 4 or 5 centromeres (complete coupling). (D to F)
Frequency distributions of centromeric signals in WT (D), xrcc3 (E) and
rad51C (F).
doi:10.1371/journal.pgen.1002636.g003

Recombination and Meiotic Chromosome Pairing

PLoS Genetics | www.plosgenetics.org 4 April 2012 | Volume 8 | Issue 4 | e1002636



90% of the wild-type meiocytes (Figure 5; Table 2). Homologous

pairing was confirmed in xrcc3 mutants, with 55% of zygo-

pachytene stage meiocytes showing a single focus (29 of 53 nuclei;

Figure 5 and Table 2). We note that these results underestimate

the homologous pairing since, in contrast to 5S rDNA analyses,

chromosome 2 foci were monitored in all zygo-pachytene nuclei

irrespective of the number of centromere foci. These results thus

corroborate the 5S-rDNA FISH (above) showing that rad51

paralogue mutants, xrcc3 and rad51C, show homologous centro-

mere pairing. Strikingly, as seen in Figure 5B, this pairing can

extend well into the euchromatic regions flanking the centromeric

heterochromatin (the BAC probe used in this analysis lies 2 Mbp

from the centromere repeat region).

DMC1 Is the Key Recombinase for Efficient Homologous
Centromere Pairing

This study was originally undertaken following our observation

of meiotic phenotypes of the Arabidopsis xrcc3 and rad51C mutants

[44–46]. These results have been confirmed and extended by

other authors, and strikingly, a similar phenotype is also observed

in the rad51 mutant [32,50,53]. This raises the possibility that the

homologous centromere pairing we observe in Arabidopsis xrcc3

and rad51C mutant plants is also independent of the Rad51

protein. In order to verify this we carried out experiments to

determine which recombination pathway is involved in the

homologous centromere pairing.

Figure 4. Homologous pairing of centromeres and 5S rDNA loci
in xrcc3 and rad51C mutants. WT pachytene (A) and xrcc3 (B) and
rad51C (C) zygo-pachytene figures showing 5 centromeric signals
(green) and three pericentromeric 5S rDNA signals (red). (Scale bar:
10 mm.). (D to F) Percentages of meiocytes with paired 5S rDNA loci in
wild-type (D, n = 32), xrcc3 (E, n = 20), and rad51C (F, n = 68).
doi:10.1371/journal.pgen.1002636.g004

Figure 5. Homologous peri-centromeric pairing of chromo-
some 2 in xrcc3 mutants. WT pachytene (A) and xrcc3 zygo-
pachytene (B to D) showing one, or two juxtaposed, chromosome 2
BAC probe T10F5 signals (red). (Scale bar: 10 mm.). Percentages of
pairing of chromosome 2 BAC probe T10F5 in pachytene of wild-type
(E) (n = 14) and zygo-pachytene of xrcc3 mutant (F) meiocytes (n = 53).
doi:10.1371/journal.pgen.1002636.g005

Table 2. Chromosome 2 centromere pairing in meiotic
prophase I in WT and xrcc3 plants.

probe T10F5

Leptotene Zygo-pachytene

unpaired paired unpaired paired

WT 100% (2) 0% (0) 7% (1) 93% (13)

xrcc3 91% (31) 9% (3) 45% (24) 55% (29)

Percentages of WT and xrcc3 meiocytes showing paired or unpaired signals in
FISH using a probe targeting chromosome 2 pericentromere. Numbers of nuclei
are given in brackets.
doi:10.1371/journal.pgen.1002636.t002

Recombination and Meiotic Chromosome Pairing
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Following the approach used for the Rad51 paralogue mutants,

we monitored numbers of centromeric and 5S rDNA foci through

meiotic prophase I in rad51, dmc1 and spo11-1 mutants (Figure 6).

Complete centromere pairing with 4 or 5 centromeric signals was

observed in 51% of the rad51 zygo-pachytene nuclei, a value

similar to that observed for the xrcc3 and rad51C mutants (Figure 3).

The dmc1, double rad51 dmc1 and spo11-1 mutants also show

similar levels of centromere pairing, with 39%, 36% and 46%,

respectively (Figure 6A and 6B and Table 3). As noted above for

the RAD51 paralogue mutants, the frequency distributions of

centromeric foci in the mutants are very similar, although slightly

more spread out, than in the wild-type (compare Figure S2 with

Figure 3D–3F).

These data clearly suggest the existence of a centromere

coupling mechanism that is independent of recombination. To test

whether or not this concerns centromeres of homologous

chromosomes, we monitored the number of 5S rDNA signals in

zygo-pachytene mutant meiocytes. These data show the existence
of a SPO11-dependent process being responsable for homologous

centromere pairing, with rad51, xrcc3 and rad51C mutants not

being significantly different to the WT (Table 4).

That the rad51, xrcc3 and rad51C mutants do not show the

SPO11-dependent effect implies that this homologous centromere

pairing principally involves DMC1. We thus dissected the relative

roles of DMC1 and RAD51 by monitoring numbers of 5S rDNA

foci in nuclei showing 4 to 5 centromeric signals (full centromere

coupling, see above). The rad51 mutant gives values similar to

those reported above for the xrcc3 and rad51C mutants, with 68%

(n = 101) of zygo-pachytene figures showing homologous centro-

mere pairing (Figure 6C). In contrast, non-homologous centro-

mere coupling was predominant in dmc1, rad51 dmc1 and spo11-1

mutants, with homologous centromere pairing observed in 43% of

dmc1 (n = 14), 41% of rad51 dmc1 (n = 17) and 36% of spo11-1

(n = 36) mutants (Figure 6C). To confirm these data, BAC-FISH

analyses were performed in the rad51, dmc1, and rad51 dmc1

mutants. Pericentromeric pairing was analysed using BAC-FISH

with two adjacent pericentromeric probes, 1.4 to 1.85 Mbp from

the centromere of chromosome 1 (Figure 7). As expected, the

majority of rad51 meiocytes with full centromere pairing showed a

single BAC-FISH focus and thus homologous centromere pairing

(64%, n = 14; Figure 7). In contrast, only 38% of the dmc1

meiocytes analysed (n = 16) displayed homologous pairing and this

dropped to 10% in the rad51 dmc1 double mutant (n = 39;

Figure 7).

Meiotic pairing of homologous centromeres in Arabidopsis thus

depends upon Spo11 induced recombination and primarily

requires DMC1, but is largely independent of Rad51 and the

Rad51 paralogues.

Discussion

Proper pairing of homologous chromosomes is necessary for

proper disjunction at the first meiotic division and thus for the

production of functional gametes. This pairing is mediated in the

majority of eukaryotes by recombination during the first meiotic

prophase and, although the subject of considerable interest, the

molecular mechanisms ensuring that chromosomes pair only with

their homologues are not fully understood. In the work presented

here we have analysed meiotic chromosome pairing in recombi-

nation mutants of Arabidopsis and show a differing requirement

for these proteins in pairing of pericentromeric regions and

chromosomal arms regions during meiotic prophase. We confirm

the existence of a non-homologous centromere coupling mecha-

nism in Arabidopsis, independent of the formation of double-

Figure 6. Pairing of centromeres and 5S rDNA loci in rad51,
dmc1, rad51 dmc1, and spo11-1 mutants. (A) Zygo-pachytene of
rad51, dmc1, rad51 dmc1 and spo11-1 showing centromeres (green) and
three pericentromeric 5S rDNA signals (red) in rad51 or more in dmc1,
rad51 dmc1 and spo11-1 mutants. (Scale bar: 10 mm.). (B) shows
progression in centromere coupling through prophase I for each
mutant with 8 to 10 (fully unpaired), 1 to 3 (clustering), 6 to 7 (partially
paired) and 4 or 5 centromeres (complete pairing). (C) shows
percentages of pairing of 5S rDNA loci in zygo-pachytene nuclei of
each mutant. Homologous centromere pairing is observed in rad51
whereas non-homologous centromere coupling is predominant in
dmc1, rad51 dmc1 and spo11-1 mutants.
doi:10.1371/journal.pgen.1002636.g006

Table 3. Mean numbers of centromere FISH signals though
prophase I in recombination defective lines.

Interphase/Leptotene Zygotene Pachytene

WT 9.360.8 (33) 3.961.2 (26) 3.960.9 (36)

xrcc3 9.460.6 (21) 4.661.5 (45) -

rad51C 9.361.0 (101) 5.061.5 (172) -

rad51 9.460.9 (68) 4.261.5 (255) -

dmc1 9.360.7 (15) 4.961.8 (49) -

rad51 dmc1 9.161.0 (51) 5.461.8 (94) -

spo11-1-2 9.560.7 (38) 5.161.4 (70) -

In all mutants, zygotene and pachytene figures were grouped into the zygo-
pachytene stage. Numbers of meiocytes analysed are given in brackets.
doi:10.1371/journal.pgen.1002636.t003
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strand breaks by SPO11, and RAD51- and DMC1-dependent

recombination. Establishment and stabilisation of pairing of

homologous centromeric and pericentromeric regions depends

principally upon DMC1, while pairing and synapsis of euchro-

matic chromosome arms of homologues requires the presence of

RAD51 and the RAD51 paralogues, XRCC3 and RAD51C.

Centromere Coupling in Arabidopsis Is Independent of
Recombination

Homologous pairing and synapsis is achieved through recogni-

tion and proper alignment of homologous chromosomes. With

some notable exceptions [54,55] recombination is clearly required

for this, but prior to recombination, different homology-indepen-

dent interactions have been shown to position and pre-align

homologues, thus perhaps preparing the ground for recombina-

tion and full homologous synapsis.

The role of telomeres in homologous chromosome positioning

and alignment is well established in a number of organisms

(reviewed by [7,56]), although many questions remain concerning

the mechanisms involved and the extent to which telomeres

participate in pairing is unclear. Of particular relevance here,

although Arabidopsis telomeres associate with the nucleolus in

meiotic prophase, no telomere ‘‘bouquet’’ is observed [51].

Pairing between non-homologous centromeres, or centromere

coupling [11], in early meiotic prophase has been reported in

many organisms (reviewed by [16]). In budding yeast, centromere

pairing is tightly linked to recombination and initiation of synapsis

[9–12,16] and can be sufficient in itself to mediate proper

segregation [57]. Non-homologous centromere coupling does not

depend upon Spo11-induced recombination, but is dependent on

the Zip1 protein. Spo11 and hence initiation of recombination, is

however needed for the transition to homologous centromere

pairing [10,11]. Recent results from Drosophila show that

centromere clustering initiates SC formation and synapsis of

homologous chromosomes in Drosophila female meiosis [58,59].

In contrast to the pre-meiotic centromere pairing described in

onions [60] and wheat [14], Arabidopsis centromeres remain

separate until leptotene, when they transiently cluster, separate

and initiate pairing during zygotene. Arabidopsis centromere

pairing completes during pachytene and is released in diplotene/

diakinesis [51]. As summarised in Table 5, meiotic non-

homologous centromere coupling has been observed in a number

of Arabidopsis mutants affecting meiotic chromosome cohesion,

synapsis and recombination, such as the phs1 mutant [15] (full

references are given in Table 5). Only SYN1/REC8, a member of

the meiotic cohesin complex, has been shown to be required for

centromere coupling in plants, with 10 centromeres being visible

throughout prophase I in Arabidopsis syn1 meiocytes [61]. Similar

but less conclusive results are also seen in the mutant of the

Arabidopsis SKP1 homologue, ASK1, implicated in a number of

early meiotic nuclear reorganisation events [62,63].

In this work we show that meiotic prophase I coupling of

centromeres of non-homologous chromosomes does occur in

Arabidopsis spo11-1, rad51, dmc1 and rad51 dmc1 mutants.

Notwithstanding the presence of long repetitive DNA homologies

at the different Arabidopsis centromeres (see introduction), this

process thus does not depend upon the induction of DNA breaks

by SPO11, nor the RAD51/DMC1 recombination machinery in

Arabidopsis.

RAD51 and XRCC3 Act Together for Homologous Pairing
in Chromosome Arms

Meiosis in Arabidopsis rad51, xrcc3 and rad51C mutants appears

normal up to the zygotene/pachytene stage, however no fully

synapsed pachytene figures are observed and later stages present

dramatic chromosomal fragmentation and fusion (This work and

[32,43–47,50]. Some pairing however occurs in these mutants

with clustering of centromeres and pairing of telomeres reported in

rad51C and homologous pairing of 5S rDNA loci in xrcc3 mutants

(this work) [46,47]. Similarly, telomere pairing has also been

reported in asy1 and atm mutants [51,64]. A recent study of a

hypomorph rad51 Arabidopsis knockdown-mutant provided indi-

cations of homologous pairing at metaphase I, with half of the

bivalents involving homologous chromosomes and this homolo-

gous pairing was abolished in a rad51 dmc1 double mutant [30].

The severe chromosomal fragmentation and fusion observed post

zygotene/pachytene means however that some care must be taken

with this conclusion. We present here analyses of the roles of

recombination in homologous pairing of specific chromosome

regions at the zygo-pachytene stage, prior to chromosome

fragmentation/fusion. This approach shows that homologous

centromeres pair in Arabidopsis rad51, rad51C and xrcc3 mutants.

Strikingly, this is not the case for the tested euchromatic

chromosome arms. Our results furthermore show that this pairing

can extend into the euchromatic pericentromeric regions for at

least 2 Mb from the centromere (Figure 5B) The Arabidopsis

genome is sequenced and chromosome 2 is estimated at

19,698,400 bp (TAIR10; http://www.arabidopsis.org), which

means that the chromosome 2 pairing seen in this figure represents

at least 10% of the whole chromosome. To further put this in

context, the KEGG database (http://www.genome.jp/kegg-bin/

show_organism?org=sce) lists the length of chromosome IV of S.

Table 4. Mean numbers of 5S rDNA FISH signals through prophase I stages in recombination defective lines.

Interphase/Leptotene Zygotene Pachytene Significance**

WT 5.460.7 (27) 2.961.1 (18) 2.660.7 (29)

xrcc3 5.460.6 (20) 3.060.9 (43) - ns

rad51C 4.961.1 (73) 3.261.1 (137) - ns

rad51 5.560.7 (13) 3.061.0 (197) - ns

dmc1* 3.860.6 (15) 3.060.9 (33) - *

rad51 dmc1* 3.9*60.7 (30) 2.9*61.0 (42) - *

spo11-1-2 5.860.5 (32) 3.961.0 (65) - P,0.0001

In all mutants, zygotene and pachytene figures were grouped into the zygo-pachytene stage. Numbers of meiocytes analysed are given in brackets.
*The dmc1 mutant is in the Ws Background and 5S rDNA loci are located only on chromosomes 4 and 5 (see Materials and Methods).
**Unpaired t-test with WT (ns = not significant, P.0.05).
doi:10.1371/journal.pgen.1002636.t004
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cerevisiae (the largest yeast chromosome) as 1,531,933 bp,

considerably less than the 2 Mbp centromere-flanking synapsed

region observed here in the Arabidopsis xrcc3 mutant. RAD51,

XRCC3 and RAD51C thus act together to promote pairing and

synapsis along chromosome arms.

DMC1 Is the Key Recombinase for Efficient Pairing of
Homologous Centromeres during Meiosis

In most eukaryotes, including plants, meiotic homologous

pairing and synapsis are intimately linked to homologous

recombination between homologous chromosomes (reviews by

[4,23,65]). Both the RAD51 and the DMC1 recombinases are

necessary for the normal progression of meiotic recombination,

with however differing roles, and these differences are believed to

be key to the specificities of meiotic and mitotic recombination.

RAD51 is involved in both mitotic and meiotic homologous

recombination between sister chromatids, while DMC1 acts to

promote recombination with the sister chromosome during

meiosis, but has no identified role in mitosis. These differing

meiotic roles of RAD51 and DMC1 are seen in the phenotypes of

Arabidopsis rad51 and dmc1 mutants : although no bivalents are

detected in the dmc1 mutant the genome remains intact, while

absence of RAD51 leads to genome fragmentation and sterility

[29,32]. Absence of the RAD51 paralogues XRCC3 and

RAD51C results in a similar phenotype to rad51, with fragmen-

tation of the genome following the zygotene/pachytene stage

[43,44,46,47]. The earlier loading of DMC1 compared to RAD51

[31] and the presence of only (intact) univalents in dmc1 mutants,

implies that DSBs are repaired using the sister chromatid as a

template and thus that DMC1 functions to favour interhomolog

repair [29,30,33,50]. Similarly, recent work on meiosis in a dmc1

mutant of Tetrahymena has shown the suppression of crossing-

over associated with efficient RAD51-dependent repair of DSBs

[66]. Studies in yeast led to an asymmetrical strand invasion model

in which Dmc1 and Rad51 are loaded on opposite sides of the

break [67,68]. The favoured homology search model is that Dmc1

first invades the homologous partner and that Rad51 acts to

stabilise and extend the strand invasion intermediates (see review

by [23]).

As described above, we have confirmed that meiotic coupling of

non-homologous centromeres in Arabidopsis occurs independently

of recombination. This is not however the case with the transition

to homologous centromere pairing, which we show to be

dependent on the initiation of recombination by SPO11.

Surprisingly, pairing of homologous centromeres seen in nearly

70% of meiocytes of rad51, xrcc3 and rad51C mutants, but synapsis

does not however extend to chromosome arms. Homologous

centromere pairing thus is largely independent of RAD51,

XRCC3 and RAD51C. In striking contrast, homologous centro-

mere pairing is significantly reduced in the dmc1 mutant and this

effect is even more pronounced in the rad51 dmc1 double mutant

(and spo11-1), confirming the primary role of DMC1 and showing

a minor role for RAD51. Such a role for RAD51 in supporting

DMC1 in Arabidopsis is in accordance with the recent study of the

hypomorph rad51-2 allele [30]. Meiotic pairing of homologous

centromeres in Arabidopsis is thus dependent on the initiation of

recombination by SPO11 and principally promoted by DMC1.

Extension and completion of synapsis to chromosome arms is

however dependent upon RAD51 (and XRCC3 and RAD51C).

Based on these data, we suggest a model of meiotic chromosome

pairing in Arabidopsis in which, following recombination-

independent non-homologous centromere coupling, homologous

chromosome pairing is initiated at centromeres via a DMC1-

dependent interhomolog search mechanism and that pairing is

further stabilised and extended along chromosome arms through

RAD51-dependent homologous recombination (Figure 8).

A Role for Heterochromatin in Meiotic Chromosome
Pairing?

The observations of differing requirements for RAD51- and

DMC1-dependent recombination at heterochromatic centromeres

and euchromatic chromosome regions raises the question of

whether these differences are centromere-specific or whether they

reflect differing behaviour of heterochromatin and euchromatic

regions in chromosomal synapsis.

The role for heterochromatin in chromosome pairing during

Drosophila female achiasmate disjunction has long been estab-

lished [69,70] and studies in maize and C. elegans have shown that

Figure 7. Centromeric pairing of chromosome 1 in rad51, dmc1,
and rad51 dmc1 mutants. (A) Zygo-pachytene of rad51, dmc1, and
rad51 dmc1 showing centromeric signals (green) and one or two
chromosome 1 BAC signals (red). (Scale bar: 10 mm.). (B) shows
percentage of pairing of chromosome 1 BAC probes T10F5 in zygo-
pachytene of rad51 (n = 14), dmc1 (n = 16), and rad51 dmc1 (n = 39)
mutants. (C) The chromosome BAC probes used in these FISH
experiments are depicted below the images.
doi:10.1371/journal.pgen.1002636.g007
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chromosome pairing is associated with a change in chromatin

conformation [71,72]. In plants, strong evidence for a role of

chromatin remodeling in pairing comes from analyses in wheat,

where the recognition and pairing of homologous chromosomes at

telomeres and centromeres triggers a conformational change in

adjacent chromatin that is suggested to further facilitate homolo-

gous chromosome recognition and recombination [73–75]. Wheth-

er such mechanisms also occur in Arabidopsis is unknown. The

existence of a centromeric coupling mechanism that is independent

of recombination suggests a role for heterochromatin and

chromatin structure in the homology search also in Arabidopsis

and this may not be restricted to centromeres. In this respect it is

interesting to note that in most Arabidopdis ecotypes, cytological

observations show the two NORs to be very frequently associated as

one large knob [52,76,77]. This characteristic association of the

nucleolar heterochromatin present on chromosomes 2 and 4 was

also observed in all of the mutants studied in this work, indicating

that this association is independent of recombination.

Moreover, notwithstanding the non-homologous chromosome

pairing observed in Arabidopsis mnd1 and hop2/ahp2 mutants [78–

81], in ahp2 mutants the NOR-bearing arms of chromosomes 2

and 4 exhibit stabilised homologous pairing and synapsis [80].

These observations strongly suggest a role for heterochromatin in

pairing in Arabidopsis. Uncovering the precise role of hetero-

chromatin in meiotic pairing will require further studies such as

analysis of mutants with altered heterochromatin configuration or

chromatin remodeling capacity.

Materials and Methods

Plant Material and Growth Conditions
All Arabidopsis thaliana plants used in this study were of Columbia

ecotype with the exception of dmc1 (Wassilewskija). Arabidopsis

xrcc3, rad51C, rad51, dmc1, rad51 dmc1, and spo11-1-2 mutants and

PCR genotyping have been described previously [29,32,44,46,

47,50,82]. The dmc1 allele used in this experiment (dmc1 and rad51

dmc1 mutants) comes from the Wassilewskija (Ws) background

which only has 2 5S rDNA loci, on chromosomes 4 and 5. The

DMC1 locus is situated on the same chromosome (III) as the 5S

rDNA locus and we verified that the rad51 dmc1 mutant lines used

here have 4 rDNA FISH foci in interphase and leptotene nuclei

(unpaired chromosomes). Seeds were sown onto soil, stratified in

water at 4uC for 2 days and grown in a greenhouse with a 16/8 h

light:dark photoperiod; temperature 23uC; and approximately

60% relative humidity.

Fluorescent In Situ Hybridisation
Chromosome preparation by spreading. Chromosome

spreads were prepared according to Ross et al. [77] with the

modifications introduced by Fransz et al. [52]. Briefly, whole

inflorescences were fixed in absolute ethanol/glacial acetic acid

(3:1) for 3630 min and stored at 4uC. Immature flower buds were

rinsed twice at room temperature in distilled water for 5 min

followed by two washes in 16 citrate buffer for 5 min. Buds of

appropriate size were selected under a binocular microscope and

incubated for 3 hr. 30 mins. on a slide in 100 ml of enzyme

mixture (0.3% w/v cellulase (Sigma), 0.3% w/v pectolyase (Sigma)

and 0.3% cytohelicase (Sigma) in a moist chamber at 37uC. Each

bud was then softened in 15 ml 60% acetic acid on a microscopic

slide at 45uC, fixed with ice-cold ethanol/glacial acetic acid (3:1)

and air dried. Slides were then rinsed in Coplin jar for 2 mins. in

distilled water, 10 mins. in 4% paraformaldehyde in 16PBS and

finally rinsed for 5 min in distilled water; air-dried and stored at

4uC for further use.

Probe preparation and labelling. The following DNA

probes were used: a centromeric specific probe (containing two

Figure 8. Roles of recombination in chromosome pairing and synapsis during meiotic prophase I in Arabidopsis. In meiotic interphase
and leptotene, chromosomes are decondensed and centromeres are dispersed in the nucleus (a). Centromeres cluster in early zygotene (b), separate
and couple non-homologously (c), until homologous centromere pairing is established (d), following which arms pair and full synapsis is established.
The transition from centromere coupling to homologous centromere pairing requires initiation of recombination by SPO11 and DMC1. In absence of
these proteins only coupling of centromeres of non-homologous chromosomes will occur leading to the formation of univalents at metaphase I.
Once homologous centromere pairing has been established, pairing and synapsis along chromosome arms will proceed with the help of RAD51 and
its paralogues RAD51C and XRCC3 (e). Arabidopsis telomeres have been shown to pair and cluster at the nucleolus during early meiosis (see [64]).
However, their behaviour in these recombination mutants is not known and telomere associations have not been included in the diagram for clarity.
doi:10.1371/journal.pgen.1002636.g008
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copies of the 180 bp repeat) [83], a 5S rDNA probe, BAC probes

T10F5 (chromosome 2 pericentromere), F12C20 (chromosome 2

long arm), F12K11 (chromosome 1 left-arm), F2J6 (chromosome 1

pericentromere), and T12C22 (chromosome 1 pericentromere).

BACs were obtained from the Ohio Arabidopsis Stock Center,

ABRC (http://abrc.osu.edu).

DNA from BAC clones was prepared using QIAGEN Large-

Construct Kit according to the manufacturer’s instructions. BAC

probes were labelled with either biotin-dUTP or digoxygenin-

dUTP using a Nick-Translation kit (ROCHE) following manu-

facturer’s recommendations. The 180 pb and 5S rDNA probes

were labelled by PCR incorporation of dUTP-biotin or dUTP-

Digoxygenin according to Lysak et al. (2006). Probes were made

with 1 ml of PCR product and/or 3 ml of Nick-Translation

product, HB50 buffer to 10 ml and 10 ml Dextran Sulfate 20% in

HB50. Probes were used either immediately or stored at 220uC
until use. In Situ Hybridisation and fluorescence detection of

hybridised probes were performed according to Lysak et al. [84].

Microscopy
All observations were made with a motorised Zeiss AxioIma-

ger.Z1 epifluorescence microscope (Carl Zeiss AG, Germany)

using a PL Apochromat 100X/1.40 oil objective. Photographs

were taken with an AxioCam Mrm camera (Zeiss) and appropriate

Zeiss filter sets adapted for the fluorochromes used : filter set 25HE

(DAPI), filter set 38HE (Alexa 488) and filter set 43HE (Texas-

Red). Captured images were further processed with AxioVision

4.6.2. and Adobe Photoshop CS4 software.

Supporting Information

Figure S1 ZYP1 localisation is disturbed in xrcc3 mutants. Male

meiocytes stained with DAPI (blue) and the AtZYP1 antibody

(green). AtZYP1 extends along the entire length of the chromo-

some axes in wild-type pachytene. Numerous foci and short

stretches of AtZYP1 (arrows) staining are present in xrcc3 mutants

(Scale bar = 5 mm.).

(TIF)

Figure S2 Frequency distributions of centromeric FISH signals

in prophase I of rad51, dmc1, rad51 dmc1, and spo11-1-2 mutants.

(TIF)
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