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Abstract

Arterial spin labeling is a magnetic resonance perfusion imaging technique
that, while providing results comparable to methods currently considered as
more standard concerning the quantification of the cerebral blood flow, is sub-
ject to limitations related to its low signal-to-noise ratio and low resolution.
In this work, we investigate the relevance of using a non-local patch-based
super-resolution method driven by a high resolution structural image to in-
crease the level of details in arterial spin labeling images. This method is
evaluated by comparison with other image dimension increasing techniques
on a simulated dataset, on images of healthy subjects and on images of sub-
jects diagnosed with brain tumors, who had a dynamic susceptibility contrast
acquisition. The influence of an increase of ASL images resolution on partial
volume effects is also investigated in this work.

Keywords: MRI, Arterial Spin Labeling, Super-Resolution, Denoising,
Partial Volume Effects

1. Introduction1

Cerebral perfusion corresponds to the delivery of nutrients and oxygen to2

brain tissues. Its assessment is important for clinicians, as it has been shown3

that abnormal perfusion patterns are often the causes or consequences of4

pathologies [1].5

Arterial spin labeling (ASL) is a non-invasive magnetic resonance (MR) imag-6

ing technique that quantitatively evaluates this perfusion. Radio frequency7
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inversion pulses are applied to the blood water protons flowing through the8

neck of the imaged subject. After a certain amount of time left for these9

labeled protons to reach the brain, called the post-labeling delay (PLD), an10

image is acquired, which is called the labeled image. The difference between11

this image and a control image, acquired without the labeling step, is propor-12

tional to brain perfusion. The cerebral blood flow (CBF) can be quantified13

from this perfusion image [4, 5]. Recommendations regarding ASL image ac-14

quisitions have been formulated by a consortium in the ASL ”white paper”15

[6].16

While very promising in some aspects, ASL is, however, still subject to a17

number of limitations. Indeed, fast acquisition techniques such as echo pla-18

nar imaging (EPI) are required to image the dynamic process of the labeled19

protons circulation, which generate low resolution and low signal-to-noise20

ratio (SNR) images. For that reason, multiple label and control pairs are21

usually acquired and averaged. However, this makes ASL subject to new22

potential corruptions, such as movement artifacts and the introduction of23

outlier intensity values. Moreover, small subject motion and the low resolu-24

tion of the images involve the introduction of partial volume effects (PVE),25

meaning that perfusion of different tissues contribute to the perfusion signal26

observed in a single image voxel.27

Several post-processing algorithms have been proposed to deal with these28

limitations. Particularly, denoising methods are successfully applied to deal29

with artifacts and outliers in ASL images [7, 8, 9, 10]. PVE correction al-30

gorithms have also been proposed and investigated in [11, 12, 13]. These31

methods have in common to be applied at the resolution of the acquired32

images. While attenuating the effect of the previously listed corruptions,33

they do not allow to increase the level of details in images. However, this34

aspect could be of great interest, the thickness of grey matter (GM) being35

often inferior to the size of the ASL images voxel size. In clinical conditions,36

acquiring ASL images at higher resolutions is a challenging task, since this37

would imply a decrease in SNR, or increase the acquisition time.38

Various methods have been proposed in order to increase the resolution of39

MR images facing similar low resolution properties, such as T2-weighted and40

diffusion images, as a post-processing step. Interpolation methods can be41

applied to MR images (trilinear interpolation, B-splines), unfortunately re-42

sulting in blurred images. To overcome this aspect, super-resolution (SR)43

approaches allow to reconstruct high frequency information from low reso-44

lution data. Some of these methods are based on multiple low resolution45

2



acquisitions, therefore requiring specific acquisition protocols, which can be46

time consuming [14]. Recently, [15, 16, 17] have adapted and extended non-47

local patch-based SR approaches that are independent of the acquisition48

process to the MRI domain. The main idea consists in using self similarities49

in the images to perform reconstructions at higher resolutions [18]. These50

methods can be applied to data commonly acquired in clinical conditions,51

such as T2-weighted or diffusion weighted images, thus preventing any in-52

crease in the acquisition time. A first application of this kind of method53

to pseudo-continuous ASL (pCASL) images has been proposed in [19]. The54

main limitation of these methods is that they require clean low resolution55

data as inputs, which means that denoising algorithms must first carefully56

be applied to the images prior to SR reconstruction.57

In this paper, we propose a novel method to increase the resolution of ASL58

images, which deals with the presence of noise. This non-local patch-based59

SR reconstruction approach is based on the assumption of appearing simi-60

larities between neighborhoods in the image that is reconstructed and a high61

resolution (HR) structural image, generally acquired in imaging protocols.62

This aspect allows to increase the resolution of ASL images without extend-63

ing the acquisition time. The proposed method is evaluated on a simulated64

dataset and images of healthy subjects in order to investigate its capacity to65

reconstruct images close to HR ASL references. As DSC is commonly con-66

sidered as a reference perfusion imaging technique, we investigate the ability67

of our method to generate images closer to the DSC quantitative maps on68

images acquired on subjects diagnosed with brain tumors. In addition, we69

investigate the influence of a recovery of HR details on PVE.70

The material and methods are presented in section 2, results regarding com-71

parisons between generated images and reference HR ASL or DSC maps in72

section 3, an evaluation of the influence of the SR reconstruction on PVE in73

section 4 and a discussion of these aspects in section 5.74

2. Materials and Methods75

2.1. Summary of existing similarity-based SR methods76

The objective of super-resolution methods is to recover an unknown high77

resolution (HR) image x from a low resolution acquired one y. The following78

model explicits the relation between both images :79

y = Mx+ η, (1)
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with M a matrix representing subsampling, blurring and geometric transfor-80

mations, and η representing some additive noise [18, 15, 16, 17]. An optimiza-81

tion problem of the following form would correspond to a common approach82

to recover the unknown image x:83

X̃ = arg min
x
{
∣∣∣∣y −Mx

∣∣∣∣2
2

+ γΦ(x)}, (2)

where Φ is a regularization term necessary to solve this ill-posed mini-84

mization problem and γ a positive parameter.85

As shown in [16] and [17], an iterative reconstruction-correction procedure86

can be adopted in order to reconstruct x, which allows to avoid problems87

such as local minima or parameters initialization linked to this ill-posed op-88

timization problem. This procedure consists in two steps, corresponding to89

a reconstruction and a subsampling consistency constraint.90

The reconstruction is based on the assumption that locations in a HR ac-91

quired structural image and the SR reconstructed one should share anatomi-92

cal properties, and that the structural image could therefore be used to drive93

the reconstruction process. This assumption leads to the choice of non-local94

regularization approaches, such as in [16] and [17].95

The subsampling consistency imposes the constraint of a strict equality be-96

tween the downsampled version of the SR reconstructed image and the orig-97

inal low resolution image y, which is made possible by formulating strong98

assumptions about the M matrix composition. However, this constraint im-99

plies the need for well denoised low resolution images for the method to be100

consistent. Therefore, Coupé et al. [17] proposed to apply a Rician-adapted101

denoising filter on diffusion images before solving the optimization problem.102

In the case of low signal-to-noise ratio ASL images, different noise patterns103

can be introduced regarding the scanners, sequences or settings chosen to104

perform the acquisition. The use of parameters that could not be the most105

appropriate ones in the filtering step, could have important consequences106

regarding the quality of the final reconstructed image. This is the reason107

why we introduce a reconstruction driven by a HR structural image, while108

denoising the SR reconstructed image at the same time.109

2.2. A new SR method for ASL images110

The main objective of this work is to assess the relevance of using a HR111

anatomical image to increase the resolution of ASL images. This assumption112

of shared anatomical properties between structural and ASL images comes113
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from the fact that gray matter and white matter are the two tissues that114

contribute to the brain ASL signal, with their own perfusion characteristics115

(e.g. CBF and arterial arrival time) [11, 12, 13]. Following a similar idea116

than [15], [16] and [17], we propose a non-local patch-based method, while117

introducing a novel denoising strategy.118

Because of the use of non-local patch-based approaches, both in the denois-119

ing and SR methods previously described [17], we propose to combine them120

in a unique SR image reconstruction process. A third order B-splines in-121

terpolation is first applied to the low resolution image in order to increase122

its dimension to the desired one. This initialization is followed by iterations123

between a non-local patch-based regularization and a fidelity term assuring124

the global intensities mean consistency between the initial low resolution im-125

age and the reconstructed one. This fidelity term differs from the one in use126

in the works presented in the previous section [16, 17], in the sense that it127

involves a global image mean consistency, and not a subsampling consistency128

at the voxel level, therefore allowing a denoising of the reconstructed image.129

In the regularization term, correspondences between voxels’ neighborhoods130

are assessed both in the reconstructed image and the structural one:131

X t+1
i =

1

Zi

∑
j∈Vi

X t
j exp−

( ||N(Xi,S)−N(Xj,S)||22
βSσ2

i,S

+
||N(X t

i )−N(X t
j)||22

βσ2
i

)
,

(3)
where X t

i is the intensity of voxel i in the image X t corresponding to iteration132

t, XS the structural image, N(Xi) and N(Xi,S) patches selected around voxel133

i in the ASL and structural images respectively, σ2
i and σ2

i,S the empirical local134

variances, Vi the correspondence search volume around voxel i, Zi a scaling135

parameter controlling that the sum of the weights is equal to 1, and β and136

βS two scalars adjusting the importance of the terms related to the ASL137

and structural images. The exponential weights, including an evaluation138

of the simultaneous similarity of voxel neighborhoods in the structural HR139

and reconstructed images, enable an increase in the level of details in the140

ASL image, while preserving features that are only visible in this image.141

Indeed, if neighborhoods are similar on two voxel locations in both images,142

the contribution in the regularization will be important. In the contrary, if143

a feature is only visible in one of the images, the weight will have a lower144

value, and have a reduced contribution in this process.145

The global low resolution mean value consistency corresponds to an additive146

5



offset equal to the difference between the mean image value of X t and the147

mean of the low resolution image Y , respectively µ(X) and µ(Y ):148

X t′ = X t +
(
µ(Y )− µ(X t)

)
. (4)

Iterations between these two steps are performed until no significant differ-149

ence between consecutive reconstructed images can be observed, which can150

be written as follows:151

|X t−1 −X t−2|
|X t −X t−1|

< τ. (5)

As in [17], a coarse to fine approach is proposed where the weights β and βS152

are decreased at each iteration of the process, leading to [β, β/2, β/4, ...] and153

[βS, βS/2, βS/4, ...] respectively.154

2.3. Validation framework155

2.3.1. Simulated dataset156

In order to evaluate the proposed method in a controlled environment,157

we constructed a simulated set of 9 CBF maps. This dataset was built158

from structural (MP2RAGE UNI, [20]) images acquired at a resolution of159

1× 1× 1 mm3 with a 3T Siemens Verio scanner and a 32-channel head-coil.160

Fixed CBF values were considered for gray matter (GM) and white matter161

(WM), equal to 70 and 25 ml/100g/min respectively [21]. These values were162

affected to the probability maps obtained by means of the SPM12 segmen-163

tation algorithm [22], leading to the application of the following equation:164

cbfi = pGM,i.70 + pWM,i.25, (6)

with cbfi the simulated CBF value at voxel i, and pGM,i and pWM,i the respec-165

tive PV probability values for GM and WM provided by the segmentation166

at the same voxel location.167

These HR simulated CBF maps were then downsampled to a resolution of168

2×2×2 mm3 by applying a gaussian blurring before downscaling by a factor169

of 2 in the 3 directions. The downsampled images were then reconstructed170

at the original resolution using different methods: nearest neighbor inter-171

polation, trilinear interpolation, 3rd order B-splines interpolation and the172

proposed SR reconstruction method.173

The root mean square errors (RMSE) between the original HR simulated174
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CBF maps and the reconstructed images were calculated in order to evalu-175

ate the ability of each method to provide reconstructed images close to this176

reference. As ASL images acquired in clinical conditions are usually affected177

by noise, commonly considered as gaussian in CBF maps due to the aver-178

aging of multiple label-control pairs, we also studied the behavior of each of179

these methods as a function of the amount of noise. Downsampled images180

affected by gaussian noise with standard errors corresponding to 3 to 14% of181

the GM CBF value were reconstructed at the original resolution in order to182

evaluate this behavior. Figure 1 illustrates these images generation and the183

processing steps.184

Figure 1: Pipeline describing the generation of the simulated dataset and the different
reconstruction methods to be compared, applied to the downscaled and noise corrupted
images.

2.3.2. Healthy controls185

The SR reconstruction method was also evaluated on images acquired186

on 4 healthy subjects (3 females, 1 male, age = 34 ± 6 years). For each of187

these volunteers, images were acquired on a 3T Siemens Verio scanner with188

a 32-channel head-coil. The structural image consisted in a MP2RAGE UNI189

(resolution: 1×1×1 mm3). pCASL (resolution: 3.5×3.5×5 mm3, interslice190

gap: 1 mm, 30 control-label pairs repetitions, PLD: 1800 ms, labeling dura-191

tion (LD): 1800 ms, 20 slices [23]) and M0 (resolution: 3.5×3.5×5 mm3, inter-192
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slice gap: 1 mm, 5 repetitions, 20 slices) images were acquired as the low reso-193

lution data used to generate the CBF maps to be reconstructed by increasing194

their dimensions by a factor of 2 in each direction. HR pCASL images were195

also acquired for the evaluation purpose (resolution: 1.75× 1.75× 2.5 mm3,196

interslice gap: 0.5 mm, 100 control-label pairs repetitions, PLD: 1800 ms,197

LD: 1800 ms, 20 slices), as well as HR M0 (resolution: 1.75×1.75×2.5 mm3,198

interslice gap: 0.5 mm, 10 repetitions, 20 slices). Image SNR being propor-199

tional to voxel volume, 100 repetitions were acquired in order to generate the200

HR pCASL images. While not entirely compensating for the SNR decrease201

in comparison with the 30 repetitions low resolution acquisitions, this repe-202

tition number was chosen as a compromise between scan time (10 minutes),203

risk of subjects motion and SNR.204

CBF maps were obtained by applying the general kinetic model for pCASL205

acquisitions [4]:206

CBF =
6000.λ.∆M. exp( PLD

T1,blood
)

2.α.T1,blood.M0.(1− exp(− LD
T1,blood

))
, (7)

with λ the blood/brain partition coefficient (λ : 0.9), α the labeling efficiency207

(α : 0.85), ∆M the control-label difference, and T1,blood the blood T1 relax-208

ation time (T1,blood : 1650 ms).209

As in the case of the simulated data, RMSE values between the reconstructed210

images generated by the different methods and the HR pCASL CBF map,211

considered as the reference, were calculated.212

2.3.3. Correlation with DSC213

As mentioned in the introduction, Dynamic Susceptibility Contrast (DSC)214

imaging is often considered as a standard perfusion MR imaging technique.215

A contrast agent, usually gadolinium-based, is injected to the subject and216

the induced susceptibility effects are imaged via T2*-weighted acquisitions.217

In clinical conditions, this technique enables acquisitions at a higher reso-218

lution than ASL scans. Therefore, we studied the correlation between low219

resolution CBF maps obtained from pulsed ASL (PASL) images, the same220

images after an increase of the dimensions by a factor of 2 in each direction221

with different interpolation methods and the HR DSC CBF images.222

The dataset contains images of 10 patients diagnosed with brain tumors223

(3 females, 7 males, age = 63 ± 13 years). Images were acquired on a 3T224

Siemens Verio scanner with a 32-channel head-coil. A 3D T1w sequence (res-225
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olution: 1× 1× 1 mm3) was acquired, as well as a PICORE Q2TIPS PASL226

sequence with crushers (EPI readout, TR: 3000 ms, TE: 18 ms, FOV: 192×227

192 mm2, flip angle: 90◦, in plane resolution: 3 × 3mm2, slice thick-228

ness: 7 mm, interslice gap: 0.7 mm, inversion time (TI): 1700 ms, bolus width229

(TI1): 700 ms, 30 control-label repetitions) and a DSC sequence (GRE EPI230

readout, TR: 1500 ms, TE: 300 ms, FOV: 230× 230 mm2, flip angle: 90◦, in231

plane resolution:1.8×1.8 mm2, slice thickness: 4 mm, interslice gap: 1.2 mm).232

The CBF maps were generated from the DSC images by use of the method233

proposed by Østergaard et al. [24]. The general kinetic model for PASL234

acquisitions was applied to the ASL scans [4]:235

CBF =
6000.λ.∆M. exp( TI

T1,blood
)

2.α.T I1.M0
, (8)

The other parameters are the same as in (7), except α : 0.98. Assuming that236

ASL and DSC CBF estimations are linearly correlated, as stated in Warmuth237

et al. [25], the Pearson correlation coefficients were calculated between the238

low resolution ASL CBF and the registered HR DSC CBF maps, and the SR239

reconstructed ASL CBF and DSC CBF maps.240

2.4. Implementation details241

An in-house image processing pipeline based on Python, Cython, Nipype [26]242

and SPM12 functions was used to conduct the experiments. Considering re-243

sults presented in [17] and our own experiments, the patch size was chosen244

equal to 3× 3× 3 voxels in the non-local patched-based regularization, and245

the search volume to 7×7×7 voxels. In order to obtain an equivalent contri-246

bution of the ASL and structural related terms in the reconstruction process,247

β and βS were chosen to be equal. Tests and quantitative evaluations with248

different values on the simulated dataset and the healthy subjects images249

conducted to the selection of β = βS = 0.5. Therefore, all results presented250

in the following sections have been obtained by use of these parameters.251

3. Results252

3.1. Simulated dataset253

Images corresponding to reconstructions of a low resolution CBF map254

corrupted by gaussian noise with a standard deviation equal to 9% of the255

GM CBF value, which we qualitatively suppose being a close example to256
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effective low resolution acquired images, are displayed in Figure 2. The im-257

ages generated by use of interpolation techniques (nearest neighbor, trilinear258

and 3rd order B-spline interpolations) appear flattened, compared to the SR259

reconstructed map, which enables to recover sharp structures and edges. Ta-260

ble 1 confirms these observations, with lower mean RMSE values (in bold)261

calculated between the simulated reference images and the SR reconstructed262

ones than between the references and the interpolated images. In addition,263

the evolution of these RMSE values indicates that the more the standard264

deviation of noise increases, the closer to the reference the reconstructed im-265

age is in comparison with the interpolated images. This result is associated266

with the capability of the proposed method to denoise the images. Table 2267

provides information about the p-values obtained by applying paired t-tests268

between the RMSE values obtained from the proposed reconstructions and269

the other interpolation methods. Significant differences between the pro-270

posed reconstruction method and the interpolation techniques are found for271

levels of noise superior to 6% of the GM CBF value.272

Noise std 3 6 9 11 14
Nearest neighbor 14.82± 0.82 15.3± 0.78 16.31± 0.80 17.72± 0.97 19.98± 1.43
Trilinear 14.80± 0.91 14.93± 0.90 15.22± 0.89 15.66± 0.86 16.38± 0.94
B-splines 14.01± 0.89 14.35± 0.86 15.08± 0.83 16.12± 0.85 17.78± 1.19
Proposed method 13.92 ±1.05 14.05 ±1.04 14.34 ±1.01 14.79 ±0.99 15.56 ±1.08

Table 1: Means and standard deviations of the 9 RMSE values calculated between the
reference HR image and the images reconstructed with nearest neighbor interpolation,
trilinear interpolation, 3rd order B-splines interpolation and the proposed SR reconstruc-
tion method, with increasing levels of noise. Standard deviations of noise are expressed as
percentage of the GM CBF value.

3.2. Healthy controls273

Figures 3, and 4 present the images obtained from one of the 4 volunteers.274

Sagittal slices are shown, notably to insist on the influence of the methods on275

the staircase effect related to the particularly low initial resolution in the slice276

acquisition direction (5mm + 1mm gap). This effect is strongly corrected by277

the proposed SR reconstruction method. The RMSE values are reported in278

table 3, the proposed method providing images closer to the HR references279

than common interpolation techniques for three of the four subjects.280
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Noise std 3 6 9 11 14
Nearest neighbor 3.9× 10−4 4.5× 10−5 2.8× 10−6 1.4× 10−6 4.3× 10−7

Trilinear 3.2× 10−4 2.8× 10−4 2.6× 10−4 2.8× 10−4 3.1× 10−4

B-splines 5.4× 10−1 6.1× 10−2 6.6× 10−4 2.0× 10−5 2.7× 10−6

Table 2: P-values obtained by application of paired t-tests between the RMSE values
obtained after the proposed reconstruction and by nearest neighbor interpolation, trilin-
ear interpolation and 3rd order B-splines interpolation, with increasing levels of noise.
Standard deviations of noise are expressed as percentage of the GM CBF value.

Method Subject 1 Subject 2 Subject 3 Subject 4
Nearest neighbor 28.16 26.83 32.19 24.23
Trilinear 26.93 24.80 30.15 22.58
3rd order B-splines 26.34 25.04 29.68 22.49
Proposed method 26.44 24.49 29.12 22.20

Table 3: RMSE values calculated between the HR acquired reference image and the images
generated by nearest neighbor interpolation, trilinear interpolation, 3rd order B-splines in-
terpolation and the proposed SR reconstruction method, for each of the 4 healthy subjects
(lower RMSE value in bold for each subject).

3.3. Comparison with DSC281

Figure 5 reports, for each of the subjects, the values of the Pearson cor-282

relation coefficients obtained between the reference DSC CBF images and283

the low resolution acquired ASL CBF maps, their interpolations by trilinear284

and 3rd order B-splines and the images generated with the proposed SR re-285

construction method. For each subject, the reconstructed image was more286

correlated to the DSC reference than the others. The significance of the dif-287

ferences was assessed by applying a Fisher transformation to the correlation288

coefficients. The p-values obtained after this transformation indicate a sig-289

nificant difference between the correlation coefficients distributions. Indeed,290

a paired t-test between the correlation values obtained for the proposed re-291

constructions and the low resolution acquisitions provided a p-value equal to292

1.4× 10−4, p = 8× 10−5 by comparison with the trilinear interpolation, and293

p = 3.33 × 10−4 by comparison with the 3rd order B-splines. Figure 6 dis-294

plays the DSC CBF images, low resolution ASL CBF maps and CBF maps295

reconstructed with our method for two of the patients.296
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Figure 2: Simulated dataset: comparison of a) a HR reference image and b) the cor-
responding low resolution downsampled image corrupted by noise with std=9% of the
GM CBF value, c) nearest neighbor interpolation, d) trilinear interpolation, e) 3rd order
B-splines interpolation, and f) proposed SR reconstruction.

4. Comparison with Partial Volume Correction methods297

4.1. Method298

Typical low resolution ASL acquisitions lead to well known PVE in ASL299

images, sometimes unfortunately preventing clinicians to interpret MRI ob-300

servations such as reduced CBF values in regions of interest. Indeed, they301

could be the consequences of an effective reduced perfusion, a thinner GM302

or small subject motion. Because of the fact that the method described in303

this paper enables the recovery of high frequency details that are not visible304

in low resolution acquisitions, we propose to evaluate the influence of this305

recovery on a potential reduction of PVE. This is of particular interest, since306

the PVE correction methods that are currently the most commonly applied307

to ASL images correct CBF values at the voxel level, thus not providing308
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Figure 3: Sagittal slices of a) a structural image, b) the corresponding CBF map from the
low resolution ASL acquisition, and c) the proposed SR reconstruction.

better detailed images. Moreover, the method that we present in this work309

is only dependent on the registration of a HR structural image on an inter-310

polated ASL one, while classical PVE correction methods require the use of311

tissue PV estimates. These PV estimate maps are provided by segmentation312

algorithms, and are therefore subject to potential additional errors.313

In order to compare the impact of these algorithms on PVE, a simulation314

was conducted from the same 9 structural images as presented in 2.3.1, in315

which we aimed at having the most possible information about intensity val-316

ues. In order to construct these 9 HR ASL images in which we knew the317

exact voxel constitution and associated values, images containing 100% GM318

or WM voxels were created, by thresholding the PV estimates generated by319

the SPM12 segmentation algorithm. Perfusion maps were generated by af-320

fecting ∆M values of 10 for GM and 1.5 for WM, with additional sinusoidal321

variations of 20% amplitude to make them more realistic, and evaluate the322

capability of the tested algorithms to preserve spatial variations and details323

[29]. The same process was used to create M0 images, with values of 1350324

and 1000 in GM and WM respectively. These HR perfusion and M0 maps325

were downsampled by averaging 2×2×2 voxel cubes, therefore reducing the326

size of the images and adding PVE, while knowing the exact brain tissue mix-327

ture of these new low resolution voxels. Different amount of gaussian noise328
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Figure 4: Axial slices of a) a structural image, b) the corresponding CBF maps from the
HR and c) low resolution ASL acquisitions, and d) the proposed SR reconstructed image.

(SNR=5,10) were added to these images in order to evaluate the influence of329

noise on PVE correction. The general kinetic model for pCASL acquisitions330

was then applied to obtain the corresponding CBF maps (λ : 0.9, α : 0.85,331

T1,blood: 1650 ms, LD: 1800 ms, PLD: 1800 ms).332

The effect of the proposed algorithm on PVE was evaluated by analyzing its333

ability to recover the effective GM contribution in the CBF values observed334

in each voxel, in comparison with the linear regression method, which is one335

of the standard PVE correction technique applied to ASL images [11].336

Our proposed SR method provides high resolution CBF maps unlike the lin-337

ear regression method, which produces two PV maps at the initial resolution.338

This is the reason why our SR CBF maps have been downsampled, in order339

to be able to compare the two results. The GM contributions in the CBF340

maps obtained by applying the general kinetic model to the HR perfusion341

and M0 images, without noise, were considered as the references to which342

the generated images had to be compared. Figure 7 illustrates the pipeline343

that corresponds to the above-mentioned operations.344
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Figure 5: Pearson correlation coefficient between the reference DSC CBF maps and low
resolution CBF images, the same images after trilinear interpolation, 3rd order B-splines
interpolation and the proposed SR reconstruction method. These coefficients are presented
for each of the 10 subjects.

4.2. Results345

Contrary to differences in the produced GM contribution maps reported346

in Zhao et al. [29], between an application of the linear regression to the calcu-347

lated CBF map and to perfusion and M0 images before the CBF calculation,348

our method did not show such significant differences while testing for the349

influence of this effect. Figure 8 presents the GM contributions to the CBF350

values in a reference image, their recovery by application of the linear regres-351

sion method to the low resolution CBF map, by applying the same method352

to perfusion and M0 images before CBF calculation, and after increasing353

the CBF image dimensions with our method. Figure 9 shows the difference354

images obtained after the subtraction of each of the produced images listed355

above and the corresponding reference. An important aspect illustrated in356

these difference images is the fact, already stated in [11, 12, 13, 29], that the357

linear regression method implies a smoothing of the GM contributions. On358

the contrary, the sinusoidal variations are retained in the image originating359
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Figure 6: a) structural image, b) DSC CBF image, c) low resolution ASL CBF image and
d) SR reconstructed ASL CBF map. The two lines correspond to images of two different
subjects.

from the proposed algorithm.360

Table 4 presents the evolution of the mean RMSE values calculated between361

the generated GM contribution images and their references as a function of362

noise (SNR=inf, 10, 5). In practice, both applications of the linear regression363

method to the CBF maps or to the perfusion and M0 images are commonly364

accepted [29]. Since the mean RMSE values obtained by applying our method365

to CBF maps are bounded by the mean RMSE provided by these two linear366

regressions, we can presume that our method reduces the influence of PVE.367

Moreover, the linear regression method is based on the use of information368

provided by PV estimates, which makes it dependent upon the chosen seg-369

mentation algorithm and sensitive to potential segmentation errors. On the370

contrary, our SR reconstruction method is independent of any segmentation371

algorithm. In order to investigate the influence of these segmentation cor-372

ruptions on the GM contribution maps resulting from the application of the373

linear regression, we simulated variations in the segmented PV estimates by374

16



Figure 7: Pipeline describing the operations applied to each of the 9 images of the simulated
dataset and the GM contribution assessment maps to be compared.

introducing gaussian noise or by applying an opening and closing morpholog-375

ical operation to these PV maps. Tables 5 and 6 show a significant increase376

in the mean RMSE values when the PV estimates are modified. These results377

indicate that the property of the SR reconstruction to be independent of the378

use of PV estimates could be of great interest to avoid potential errors due379

to segmentation corruption.380
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Figure 8: Comparison of gray matter cerebral blood flow contribution maps: a) GM con-
tribution maps from the reference image, b) linear regression applied to the low resolution
CBF image, c) linear regression applied to the low resolution perfusion and M0 images,
and d) proposed SR method applied to the LR CBF image (SNR=5).

Method SNR=inf SNR=10 SNR=5

Lin Reg on CBF 6.41± 0.74 6.54± 0.75 7.05± 0.75
Lin Reg on Perf & M0 4.39± 0.17 4.52± 0.17 4.90± 0.17
SR on CBF 5.66± 0.11 5.94± 0.13 6.77± 0.14

Table 4: Mean RMSE values between the reference GM CBF contribution images and the
images obtained after linear regression (Lin Reg) on the low resolution (LR) CBF image,
Lin Reg on the perfusion and M0 images, and the proposed SR method applied to the LR
CBF images.

Method SNR=inf SNR=10 SNR=5

Lin Reg on CBF 7.46± 0.60 7.65± 0.59 8.09± 0.62
Lin Reg on Perf & M0 5.84± 0.23 5.97± 0.24 6.24± 0.22
SR on CBF 5.66± 0.11 5.94± 0.13 6.77± 0.14

Table 5: Mean RMSE values between the reference GM CBF contribution images and the
images obtained after linear regression (Lin Reg) on the low resolution(LR) CBF image
and on the perfusion and M0 images, with noise added to the PV estimates needed by the
Lin Reg method, and the proposed SR method applied to the LR CBF images.

5. Discussion381

In this work, we have presented and investigated different properties of a382

SR reconstruction method dedicated to ASL images. This method enables to383

increase the level of details, while providing a denoising of the reconstructed384

images. It is based on the assumptions of an appearing accordance between385
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Figure 9: Comparison of gray matter cerebral blood flow contribution maps: a) difference
images obtained by subtration of the reference GM contribution map from the images
obtained by applying the linear regression (Lin Reg) to the low resolution (LR) CBF
image, b) the linear regression to the LR perfusion and M0 images, and c) the proposed
SR method to the LR CBF image (SNR=5).

Method SNR=inf SNR=10 SNR=5

Lin Reg on CBF 11.68± 0.70 11.78± 0.70 12.10± 0.75
Lin Reg on Perf & M0 11.19± 0.50 11.23± 0.49 11.42± 0.51
SR on CBF 5.66± 0.11 5.94± 0.13 6.77± 0.14

Table 6: Mean RMSE values between the reference GM CBF contribution images and the
images obtained after linear regression (Lin Reg) on the low resolution (LR) CBF image
and on the perfusion and M0 images, with an opening+closing operation added to the PV
estimates needed by the Lin Reg method, and the proposed SR method applied to the LR
CBF images.

neighborhoods in the image to be reconstructed and a classically acquired386

HR anatomical image, and that distant neighborhoods could serve as a learn-387

ing database in the reconstruction process.388

On a simulated dataset, we have shown that our method provides images389

closer to references than common interpolation techniques. The fact that390

this result could be obtained with different levels of noise added to the im-391

ages to be reconstructed is an indication of the ability of the proposed method392

to denoise the reconstructed images.393

Experiments on low resolution data acquired on healthy subjects confirmed394

these findings on 3 over 4 sujects. The main limitation of this study is395

nonetheless the relevance of the definition of the HR ASL images as refer-396
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ences, because of their low SNR. In order to maintain the scan time rea-397

sonable and avoid subject motions that would almost certainly happen after398

10 minutes of continuous scanning, 100 control-label repetitions have been399

acquired to generate the high resolution ASL images. This number is cer-400

tainly still not sufficient to obtain an appropriate image quality, which could401

explain the fact that a better RMSE value was obtained by applying a 3rd
402

order B-spline interpolation for the first subject. This limitation is precisely403

the reason why we chose to conduct the two other studies, meaning with a404

simulated dataset and the comparison with DSC images.405

The study based on images of patients diagnosed with brain tumors revealed406

a significantly increased correlation between DSC and images reconstructed407

with our method, supporting the capability of the proposed method to re-408

cover details by driving the reconstruction of ASL images with a high res-409

olution structural one. The TI value chosen to acquire these PASL data410

was possibly a little short for subjects 5, 6 and 10, which could explain the411

reduced correlation values obtained for these three subjects.412

We showed that our method associates an increase in the level of details with413

a reduction of the partial volume effect in ASL images. The main advantage414

of this SR reconstruction in comparison with the linear regression partial415

volume correction method is to preserve spatial signal fluctuations, which416

are smoothed by the latter.417

The method proposed in this paper only depends on the accurate registration418

of a HR structural image on the initially interpolated ASL image to be recon-419

structed. Indeed, experiments revealed that the initial interpolation method420

selected in order to increase the dimension of the image to reconstruct does421

not have a significant influence on the generated image, and denoising is422

performed jointly with the details recovery process. This aspect makes our423

method an appropriate tool to increase the quality and the fidelity of ASL424

images, and particularly CBF maps, with respect to effective physiological425

processes. Another promising aspect is its faculty to recover well detailed426

ASL images from standard clinical acquisition protocols, therefore not in-427

creasing the acquisition time and patient discomfort. We believe that such a428

post-processing procedure could help clinicians to establish even more accu-429

rate diagnosis, by reducing interrogations concerning the reasons of reduced430

perfusion values and being able to distinguish GM thickness reduction or an431

effective perfusion reduction for example.432
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