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Putative cancer stem cells may be the key
target to inhibit cancer cell repopulation
between the intervals of chemoradiation in
murine mesothelioma
Licun Wu1,2, Walter Blum3,4, Chang-Qi Zhu2, Zhihong Yun1, Laszlo Pecze3, Mikihiro Kohno1, Mei-Lin Chan1,
Yidan Zhao1, Emanuela Felley-Bosco5, Beat Schwaller3 and Marc de Perrot1,2,6*

Abstract

Background: Cancer cell repopulation during chemotherapy or radiotherapy is a major factor limiting the efficacy
of treatment. Cancer stem cells (CSC) may play critical roles during this process. We aim to demonstrate the role of
mesothelioma stem cells (MSC) in treatment failure and eventually to design specific target therapies against MSC to
improve the efficacy of treatment in malignant mesothelioma.

Methods: Murine mesothelioma AB12 and RN5 cells were used to compare tumorigenicity in mice. The expression of
CSC-associated genes was evaluated by quantitative real-time PCR in both cell lines treated with chemo-radiation. Stemness
properties of MSC-enriched RN5-EOS-Puro2 cells were characterized with flow cytometry and immunostaining. A MSC-
specific gene profile was screened by microarray assay and confirmed thereafter. Gene Ontology analysis of the
selected genes was performed by GOMiner.

Results: Tumor growth delay of murine mesothelioma AB12 cells was achieved after each cycle of cisplatin treatment,
however, tumors grew back rapidly due to cancer cell repopulation between courses of chemotherapy. Strikingly, a
10-times lower number of irradiated cells in both cell lines led to a similar tumor incidence and growth rate as with
untreated cells. The expression of CSC-associated genes such as CD24, CD133, CD90 and uPAR was dramatically
up-regulated, while others did not change significantly after chemoradiation. Highly enriched MSC after selection with
puromycin displayed an increasing GFP-positive population and showed typical properties of stemness. Comparatively,
the proportion of MSC significantly increased after RN5-EOS parental cells were treated with either chemotherapy, γ-ray
radiation, or a combination of the two, while MSC showed more resistance to the above treatments. A group of
identified genes are most likely MSC-specific, and major pathways related to regulation of cell growth or apoptosis are
involved. Upregulation of the gene transcripts Tnfsf18, Serpinb9b, Ly6a, and Nppb were confirmed.

Conclusion: Putative MSC possess the property of stemness showing more resistance to chemoradiation, suggesting
that MSC may play critical roles in cancer cell repopulation. Further identification of selected genes may be used to
design novel target therapies against MSC, so as to eliminate cancer cell repopulation in mesothelioma.
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Background
Malignant pleural mesothelioma (MPM) is a highly aggres-
sive malignancy with poor prognosis, most often associated
with long-term exposure to asbestos [1]. However, limited
efficacy of conventional chemotherapy, radiotherapy and
surgery drives investigators to explore novel approaches to
treat this disease [2–4].
Over the past decade, a number of clinical trials has

been conducted looking at a tri-modality approach using
induction chemotherapy, followed by surgery with an
extrapleural pneumonectomy (EPP) and adjuvant hemi-
thoracic radiation [5–7]. We have developed an innovative
approach for MPM treatment with a short accelerated
course of high-dose hemi-thoracic intensity-modulated
radiation therapy followed by EPP. The initial phase I/II
study assessed the feasibility of Surgery for Mesothelioma
After Radiation Therapy (SMART). This innovative proto-
col SMART yields encouraging results and supports fu-
ture studies looking at long-term outcome in patients
with epithelioid MPM subtypes [8].
Here, we focus on immune modulation to trigger im-

mune responses against mesothelioma stem cells (MSC)
during the intervals of cytotoxic therapy. Evidence sup-
ports the notion that cancer cell repopulation can be
attributed to cancer stem cells due to their higher resist-
ance to conventional therapy and that this phenomenon
could be inhibited or eliminated by a T cell response.
Our previous translational work showed that an antitu-

mor effect through modulation of specific T cell responses
may be achieved in murine model systems. For example,
activation of natural killer T cells, depletion of regulatory
T (Treg) cells, or systemic blockade of the immune check-
point inhibitory regulator of T-cell immunity CTLA-4,
between cycles of chemotherapy, was shown to inhibit
cancer cell repopulation by enhancing specific antitumor
immunity in murine mesothelioma [9–13]. We also dem-
onstrated that anti-CTLA4 treatment can promote the
abscopal effect to distant tumor sites after the primary
tumor received local radiation [14]. Cancer cell repopula-
tion can be inhibited or eliminated by T cell responses,
suggesting that resistance to conventional therapy may be
related to CSC escaping the immune system [15–20].
Thus, it would be beneficial to target MSC, if they

could be unambiguously identified. However, the biggest
challenge to target MSC is the lack of specific markers
to identify them [21]. Since the MSC population is ra-
ther small among all tumor cells (estimated to be less
than 5% in most cases), it remains a big hurdle to accu-
mulate and isolate a large number of putative MSC, even
if cell sorting can be used; the isolation procedure is
time- and labour-consuming. Isolation of sphere-
forming cells [22] has limitations as well, since those
cells may initiate from CSC, but don’t necessarily have
to be composed entirely of CSC [23].

The idea on how to achieve isolation of a large num-
ber of putative MSC comes from stem cell biology. The
method was initially used to select induced pluripotent
stem cells (iPS) with the help of an EOS (Early trans-
poson Oct4 and Sox2 enhancer) system as a vector by
selecting Sox2 and Oct4-expressing cells. The plasmid
construct has Sox2- and Oct4-binding sites in the pro-
moter region, which then drives GFP expression. The
plasmid also contains a puromycin resistance gene that
allows to identify subpopulations in the murine meso-
thelioma cell line RN5-EOS characterized by high levels
of EOS reporter activity [24]. In the whole population of
RN5-EOS cells approximately 5% of cells show GFP ex-
pression [25]. The selection with puromycin allows for
the enrichment of the putative MSC named RN5-EOS-
Puro2 [26]. Indeed, putative MSC are approximately 50–
70% GFP-positive (GFP+) after 7 days of selection. Thus,
we consider the high yield of putative MSC as a
requirement for identification of stem cell markers and
preparation of putative MSC lysates to design novel
target therapies.

Methods
Cell lines
The murine mesothelioma cell line RN5 derived from
C57Bl/6 mice was established recently by our team [27]
and the cell line AB12 (from Balb/c mice) was kindly pro-
vided by Dr. Jay Kolls, University of Pittsburgh, Pittsburgh,
PA. Both cell lines were maintained in RPMI 1640 medium
supplemented with 10% fetal bovine serum and 1% penicil-
lin and streptomycin, and maintained at 37 °C in an atmos-
phere containing 5% CO2. Cells were treated prophylactic
with 5 μg/ml Plasmocin™ (Invivogen) for at least 2 weeks
and were confirmed as mycoplasma-free. Cells were used
for experiments at the time point of exponential growth
(approximate 90% confluence) for all experiments.
Details on the generation of RN5-EOS-Puro2 cells

have been described before [25]. Briefly, the method
was initially used to select for induced pluripotent
stem cells (iPS) with the help of an EOS (Early transposon
Oct4 and Sox2 enhancer) system as part of the vector.
The plasmid construct has Sox2- and Oct4-binding sites
in the promoter region, which then drives GFP expression
and furthermore contains a puromycin resistance sepa-
rated by an IRES. Puromycin (2 μg/ml; Life Technologies,
China) was used for the selection process. This technique
allowed us to identify the RN5 subpopulations character-
ized by high activity of the reporter, which was enriched
for tumor initiating activity [24]. As the overall design in
this study is depicted in Fig. 1, we compared these cells to
murine mesothelioma RN5 cells treated with conventional
therapy (cisplatin or γ-ray radiation), where surviving
tumor cells were collected for further experiments to
evaluate tumorigenicity and gene expression.
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Incidence of syngeneic mesothelioma cell-derived tumors
in mice
RN5 and AB12 cells treated with γ-ray irradiation of 15Gy
(104 and 105 cells, as indicated in the figure legend) were
injected subcutaneously (s.c.) into the right flank of
6–8 week-old female C57BL/6 and Balb/c mice,
respectively, both mouse strains purchased from The
Jackson Laboratory (Bar Harbor, Maine), while the
untreated parental cells (105 and 106 cells) were injected
respectively into the right flank of other mice as controls.
The tumor incidence and tumor growth curves were
plotted according to the maximal perpendicular diameters
as a function of days after tumor challenge. When tumors
grew to the designated size (5 mm in diameter), the two
maximal perpendicular diameters were measured with a
calliper twice weekly to evaluate tumor incidence and
growth. At the end points mice were sacrificed in
accordance to the euthanasia guidelines of the Animal
Use Protocol (AUP# 3399), which was approved by the

Animal Resources Centre of University Health Network
(UHN), Toronto, Canada.

Treatment of cells and RNA extraction
Parental RN5-EOS cells and highly enriched MSC RN5-
EOS-Puro2 cells (106 cells/5 ml/well in a 6-well plate)
were treated with cisplatin (Onco-Tain™ Hospira, UK)
either with 0, 1 or 5 μg/ml overnight, or γ-ray radiation
5Gy and 15Gy by Cs-137 Gamma Cell Irradiator-40
(Atomic Energy of Canada Ltd., Ottawa, Canada) at a dose
rate of approximately 100 cGy/min. Surviving cells were
collected after overnight culture and used to extract RNA;
dead floating cells and cell debris were washed away. The
procedure of RNA extraction was performed according to
the manufacturer’s instruction (QIAGEN, RNeasy Micro-
array Tissue Mini Kit, CA). Total RNA was treated with a
Purelink DNase set (Thermo Fisher Sci., CA). RNA was
used for cDNA synthesis using the Cloned AMV First-
Strand cDNA Synthesis Kit (Thermo fisher Sci., CA).

Fig. 1 Experimental design and long-term goal of this study. Cancer cell repopulation during courses of chemotherapy and possibly mesothelioma stem cells
(MSC) might play critical roles in tumor relapse. a Murine mesothelioma RN5 cells were treated with conventional therapy (cisplatin or γ-ray radiation) and
surviving cells were collected for further experiments to evaluate tumorigenicity and gene expression profiles; b RN5 cells were transduced with lentivirus
and selected with puromycin resulting in RN5-EOS-P2 cells enriched in MSC. Microarray analysis was performed to screen for gene profiles specific for MSC.
c AB12 tumor growth in Balb/c mice after treatment with cisplatin once weekly, 5 μg/kg body weight, up to 4 cycles (Rx1–4) to mimic clinical settings
(n= 5 mice). Tumor growth delay was achieved by each cycle of chemotherapy, however, tumors grew back rapidly due to cancer cell repopulation between
courses of weekly chemotherapy. NoRx: no treatment, Rx1–4: number of doses of cisplatin; d Modeling the effects of specific MSC targeting: the model is
based on the assumption that targeting MSC would delay/prevent tumor repopulation during the intervals of chemotherapy (blue curve) in comparison to
conventional treatment (red curve) that mostly targets non-MSC
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Gene expression was evaluated by real-time PCR or
microarray assay.

Real-time PCR
The oligos of previously reported CSC-associated genes
and their oligo sequences (5′-3′) are composed as follows:

Genes Primer sequence 5′-3’

CD24 F CTGCTTCTGGCACTGCTCCTA

R CGGTGCAACAGATGTTTGGT

CD34 F ACCCACCGAGCCATATGCT

R CAGATACCCTGGGCCAACCT

CD68 F CTGCTCAGCTGCCTGACAAG

R CCAATGATGAGAGGCAGCAA

uPAR F GGCGACTACCTGTGTCCCA

R CTCCTCTACCAGGCAGCTCTG

CD90 F ACCATGAACCCAGCCATCA

R CTCGGGACACCTGCAAGACT

Bmi1 F TGATCAGAGCAGATTGGATCG

R GCTGCTGGGCATCGTAAGT

CD117 F GCCAGTGCTTCCGTGACAT

R GTCGTACGTCAGGATTTCTGGTT

CD133 F CGTGCTGGGAGGCAGAATA

R GGGCATCCTTGGTCTGTTTG

Tnfsf18 F AAGGGCAGAGAGGTGCAAGAA

R TGCAGGACTCGATGGCAGTT

Serpinb9b F TATGGTCCTCCTGGGTGCAA

R TGTCTGGCTTGTTCAGCTTCCT

Ly6a (Sca-1) F CTGCCCCTACCCTGATGGA

R GGGCAGATGGGTAAGCAAAGA

Nppb F GGTGACACATATCTCAAGCTGCTTT

R CAGCCAGGAGGTCTTCCTACAA

Quantitative PCR was performed according to a
protocol previously reported [14].
Based on microarray-screened common genes, further

confirmation of these genes was evaluated by real-time
PCR. RN5 cells were treated with Cis 0.5 μg/ml, and 1.
0 mg/ml, or RT 5Gy, 10Gy, and 15Gy, and harvested
after 3 days to remove dead cells. RNA was extracted as
stated before.

Flow cytometry
RN5-EOS parental cells and RN5-EOS-Puro2 MSC were
treated with cisplatin (1–5 μg/ml) overnight or/and
γ-ray radiation 5Gy and 15Gy; cells were washed to
remove dead cells and cell debris after overnight culture.
All surviving cells were harvested and quantitated for
the presence of GFP+ populations by flow cytometry.

The presence of Tnfsf18, Ly6a (Sca-1), and CD90
was confirmed with staining of cells by monoclonal
antibodies.
A Becton Dickinson LSR II Flow Cytometer (San Jose,

CA) and FACS Diva™ software were used for analyses
and data acquisition; FlowJo™ software was used for
analysis.

Immunofluorescence staining
MSC with or without treatment were harvested after
washing with PBS and cultured in an 8-well Nunc® lab-Tek®
chamber slide™ system (sigma-Aldrich) overnight. Slides
were prepared for immunofluorescence staining with
anti-GFP antibody conjugated with Alexa-488 and pri-
mary antibody rat anti-mouse β-actin (1:200); the sec-
ondary antibody anti-rat IgG-Alexa555 and DAPI (cell
signaling) were applied following the manufacturer’s
instructions. Fluorescence images of whole slides were
captured by a Nikon inverse microscope (60× or 100×,
NA 1.4, oil immersion objectives) connected with a
Yokogawa spinning disk confocal system with Zeiss
Axiovert 200 M inverted microscope (Gottingen,
Germany). Images were acquired using the Volocity
software (Waltham, MA).

Microarray data analysis
RN5 cells growing in the exponential phase were harvested
and treated in 6-well plates (106 cells/5 ml/well). Four
groups consisted of: 1) Parental RN5 cells without (no)
treatment (NoRx), 2) RN5 cells treated with cisplatin
(1 μg/ml) (Cis), 3) RN5 cells treated with γ-ray radiother-
apy (5 Gy) (RT) and 4) RN5-EOS-Puro2 cells after puro-
mycin selection to achieve enriched mesothelioma stem
cells (MSC). Naïve peritoneum (N) was included as a nega-
tive control. Each group consisted of three samples. RNA
was extracted as stated previously. Affymetrix Mouse
Gene 2.0 microarray was performed to screen for potential
mesothelioma or MSC-associated genes. Affymetrix Tran-
scriptome Analysis Console (TAC) software (Santa Clara,
CA) and Partek® Genomics Suite® software (St. Luis,
MI) were used for data analysis. Genes with at least
2-fold changes were selected for further analysis.
Comparisons among multiple groups were analyzed
with ANOVA and differences were considered signifi-
cant, if P values were less than 0.05.
Gene Ontology (GO) analysis was done using the

GOMiner (https://discover.nci.nih.gov/gominer/htgm.jsp)
web application. To expand the gene list of differentially
expressed genes for a more stable gene ontology analysis,
Pearson Correlation analysis (SAS v9.4, SAS Institute) was
used to assess the correlated genes with the identified 41
genes and 0.98 < r < − 0.98 and p < 0.00001 were selected
as the cutoffs.
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Overall experimental design and proposal of this study
Cancer cell repopulation during courses of chemotherapy
and possibly MSC might play critical roles in tumor
relapse. Murine mesothelioma RN5 cells were treated
with conventional therapy (cisplatin or γ-ray radiation)
and surviving cells were collected for further experiments
to evaluate tumorigenicity and gene expression profiles
(Fig. 1a); RN5 cells were transduced with lentivirus and
selected with puromycin resulting in RN5-EOS-Puro2
cells enriched in MSC. Microarray analysis was performed
to screen for gene profiles specific for MSC (Fig. 1b).

Statistical analysis
All data are presented as the mean ± SEM. The comparison
of gene expression and proportion of T cells between two
groups was analyzed by using an unpaired Student’s t test.
ANOVA was performed when compared among multiple
groups using GraphPad Prism 6.0 statistical software
(La Jolla, CA). A value of P < 0.05 was considered
significantly different for all comparisons. * P < 0.05;
** P < 0.01; *** P < 0.001; **** P < 0.0001.

Results
Mesothelioma stem cells (MSC) may play a critical role in
cancer cell repopulation during weekly cycles of
chemotherapy and thus serve as a potential target
Murine mesothelioma AB12-derived tumors were treated
with chemotherapy once weekly to mimic clinical settings.
A tumor growth delay was achieved with each cycle of
chemotherapy: however, tumors grew back rapidly due to
cancer cell repopulation between the courses of weekly
chemotherapy (Fig. 1c). Based on these results and consid-
erable evidence reported previously, we proposed the
hypothesis that targeting mesothelioma stem cells (MSC)
might be able to inhibit cancer cell repopulation during
the intervals of chemotherapy (Fig. 1d).

Tumor incidence in syngeneic mice generated from
surviving mesothelioma cells after γ-ray irradiation
compared with tumors induced by untreated tumor cells
Both murine mesothelioma AB12 and RN5 cells were
irradiated with 15Gy γ-ray and surviving cells (3 days
post-radiation) were injected into the respective syn-
geneic mice. Interestingly, the tumor incidence result-
ing from the injection of surviving irradiated AB12
(Fig. 2a & b) or RN5 cells (Fig. 2c & d) was of similar
magnitude in comparison to the tumor incidence
observed with a 10-fold higher load of the untreated
(parental) cells. For instance, 1 × 105 irradiated AB12 or
RN5 cells resulted in a similar tumor incidence as with
1 × 106 of untreated AB12 or RN5 cells (Fig. 2a & c); if
the number of irradiated cells was decreased to 1 × 104,
the tumor incidence was quite similar to that observed
after injection of 1 × 105 untreated cells in both cell

lines (Fig. 2b & d). Besides tumor incidence, also tumor
growth (size determined at different time points) in
mice after challenging with 10-times less of the irradi-
ated cells was also quite similar as with the higher load
of untreated cells (Fig. 2e & f, compare red and green
curves, as well as blue and orange curves). Results with
either AB12 or RN5 cells were nearly identical.

Expression of CSC-associated genes was up-regulated in
AB12 and RN5 cells after treatment with chemotherapy or
radiation
Total RNA derived from surviving AB12 and RN5 cells
after treatment with either cisplatin or γ-ray radiation was
used to perform quantitative real-time PCR. Genes of
interest were selected based on available literature previ-
ously reporting on genes likely associated with CSC in
malignant mesothelioma. The treatments were the same
as before: cisplatin (1 or 5 μg/ml) or γ-ray radiation (5 or
15 Gy). Some of the genes that were significantly upregu-
lated, included CD24, CD90, CD68, CD117 in both cell
lines, while other genes tended to be upregulated particu-
larly in AB12 cells, while differences did not reach signifi-
cance in RN5 cells (CD133, uPAR, CD34, Bmi-1).
The genes CD24, CD117 and CD68 showed increased ex-
pression after either treatment (Additional file 1: Figure S1).

Establishment of transduced RN5-EOS-Puro2 cells and
confirmation of some stemness properties
RN5-EOS-Puro2 cells were generated as reported before
using a lentiviral plasmid construct [25]. Transduced
RN5-EOS-Puro2 cells subjected to selection with puro-
mycin for 2 weeks yielded a cell subpopulation highly
enriched in GFP-positive (GFP+) cells assuming putative
MSC (Fig. 3a); the gradual increase of GFP+ cells over
time is demonstrated by FACS as shown in Fig. 4b. These
highly-enriched MSC were obtained after puromycin
treatment for at least 2–3 weeks; then the fraction of the
strongly green GFP+ population reached approximately
65–85% as quantified by FACS (Fig. 3b). Serial numbers of
puromycin-selected cells (50, 100 and 500 cells/well) were
grown in ultra-low adherent 24-well plates; 3D spheres
(mesospheres) were formed at approximately 7 days of
culture consisting of cells with strong GFP fluorescence
(Fig. 3c). Highly enriched MSC GFP+ cells were fixed and
immunostained for Oct4. Positive staining for Oct4 was
observed in the nucleus (Fig. 3d).

Mesothelioma stem cells (MSC) are more resistant to
chemotherapy or radiation treatment in vitro
A majority of the highly enriched MSC RN5-EOS-Puro2
cells after puromycin selection for 14 days were GFP-
positive (as shown in the histogram as the blue popula-
tion) compared with unselected RN5-EOS parental cells
(red population) (Fig. 4a). Treatment with cisplatin or
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γ-ray radiation did not result in a dramatic change in
the highly enriched MSC even though when given
at higher doses of cisplatin (5 μg/ml) or in combination
with γ-ray radiation RT5Gy, suggesting that they were
more resistant to chemoradiation (Fig. 4b). In line with
the presumed increased chemo- and/or radiation resist-
ance of GFP+ cells, the fraction of green cells increased
in the parental RN5-EOS population subjected to cis-
platin (1 μg/ml), radiation (5Gy) or both (Fig. 4c). Under
the selected conditions, it was evident that cisplatin had
a stronger effect in sparing the GFP+ cells. A similar
experiment carried out with RN5-EOS-Puro2 cells
consisting of mostly green cells gave essentially identical
results; however the magnitude of the effect was much
smaller, since most cells consisted of already resistant
cells. Only in the groups treated with cisplatin, a de-
crease of non-green cells, i.e., a higher fraction of GFP+

cells was evident (Fig. 4d). We also compared the
morphology of the highly enriched MSC with or without
treatment by confocal microscopy. GFP fluorescence

signals were similar in untreated MSC (NoRx) in
comparison to MSC after treatment with γ-ray radiation
15Gy (RT15Gy) or cisplatin (Cis) 5 μg/ml. This indicates
that radiation has no direct effect on expression levels or
intracellular localisation of GFP (Fig. 4e).

Gene profile associated with mesothelioma and
mesothelioma stem cells (MSC)
With the aim of finding differentially expressed genes
(gene signatures) for different types of cells of
mesothelial origin and for different treatments, a gene
screening strategy was developed by comparing various
groups (NoRx, Cis, RT and MSC) as depicted in Fig. 5a.
Overall differences of gene expression were determined
by principal component assay (PCA) mapping, which
separated very well, indicating significant differences
between groups (Fig. 5b). The number of genes with at
least a 2-fold change and p values less than 0.05 includ-
ing both up- and down-regulated genes among the 4
groups is shown in the bar graph and Venn diagrams

Fig. 2 Tumor incidence in syngeneic mice resulting from injection of MM cells, either parental (no treatment; NoRx) or cells surviving γ-ray irradiation
(RT). AB12 (a, b) and RN5 (c, d) cells were irradiated with 15 Gy γ-ray; surviving cells were used for s.c. injections in the right flank of mice (n = 5/group).
The number of injected cells are indicated on the graphs. Surviving irradiated AB12 or RN5 cell injection resulted in the same tumor incidience with
10-fold less cells than when injecting the untreated AB12 or RN5 cells. The same results were obtained at two different doses of injected cells. e, f Start
of tumor development was considered, when tumors become palpable; measurements of the two maximum perpendicular diameters were used to
calculate the tumor size
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(Fig. 5c & d). The largest difference (1901 genes) in gene
expression levels was observed between the parental un-
treated RN5 cells and highly MSC-enriched RN5-EOS-
Puro2 cells. The gene difference likely attributed to the
critical genes of tumor cells and stem cells may by po-
tential MSC-associated genes. Based on the finding that
CSC are more resistant to cisplatin or γ-ray radiation,
one would expect to observe an increase in MSC-state
cells; the overlap between NoRx and Cis consisted of
761 genes and between NoRx and RT of 194, and the
common genes of all three comparisons among NoRx, Cis,
RT and MSC groups were narrowed down to 41 genes (Fig.
5d and Additional file 1: Table S1). A Heatmap of screened
genes from the overlapping list in the Venn diagram high-
lights most likely MSC-associated genes. Two contrary
clusters contain the up-regulated and down-regulated genes
in MSC or after treatment with chemoradiation of RN5
cells compared with parental RN5 cells (Fig. 5e).
This group of selected genes is most likely associated

with the MSC state. We hypothesize that among these
genes, one or several might evolve as a biomarker to
identify MSC.

Confirmation of the genes of interest by RT-qPCR and
flow cytometry
Confirmation of these genes was determined by
quantitative real-time PCR. Gene expression of Tnfsf18,
Serpinb9b, NPPB and Ly6a (Sca-1) were found upregulated
significantly after treatment with Cis 0.5 μg/ml, 1 μg/ml or
γ-ray radiation 5Gy, 10Gy, 10Gy or in combination of Cis
1 μg/ml and RT5Gy (Fig. 5f). Other genes including CD24,
CD117, uPAR, and CD133 that were reported previously in
mesothelioma were upregulated as well (Fig. 5g).
Preliminary studies have indicated that positive staining

for Tnfsf18 and Ly6a was observed in RN5-EOS-Puro2
cells. Peritoneal lavage cells after i.p. injection of RN5 cells
stained Tnfsf18 and Sca-1 double-positive (Additional file
1: Figure S2 and unpublished data).
The 41 common genes were screened by comparing

the groups NoRx vs Cis, RT and MSC (Additional file 1:
Table S1). The upregulated and downregulated genes
were separated in a first step. The downregulated gene
list was then dropped due to the low number, therefore, we
concentrated on upregulated genes. When submitted to
gene signature profiling (GSEA) and after ID conversion,

Fig. 3 Characterization of transduced RN5-EOS-Puro2 cells and confirmation of properties of stemness. a Highly enriched MSC were obtained after 2 weeks
of selection with puromycin; note the increase in the GFP-positive population over time reaching 63.4% after 14 days (right lower image). b Quantification
of the MSC GFP+ population determined by flow cytometry from the beginning of puromycin selection (D0) up to D21. c Sphere-formation assay: highly
enriched MSC from the above selection were cultured in ultra-low adherent 24-well plates and spheres were formed in approximately 7–10 days. d Highly
enriched MSC were stained for Oct4, which was positive in the nucleus (oil immersion objective; 60×)
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Sca-1 (Ly-6a) was not present in the list of human genes
and thus it does not appear in Additional file 1: Table S2.
The remaining overlapping genes are shown in Additional
file 1: Table S2, where we found that genes upregulated by
k-ras are significantly increased.
To evaluate the potential signaling pathways that these

genes may be involved in, we first used the identified 41
genes to perform the gene ontology (GO) analysis
(Table 1). At the cutoff of FDR < 0.05, 7 pathways related to
positive regulation of cell development, differentiation,
growth and negative regulation of cell death and apoptosis
were identified and NGF and Spp1 may be the dominant
drivers of all these pathways (Fig. 6a). To obtain a more
stable conclusion of the GO analysis, we expanded the gene
list by doing Pearson correlations of the 41 genes with
the rest of the genes. At cutoffs of 0.98 < r < − 0.98 and

p < 0.00001, 221 genes were identified to be significantly
correlated with one of the 41 genes. GO analysis
confirmed the involvement of pathways related to positive
regulation of cell development, differentiation, growth and
negative regulation of cell death and apoptosis. Again,
NGF and Spp1 play a crucial role in these signaling
pathways. In addition, CD44 and PTK2B genes that are
closely correlated with NGF signaling were also identified
(Fig. 6b and Additional file 1: Table S3).

Discussion
Current therapies for MPM include cisplatin and
pemetrexed-based chemotherapy, hemithoracic fractionated
radiation, and surgery [28–30]. However, the efficacy is far
from satisfying, even though some improvements have been
achieved, and immunotherapy is probably the most

Fig. 4 Mesothelioma stem cells are more resistant to chemotherapy or radiation treatment in vitro. a The majority of highly enriched RN5-EOS-Puro2 cells
(2 μg/ml for 14 days) were GFP-positive as shown in the histograms (blue curve) if compared with the unselected parental RN5-EOS cells (red curve). b
RN5-EOS-Puro2 cells were treated with cisplatin or γ-ray radiation and were more resistant. c, d Untreated parental RN5-EOS cells and RN5-EOS-Puro2 cells
were treated with cisplatin or γ-ray radiation. Cisplatin and radiation resulted in significant increases of the GFP-positive cell populations; in the selected
MSC-enriched population, only cisplatin (alone or in combination with irradiation) slightly increased the fraction of GFP+ cells e) RN5-EOS-Puro2 cells
express high levels of GFP (green), even after treatment with 15 Gy γ-ray (RT15Gy) or cisplatin (Cis) 5 μg/ml, almost similar as is observed in RN5-EOS-Puro2
cells not subjected to any treatment. Actin immunoflurescence is shown for the outline of cells (red) and DAPI was used to stain nuclei (blue). A merged
image is shown in the right lower corner
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promising strategy to control this disease through
modulation of the immune response [31]. For instance,
systemic blockade of immune checkpoints such as
CTLA-4, PD-1 and its ligands PD-L1/2 has shown sig-
nificant antitumor effects in certain cancers including
mesothelioma [11, 32]. In our experience, we found
that EPP performed after a short course of high dose
hemithoracic radiation resulted in better outcome for

the patients with an epithelioid MM subtype. Evi-
dence in our laboratory has shown that the benefit is
very likely due to the activation of a specific immune
response against the tumor by the high dose radiation
[8, 14, 33].
Cancer cells that are not killed by conventional cytotoxic

therapy will repopulate the tumor and lead to treatment
resistance [34]. Repopulation between treatments is likely

Fig. 5 Mesothelioma stem cell-associated genes. a Screening strategy of mesothelioma stem cell-associated genes by comparing parental RN5 cells with
no treatment (NoRx), with cisplatin (Cis), γ-ray radiotherapy (RT), and enriched mesothelioma stem cells (MSC); b Overall differentiation of gene expression
determined by principal component assay (PCA) mapping; c Total number of genes with a greater than 2-fold change of up- or down-regulation; d Venn
diagram showing the overlapping genes of the 3 comparisons as depicted in (a); e Heatmap of gene expression in the 4 groups (NoRx, Cis, RT and MSC)
as screened in the Venn diagram, which most likely contains mesothelioma-associated stem cell genes; f Novel genes including Tnfsf18, Serpinb9b, Ly6a
and Nppb are confirmed to be upregulated by RT-qPCR; g Known genes CD24, CD117, CD133 and uPAR (CD87) are upregulated, as well as after treatment
with chemoradiation. The experiment was carried out twice. The ratio of each gene to the house-keeping gene GAPDH is presented as mean ± SD.
* P< 0.05, **P< 0.01, ***P< 0.001
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one of the mechanisms to explain why some cancers
respond initially to chemotherapy, but become resistant to
continued treatment [35]. Therefore, selective inhibition of
cancer cell repopulation might overcome drug resistance.
Our results provide evidence that the proportion of MSC
increases after chemoradiation, and that MSC are more
resistant to the treatment of chemoradiation in murine
mesothelioma. CSC may play critical roles in the process
of cancer cell repopulation, however, biomarkers to
identify CSC remain elusive [36–38]. Until recently the
transcription factors Oct4, Sox2, and Nanog have been
considered playing essential roles in early development
and for the propagation of undifferentiated embryonic

stem cells (ESC) in culture [39]. Recent results provide
new insights into the transcriptional regulation of stem
cells and reveal how Oct4, Sox2, and Nanog contribute to
pluripotency and self-renewal [40]. A new technique was
developed to transduce transcription factor target genes
into fibroblasts, so as to transform the property of fibro-
blasts to induced pluripotent stem cells (iPS) [41]. More
strikingly, iPS reporter cell lines were generated for
the identification and selection of pluripotent stem cells in
vitro [24, 42]. Based on the above progress, we developed
the RN5-EOS murine cell line, by transducing the EOS
into RN5 cells with lentiviral vector. RN5-EOS cells with
a GFP reporter can be selected by puromycin, so as to

Table 1 After expansion by Pearson, the 41 genes correlated with the rest 211 genes and involved in 32 pathways

Number Pathway ID Pathway FDRa

1 GO:0008299 Isoprenoid biosynthetic process 0.002134

2 GO:0051346 Negative regulation of hydrolase activity 0.002385

3 GO:0006644 Phospholipid metabolic process 0.003211

4 GO:0006916 Anti-apoptosis 0.00327

5 GO:0043086 Negative regulation of catalytic activity 0.003652

6 GO:0042976 Activation of Janus kinase activity 0.004027

7 GO:0018106 Peptidyl-histidine phosphorylation 0.004027

8 GO:0006417 Regulation of translation 0.006019

9 GO:0031399 Regulation of protein modification process 0.006455

10 GO:0010608 Posttranscriptional regulation of gene expression 0.006471

11 GO:0031124 mRNA 3'-end processing 0.006525

12 GO:0040008 Regulation of growth 0.007398

13 GO:0008202 Steroid metabolic process 0.007429

14 GO:0008361 Regulation of cell size 0.007517

15 GO:0045793 Positive regulation of cell size 0.007545

16 GO:0045927 Positive regulation of growth 0.007662

17 GO:0006066 Alcohol metabolic process 0.007722

18 GO:0001932 Regulation of protein phosphorylation 0.00775

19 GO:0043154 Negative regulation of caspase activity 0.007818

20 GO:0016049 Cell growth 0.007857

21 GO:0043066 Negative regulation of apoptosis 0.007891

22 GO:0008610 Lipid biosynthetic process 0.007913

23 GO:0030307 Positive regulation of cell growth 0.008

24 GO:0007259 JAK-STAT cascade 0.008302

25 GO:0060548 Negative regulation of cell death 0.009413

26 GO:0001558 Regulation of cell growth 0.00978

27 GO:0043069 Negative regulation of programmed cell death 0.009786

28 GO:0051336 Regulation of hydrolase activity 0.009791

29 GO:0016126 Sterol biosynthetic process 0.01

30 GO:0008203 Cholesterol metabolic process 0.01

31 GO:0006695 Cholesterol biosynthetic process 0.01

32 GO:0016125 Sterol metabolic process 0.01

At cutoffs of 0.98<r<-0.98 and p<0.00001, 221 genes were identified to be significantly correlated with one of the 41 genes. aFDR False discovery rate. FDR<0.01
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achieve a highly enriched population of stem cells. RN5 is
a murine mesothelioma cell line, which was recently
established after exposure to asbestos fibers in a C57BL/6
background mouse in our laboratory [27].
Due to availability of highly enriched MSC, it would

be beneficial to design novel strategies targeting MSC.
However, identification of MSC is still a big challenge
[21]. By using microarray analysis, we compared MSC
with RN5 parental cells after treatment with
chemoradiation and found a group of genes that are
most likely MSC-specific genes. In future studies, the
functions of these genes need to be confirmed. Only a
few genes such as nppb have been reported to play a -
critical role in ESC signaling pathways [43]. Another
gene Ly6a, also known as Sca-1, has been identified as a
CSC marker [44]. Other genes have not yet been demon-
strated to be associated with stem cell properties.
Our preliminary results showed that tumor-specific T

cells can be activated by co-culturing splenocytes derived
from RN5-bearing mice after pulsation with whole cell
lysates of parental RN5 or MSC-enriched RN5-EOS-
Puro2 cells. We found that splenocytes derived from
RN5 tumor-bearing mice had a significantly higher rate
of T cell proliferation (identified by Ki67 staining) after
pulsation of lysates (p = 0.0001). More encouragingly,

RN5-EOS-Puro2 cell lysate resulted in a similar response
of T cell proliferation with pan-antigens of RN5 cell
lysate (p = 0.0224) (Additional file 1: Figure S3). It is
required to identify MSC-specific markers.
Availability of highly enriched MSC made it possible to

prepare a whole MSC lysate vaccine to enhance specific
immunity against mesothelioma cells. Immune therapy
targeting MSC in combination with conventional cytotoxic
therapy is assumed to potentially improve the efficacy of
treatment against this disease. This approach would open
new avenues to mesothelioma treatment and also be
feasible for other types of cancer.
In the future, we expect to combine this approach

with removing the brake of immune checkpoints, to
maximally boost the immune response to target MSC,
and eventually to improve the efficacy of mesothelioma
treatment. Evidence in our AB12 mesothelioma model
indicated that systemic blockade of the immune
checkpoints CTLA-4 and PD-1 in combination with
chemo- or radiation therapy did result in tumor growth
delay through enhancing antitumor immunity, such as
activating T cells and decreasing Treg [14]. However,
only few studies looked at the impact of CSC in meso-
thelioma. Programmed DC vaccine with MSC-specific
peptides or whole cell lysates might have a powerful

Fig. 6 Gene ontology (GO) analysis of the identified genes. a After performing Pearson correlation analysis at cutoffs of 0.98 < r < − 0.98 and
p < 0.00001, the 41 selected genes were expanded to 221 genes, which were identified to be significantly correlated with one of the 41 genes.
These genes were found to be involved in as many as 32 pathways; b Seven pathways were identified at the cutoff of FDR < 0.05, and NGF and
Spp1 are likely to be the dominant drivers of all these pathways
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impact on MSC, since MSC are resistant to chemother-
apy or radiation, but less resistant to immunotherapy.
In vitro assay of tumor-specific immune responses

showed that after overnight co-culture of splenocytes
derived from RN5-bearing mouse spleen pulsed with or
without RN5 cell lysate or enriched RN5-EOS-Puro2 cell
lysate, tumor specific T cell activation and proliferation
were found remarkably increased compared with naïve
splenocytes, suggesting that specific anti-tumor immune
response can be enhanced by pulsation with both meso-
thelioma cell lysate and MSC whole cell lysate. If MSC
markers could be confirmed, we would be able to moni-
tor specific immunity against MSC and to design specific
immunotherapy targeted against MSC.
The first DC vaccine was approved by the FDA in 2014

[20]. Intratumoral delivery of a DC vaccine was confirmed
to be effective, especially after the tumor was treated with
chemotherapy or radiation. Tumor-associated antigens
(TAA) released from dead tumor cells are captured and
processed by DC, and presented to naïve T cells. Activated
T cells start migrating and trafficking to recognize tumor
cells and eliminate them [45]. Immature DCs become
mature after uptake of TAA. Mature DCs also release
cytokines including IL-12 and IFN-γ that are able to kill
tumor cells directly or indirectly by inhibiting tumor
angiogenesis [46, 47]. A recent study had evaluated the
specificity of DCs for breast cancer stem cells (BCSCs) in
vitro and in vivo, and immature DCs were primed with
BCSC-derived antigens to generate mature DCs. Modified
DCs may be a promising therapy for treating drug-
resistant cancer cells as well as CSC [48]. Also,
MSC-associated genes could be introduced or elimi-
nated to demonstrate their roles in maintaining
stemness by genetic manipulation using the CRISPR
technique [49].
MSC-specific markers also make it possible to design

novel target therapies against MSC by neutralization with
monoclonal antibodies. More promisingly chimeric antigen
receptor T cells (CAR-T) may be modulated by using MSC-
specific antigens [50]. Functional assays could be performed
through manipulating individual genes.

Conclusions
In conclusion, by further verifying the MSC-specific
markers based on the group of genes screened by micro-
array, target therapy or specific immunotherapy may be
designed thereafter. The enriched MSC can be used to pre-
pare whole cell MSC lysate for vaccine alone or pulsation
of DC derived from bone marrow. More interestingly,
specific immune responses could be monitored, once MSC
markers are determined. This novel DC vaccine would be
able to activate T cells that specifically recognize MSC and
eliminate them. It might be promising to focus on targeting
MSC through immune modulation by specific T cell

response in murine mesothelioma models. This work opens
a new avenue for mesothelioma treatment as well as
for other types of cancer.
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Additional file 1: Figure S1. Expression of CSC-associated genes
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macrophages may share the property of mesothelioma stem cells. Table S2.
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human gene signature profiling (GSEA). Table S3. GO signaling pathways
associated with the selected 41 genes. Figure S3. In vitro assay of tumor-
specific T cell proliferation determined by flow cytometry. (PDF 666 kb)
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