
HAL Id: inserm-01820311
https://inserm.hal.science/inserm-01820311v1

Submitted on 21 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gene-expression molecular subtyping of triple-negative
breast cancer tumours: importance of immune response
Pascal Jézéquel, Delphine Loussouarn, Catherine Guérin-Charbonnel, Loïc

Campion, Antoine Vanier, Wilfried Gouraud, Hamza Lasla, Catherine Guette,
Isabelle Valo, Veronique Verrièle, et al.

To cite this version:
Pascal Jézéquel, Delphine Loussouarn, Catherine Guérin-Charbonnel, Loïc Campion, Antoine Vanier,
et al.. Gene-expression molecular subtyping of triple-negative breast cancer tumours: importance of
immune response. Breast Cancer Research, 2015, 17, pp.43. �10.1186/s13058-015-0550-y�. �inserm-
01820311�

https://inserm.hal.science/inserm-01820311v1
https://hal.archives-ouvertes.fr


Jézéquel et al. Breast Cancer Research  (2015) 17:43 
DOI 10.1186/s13058-015-0550-y
RESEARCH ARTICLE Open Access
Gene-expression molecular subtyping of
triple-negative breast cancer tumours: importance
of immune response
Pascal Jézéquel1,2,3,4*, Delphine Loussouarn4,5, Catherine Guérin-Charbonnel1,2,4, Loïc Campion4,6, Antoine Vanier7,8,
Wilfried Gouraud1,2,4, Hamza Lasla2, Catherine Guette9, Isabelle Valo10, Véronique Verrièle10 and Mario Campone2,4,11
Abstract

Introduction: Triple-negative breast cancers need to be refined in order to identify therapeutic subgroups of
patients.

Methods: We conducted an unsupervised analysis of microarray gene-expression profiles of 107 triple-negative
breast cancer patients and undertook robust functional annotation of the molecular entities found by means of
numerous approaches including immunohistochemistry and gene-expression signatures. A triple-negative external
cohort (n = 87) was used for validation.

Results: Fuzzy clustering separated triple-negative tumours into three clusters: C1 (22.4%), C2 (44.9%) and C3 (32.7%).
C1 patients were older (mean = 64.6 years) than C2 (mean = 56.8 years; P = 0.03) and C3 patients (mean = 51.9 years;
P = 0.0004). Histological grade and Nottingham prognostic index were higher in C2 and C3 than in C1 (P < 0.0001 for
both comparisons). Significant event-free survival (P = 0.03) was found according to cluster membership: patients
belonging to C3 had a better outcome than patients in C1 (P = 0.01) and C2 (P = 0.02). Event-free survival analysis
results were confirmed when our cohort was pooled with the external cohort (n = 194; P = 0.01). Functional annotation
showed that 22% of triple-negative patients were not basal-like (C1). C1 was enriched in luminal subtypes and positive
androgen receptor (luminal androgen receptor). C2 could be considered as an almost pure basal-like cluster. C3,
enriched in basal-like subtypes but to a lesser extent, included 26% of claudin-low subtypes. Dissection of immune
response showed that high immune response and low M2-like macrophages were a hallmark of C3, and that these
patients had a better event-free survival than C2 patients, characterized by low immune response and high M2-like
macrophages: P = 0.02 for our cohort, and P = 0.03 for pooled cohorts.

Conclusions: We identified three subtypes of triple-negative patients: luminal androgen receptor (22%), basal-like with
low immune response and high M2-like macrophages (45%), and basal-enriched with high immune response and low
M2-like macrophages (33%). We noted out that macrophages and other immune effectors offer a variety of therapeutic
targets in breast cancer, and particularly in triple-negative basal-like tumours. Furthermore, we showed that CK5
antibody was better suited than CK5/6 antibody to subtype triple-negative patients.
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Introduction
Breast cancer heterogeneity makes it difficult to bring
personalized medicine into the clinic. For many years,
research has been aimed at deciphering molecular pres-
entation of this disease to identify subgroups of patients
with clinical significance, such as prognosis or response
to therapy, in order to optimize patient management.
Immunohistochemistry (IHC)-typed triple-negative (TN)
tumours, which represent 12 to 17% of primary breast
cancer, are among the most aggressive and deadly breast
cancer subtypes [1]. The lack of oestrogen, progesterone
and HER2 receptors makes its therapeutic management
optimisation difficult. Furthermore, TN breast cancer tu-
mours are also known to be heterogeneous. The era of
large-scale science, which is linked both to recent
technological advances and to the availability of full gen-
etic information, has boosted the research for new bio-
markers and molecular subtyping. In 2000 and 2001,
breast tumour gene-expression profiling (GEP) revealed
five intrinsic subtypes: luminal A, luminal B, HER2-
enriched (HER2-E), basal-like and normal breast-like
[2,3]. Luminal A tumours were associated with a better
prognosis in comparison with other subtypes, which dis-
played similar bad prognoses. Luminal and HER2-E sub-
types defined subgroups of patients who could receive
targeted therapies (hormonotherapy and trastuzumab,
respectively). Basal-like tumours are often mixed up with
TN tumours; the main difference comes from the typing
method (GEP for basal-like and IHC for TN). Compara-
tive studies showed that not all TN tumours are identified
as basal-like (approximately 80%), and not all basal-like
tumours are TN [1,4]. Both types affect younger patients,
and are linked to a bad prognosis and no possibility of tar-
geted therapy. Other works refined TN subtyping and
identified a new molecular entity, named claudin-low,
characterized by low expression of cell-cell adhesion clus-
ter containing claudin 3, 4, 7 and E-cadherin, luminal and
proliferation-associated genes, enrichment in epithelial-to-
mesenchymal transition (EMT) features, immune system
responses, and stem cell-associated biological processes
[5,6]. No prognostic difference was noted between basal-
like and claudin-low patients [6]. An interferon-rich
subgroup, characterized by high expression of interferon-
regulated genes, was further discovered [7]. Gene Ontology
(GO) categories of these genes underlined “immune re-
sponse” and “defense response”. Later, six molecular
subtypes were also identified in TN: basal-like 1, basal-
like 2, immunomodulatory, mesenchymal-like, mesen-
chymal stem-like, and luminal androgen receptor (LAR)
[8]. Today, heterogeneity within basal-like and TN is still
controversial and requires further research, including
new cohorts, to understand the complexity of the dis-
ease, and to identify molecular drivers that could be
therapeutically targeted [1,6].
In this study, we conducted an unsupervised analysis
of a new cohort of 107 TN breast cancer patients and
undertook robust functional annotation of the main mo-
lecular entities found by means of numerous comple-
mentary approaches.
Methods
Patients
The bi-centric studied cohort retrospectively included 107
randomly selected women whose primary breast tumours
lacked immunohistochemical expression of oestrogen re-
ceptor (ER), progesterone receptor (PR) and HER2; hence
subtyped as TN tumours. Patients were diagnosed and
treated primarily between 1998 and 2007 at the Institut de
Cancérologie de l'Ouest – René Gauducheau (n = 65)
and the Institut de Cancérologie de l'Ouest – Paul Papin
(n = 42). Of the 107 patients, 44 relapsed and 63 were
disease-free after the follow-up period (median follow-
up = 7 years). All patients showed no evidence of relapse
at the time of diagnosis. None had received chemother-
apy, endocrine therapy or radiation therapy prior to sur-
gery. Treatment decisions and follow-up processes were
based solely on international recommendations. The
follow-up data of patients included clinical examination
and mammography every 6 months for 2 years and an-
nually thereafter. Informed consent was obtained from
patients to use their surgical specimens and clinicopatho-
logical data for research purposes, as required by the
French Committee for the Protection of Human Subjects
(CCPPRB). Ouest IV – Nantes CCPPRB approved use of
tumour tissues for this study (6 May 2013: n°. 357/2013).
Collection of tumours was approved by French Minister
of higher education and research (n°. AC-2008-141). This
study did not need additional ethical approval.
Tumour tissues
All tumour tissue samples were surgically collected and
processed in two parts by a pathologist. The first part
was fixed in 10% neutral buffered formalin for standard
histological analysis and IHC. The second part was im-
mediately macrodissected, snap-frozen in liquid nitrogen
and stored until RNA extraction.
RNA extraction
Total RNA was prepared following standard protocols
then treated with Dnase I using the RNeasy column
purification system (Qiagen, Courtaboeuf, France).
Assessment of RNA quality, integrity and purity was
done through a Bionalyser 2100 (Agilent Technologies,
Palo Alto, CA, USA). RNA samples were considered for
further analysis only if they had distinct 28 S and 18 S
ribosomal peaks.
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Gene expression profiling
Gene expression analysis was performed using Affyme-
trix® Human Genome U133 Plus 2.0 Arrays (Affymetrix®,
Santa Clara, CA, USA) measuring over 43,000 tran-
scripts representing over 20,000 human genes. cRNA
synthesis and labelling, as well as chip hybridisation,
washing and image scanning were performed according
to the manufacturer’s protocol. All microarrays complied
with quality criteria. Microarray and patient clinical data
have been deposited in the Gene Expression Omnibus
(GEO) under the GSE58812 accession number.

Bioinformatics
Internal and external data pre-processing
Bioclinical and expression data of the external cohort
used for validation were available from the GEO, acces-
sion number GSE21653 [9,10]. For both our cohort and
the external cohort, the Affymetrix® CEL files (raw data)
were MAS5-normalized in the Affymetrix Expression
Console (v1.3.1) and then log2-transformed.

Unsupervised analysis
To organise data into groups with the same underlying
molecular characteristics, we performed clustering ana-
lysis based on the 5% most variable probe sets (n = 2,734)
by means of the fuzzy clustering method. Fuzzy clustering
permits each patient to have a probability of membership
to each cluster along with the cluster number, with the
sum of all cluster membership probabilities being 1 for
any patient. Briefly, the method is based on the minimiza-

tion of
Xn
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number of clusters, i and j represent the patients, u(i,k) is
the membership of patient i for cluster k, r is the fuzziness
index and d(i,j) is the dissimilarity between patients i and j
(centred Pearson distance in our study). To decide how
many clusters were present in our data we calculated two
indices, the Dunn index and the Calinski and Harabasz
index, considering two to 10 clusters, but we also per-
formed a hierarchical clustering to visualise the partition
and study the concordance of both clustering methods.
All computations showed either two or three clusters
(similar results for both numbers). It was decided to create
three clusters and study the membership probabilities.

Cluster functional annotation
To annotate the clusters found, we used clinicopathologic
characteristics, 10 IHC markers, 17 gene-expression signa-
tures (GES), GO biological process terms enrichment, and
intuitive single gene-expression approach. Differences
among the three clusters for the different characteristics
were assessed by analysis of variance (along with Tukey’s
HSD (honest significant differences) test in case of signifi-
cance) for continuous variables, Fisher’s exact test for cat-
egorical variables, and Cox regression model or Kaplan-
Meier survival curves (along with logrank test) for survival
data. Correlations between GES were measured by Pear-
son’s correlation coefficient.

Tissue microarrays and imunohistochemistry
Tissue microarray construction
Hemalun-eosin-safran (HES)-stained sections were re-
viewed and the area of interest was marked out on the
slide. For each case, three representative tumour areas
were selected from the HES-stained slide of the paraffin-
embedded donor block. Using a tissue arrayer (Beecher
Instruments, Sun Prairie, WI, USA), 1-mm diameter cores
of breast cancer tissue were punched out from the
paraffin-embedded tissue block and placed into recipient
paraffin blocks. A control tissue sample (normal breast)
was included in each recipient paraffin block. Before im-
munostaining, HES-stained slides of the final array blocks
were examined to confirm the representative areas of the
tumours in comparison to the original HES-stained
section.

Immunohistochemistry and scoring
Sections of paraffin-embedded tissue microarray blocks
(4 μm thick) were deparaffinized in xylene and rehy-
drated through a graded series of alcohol. IHC was per-
formed using the EnVision Detection Systems (Dako,
Les Ulis, France) according to the manufacturer’s in-
structions; 3,3′-diaminobenzidine was used as a chromo-
gen. The sections were counterstained with haematoxylin.
Details of the antigen retrieval technique and dilution of
the primary antibodies (CK5/6, CK5, HER1, androgen re-
ceptor (AR) Ki-67, FOXA1, E-cadherin, claudin 3, claudin
4 and claudin 7) are described in Additional file 1. Immu-
nostaining results were assessed by a pathologist in a
blinded manner. Immunoreactivity of each target in the tis-
sue microarray cores was scored as a percentage of cells
stained and/or staining intensity. Immunohistochemical
staining interpretation is displayed in Additional file 2.

Gene-expression signatures
Seventeen GES were used to annotate the three clusters:
three single sample predictors (SSPs) (Sorlie’s SSP, Hu’s SSP
and Parker’s SSP (PAM50)), proliferation score, a subtyp-
ing tool for TN breast cancer (TNBCtype), Teschendorff ’s
GES, vascular endothelial growth factor (VEGF) profile,
glycolysis profile, claudin-low signature and seven im-
mune metagenes [6-8,11-16]. Furthermore, in order to
discriminate macrophages into M1-like or M2-like sub-
populations, which could not be identified by Rody’s HCK
metagene, we established an M2/M1 GES based on
Beyer’s microarray data (GSE35449) [17]. The significance



Figure 1 Fuzzy clustering of 107 triple-negative breast cancer
patients. Distribution of patients based on probability of belonging
to cluster C1 (blue), C2 (red) and C3 (green). Each vertex of the
triangle represents a cluster and each point represents a patient,
placed as the barycentre of the triangle, weights being the
probabilities of belonging to each of the clusters. Hence, the closer
a point is to one of the vertices, the greater is the probability of the
patient belonging to the corresponding cluster.
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analysis of microarrays (SAM) method was applied to find
the probes differentially expressed between M1 and M2
populations, and genes for which all corresponding probes
exhibited a Q-value of 0% were retained. The GES was
then computed in our cohort as the weighted mean of the
genes retained, weights being +1 or −1, depending on the
expression of each gene in M2 relative to M1. When a
gene was represented by multiple probe sets, the median
of the different probe sets was taken as the unique value
for the gene. Methods are summarized in Additional file 3.

Single gene-expression intuitive approach
An intuitive approach was also used to annotate patient
clusters. Based on breast cancer transcriptomic studies, we
selected representative genes (n = 49) of molecular subtypes
(luminal, HER2-E, basal-like, claudin-low) and biological
processes (proliferation, breast stem cells, EMT, cell migra-
tion, immune system response and angiogenesis) [6,18].
Their expressions were compared in function of clusters.

Gene ontology biological process terms enrichment
Functional annotation of each cluster through biological
process analysis was performed using DAVID bioinfor-
matics resources 6.7 (the Database for Annotation,
Visualization, and Integrated Discovery), Gorilla and
ToppGene web tools to discover the GO categories with
significantly enriched gene numbers [19-22]. Two methods
were used to select genes differentially expressed across
the clusters. The SAM method was performed to obtain
lists of genes with significantly different expression be-
tween clusters (one versus the others and two-by-two);
genes for which all corresponding probe sets had a Q-
value of 0% were retained. In addition to the SAM
method, expression of the 2,734 most variable probe sets
was represented on a heatmap, with patients ordered ac-
cording to the fuzzy clusters. Ward hierarchical clustering
was performed on the probe sets, and clusters of corre-
sponding genes with visually differential expression among
the clusters of patients were retained.

Unsupervised external validation process
The same global process as the one applied to our co-
hort was also applied to the TN patients of the external
cohort (GSE21653) to validate unsupervised analysis re-
sults. Moreover, the prediction analysis for microarrays
(PAM) method was used to predict clusters obtained
with our cohort - the predictor was trained on our co-
hort and then applied to GSE21653 TN patients; the
predict clusters were then compared to the ones ob-
tained by fuzzy clustering.

Statistical analysis
All statistical analyses were performed with R [23] and
the packages amap, cluster, ggplots, grid, pamr, samr,
survival. All P-values are two-sided; P-values less than
5% are considered significant.

Results
External data selection and pre-processing
We selected the GSE21653 cohort for external validation
because the status of ER, PR and HER2 were available
and gene expressions were measured with the same
DNAchip as for our cohort. Of the 266 patients that
composed the GSE21653 cohort, 87 patients were TN.

Unsupervised analysis
We chose a fuzzy clustering method to investigate mo-
lecular differences among our TN cohort because it
keeps the possibility for each patient to belong to mul-
tiple clusters at the same time but with different “de-
grees of membership”. Fuzzy clustering separated TN
tumours into three clusters, named C1 (n = 24; 22.4%),
C2 (n = 48; 44.9%) and C3 (n = 35; 32.7%) (Figure 1).
Distribution of samples in all three clusters was inde-
pendent of a patient’s origin (n = 2) (P = 0.25). Fuzzy
clustering probabilities demonstrated that C1 was more
robust than C2 and C3 (C1: minimum of probabilities =
73%, median = 98%, 20 C1 patients (83%) with probabil-
ity >90%; C2: minimum of probabilities = 49%, median =
79%, 36 C2 patients (75%) with probability <90%; C3:
minimum of probabilities = 42%, median = 85%, 19 C3
patients (54%) with probability <90%) and that C2 and
C3 were very close. If we consider only the C2 and C3
patients, the smallest difference between the probability
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of belonging to C2 and the one of belonging to C3 was only
1%; for 11 patients (13%), this difference was below 20%.

Cluster functional annotation
Cluster functional annotation results are detailed in the
five following sections: clinicopathologic characteristics,
IHC, GES, single gene-expression intuitive approach and
GO biological process terms enrichment.

Clinicopathologic characteristics
We have selected 107 breast carcinomas that were
shown to lack IHC expression of ER, PR and HER2. The
clinicopathologic characteristics of these 107 tumours
are displayed in Table 1. Patients belonging to C1 were
older (mean = 64.6 years) than patients included in C2
(mean = 56.8 years; P = 0.03) and in C3 (mean = 51.9 years;
P = 0.0004). No significant age difference was observed
between C2 and C3 (P = 0.17). Histological grade and
Nottingham prognostic index (NPI) were higher in C2
and C3 than in C1. These results showed that C1 was dif-
ferent from C2 and C3, and that C1 seemed to be charac-
terized by a less aggressive illness according to age,
histological grade and NPI. A significant event-free survival
Table 1 Clinicopathologic characteristics of the studies triple-

Variable All Cluster

(n = 107) (n = 24)

Age (years; mean ± SD) 56.9 ± 12.8 64.6 ± 10

SBR grade

1 2 2

2 14 10

3 91 12

Tumour size (mm; mean ± SD) 22.3 ± 12.7 27.3 ± 18

Nodal status

0 77 17

1 30 7

NPI

1 13 9

2 71 8

3 22 6

Radiotherapy

No 4 2

Yes 103 22

Adjuvant therapy

No 12 6

Yes 95 18

Hormonotherapy

No 106 23

Yes 1 1

NPI, Nottingham prognostic index; SBR, Scarff Bloom Richardson.
(EFS) (P = 0.0321) and a trend for overall survival (OS)
(P = 0.0653) were found according to cluster membership
(Figure 2). Patients belonging to C3 had a better EFS than
patients in C1 (P = 0.0145) and C2 (P = 0.0195). No out-
come difference existed between C1 and C2 (P = 0.76).
EFS results were confirmed when our cohort was pooled
with the GSE21653 TN patients (P = 0.01) (Additional
file 4). Patients belonging to C3 had a better EFS than
patients in C1 (P = 0.03) and C2 (P = 0.002), and no out-
come difference was observed between C1 and C2 (P =
0.45). One main reason might explain why patients be-
longing to C1 had a poor prognosis; C1 included numer-
ous PAM50 luminal subtypes (10 out of 24; mainly
luminal B (A, n = 1; B, n = 9)), which are characterized
by a poor outcome. Furthermore, these luminal patients
did not receive hormonotherapy. The same observation
was made for GSE21653 and the equivalent cluster C1’,
which included several luminal patients (7/27 (A, n = 1;
B, n = 6)).

Immunohistochemistry
Basal-like phenotype, as defined by Nielsen and col-
leagues [24] (ER negative and HER2 negative, and CK5/
negative tumours

1 Cluster 2 Cluster 3 P-value

(n = 48) (n = 35)

.6 56.8 ± 12.9 51.9 ± 11.7 0.0006

0 0

1 3

47 32 <0.0001

.3 22.8 ± 12.1 18.5 ± 7.0 0.184

38 22

10 13 0.266

1 3

40 23

7 9 <0.0001

1 1

47 34 0.436

4 2

44 33 0.071

48 35

0 0 0.224



Figure 2 Kaplan-Meier analyses of 107 triple-negative breast cancer patients based on fuzzy-clustering partition. (A) Overall survival (OS)
analysis shows that C3 patients have a better outcome than C1 (P = 0.0217) and C2 patients (P = 0.05). (B) Event-free survival (EFS) analysis shows
the same result: C3/C1, P = 0.0145; C3/C2, P = 0.0195.

Table 2 Functional annotation of fuzzy clusters by means
of immunohistochemistry

Marker interpretation C1 C2 C3 P-value

(n = 24) (n = 48) (n = 35)

CK5/6 and/or HER1 positive 50% 71% 0.077

CK5 and/or HER1 positive 50% 92% <10−5

Ki-67 positive 29% 87% 2.10−7

AR positive 73% 5% <10−9

FOXA1 positive 73% 5% 7.10−13

E-cadherin positive 64% 48% 0.197

- 42% 56% 0.236

Claudin 3 positive 38% 59% 0.085

- 58% 60% 0.879

Claudin 4 positive 91% 93% 0.672

- 92% 94% 0.990

Claudin 7 positive 18% 12% 0.485

- 12% 11% 0.990

Claudin 3, 4, 7 negative and/or
E-cadherin negative

38% 52% 0.261

- 58% 43% 0.163
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6 and/or HER1 positive) was found in 50% of C1 pa-
tients (the same result was found with CK5), and 71% or
92% in C2 + C3 patients by means of CK5/6 or CK5, re-
spectively. Our results showed that CK5 IHC expression
was more concordant with gene expression profiling re-
sults than CK5/6: 92% of C2 + C3 patients were typed as
basal-like by means of CK5 and/or HER1 positivity and
71% by means of CK5/6 and/or HER1 positivity. Further-
more, considering CK5 and CK5/6 alone, 83% of C2 + C3
patients showed positivity for CK5 but only 34% had posi-
tivity for CK5/6 (P = 0.0019). Hence, CK5 should be used
to demonstrate basal-like characteristics, as underlined by
a few studies [25,26]. Briefly, functional annotation of
fuzzy cluster results by means of IHC markers showed
that C1 was not a basal-like cluster (AR and FOXA1 posi-
tive, low Ki-67 expression) and, on the contrary, that C2
and C3 were basal-like (CK5 and/or HER1 positive, high
Ki-67 expression) (Table 2). C2 and C3 could not be dis-
tinguished based on IHC claudin-low markers (claudin 3,
4, 7 and E-cadherin). No statistical link was found be-
tween low claudin 3, 4 or 7 and claudin-low subtype as
defined by Prat (P = 0.99, P = 0.56, P = 0.35, respectively)
or between IHC claudin-low (claudin 3, 4, 7 negative and/
or E-cadherin negative) and claudin-low (P = 0.52) [6].

Gene-expression signatures
GES subtyping results are discussed below and detailed
in Table 3 and Figure 3.

Single sample predictor annotation Assignment of pa-
tients to a particular molecular subtype by means of SSP
is dependent on the SSP used; for this reason, we used
three available SSPs [27]. These signatures showed that
C1 essentially contained non-basal-like subtypes (Table 3,
Additional file 5). This cluster was mostly composed of
luminal A and B subtypes, and unclassified tumours. In
C1, PAM50 subtyping identified 79.1% of luminal sub-
types (luminal A (20.8%) and B (58.3%)) and only one
basal-like tumour. According to luminal enrichment of
C1 and IHC results for AR, C1 should be named LAR.
C2 was an almost pure basal-like cluster whatever the
SSP used. In C2, one patient, who was subtyped as nor-
mal breast-like by means of PAM50, unclassified by Hu’s
SSP and basal-like by Sorlie’s SSP, presented an adenoid
cystic carcinoma, which is considered as a TN phenotype



Table 3 Gene-expression profiling of the three clusters

GES name Cluster 1 Cluster 2 Cluster 3 P-value

(n = 24) (n = 48) (n = 35)

Sorlie’s SSP Basal-like 0 48 23 <0.0001

HER2-E 1 0 0

Luminal A 1 0 0

Luminal B 9 0 8

Unclassified 13 0 4

Hu’s SSP Basal-like 0 47 30 <0.0001

HER2-E 0 0 0

Luminal A 8 0 0

Luminal B 0 0 0

Unclassified 16 1 5

Parker’s SSP = PAM50 Basal-like 1 47 32 <0.0001

HER2-E 0 0 0

Luminal A 5 0 0

Luminal B 14 0 2

NBL 3 1 1

Unclassified 1 0 0

Proliferation score (mean ± sd) 8.64 ± 0.97 10.22 ± 0.63 9.74 ± 0.57 <0.0001

TNBCtype BL1 0 20 5 <0.0001

BL2 2 3 1

IM 0 0 19

LAR 8 0 0

M 0 18 0

MSL 3 1 4

Unclassified 11 6 6

Teschendorff’s GES CC+ 0 7 0

CC+/IR+ 0 41 33

IR+ 1 0 1

SR+ 13 0 0

Unclassified 10 0 1

VEGF profile (mean ± SD) 9.20 ± 0.49 9.85 ± 0.51 9.53 ± 0.42 <0.0001

Glycolysis profile (mean ± SD) 10.48 ± 0.55 10.84 ± 0.46 10.63 ± 0.43 0.0073

Claudin-low Claudin-low 0 1 9 0.0002

Other 24 47 26

BL, basal-like; CC, cell cycle; GES, gene-expression signatures; IM, immunomodulatory; IR, immune response; LAR, luminal androgen receptor; M, mesenchymal;
MSL, mesenchymal stem-like; NBL, normal breast-like; SR, steroid hormone receptor; SSP, single sample predictor; VEGF, vascular endothelial growth factor.
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with an excellent prognosis [28]. This could explain why
this tumour had a different molecular assignment com-
pared to other C2 tumours. C3 included mostly basal-like
subtypes, but to a lesser extent than C2 (91.4% by PAM50
SSP, 85.7% by Hu’s SSP and 65.7% by Sorlie’s SSP).

Proliferation score Proliferation score significantly de-
creased from C2 to C3 (P < 0.0074), then from C3 to C1
(P < 0.0001). It is important to notice that the two basal-
like-enriched clusters (C2 and C3) presented a signifi-
cantly different proliferation score.

TNBCtype TNBCtype classification assigned a TNBC
subtype to 78.5% of our tumours (Table 3, Additional file 6).
Most of the unstable (that is, unclassified) tumours
belonged to C1 (48%). C1 was LAR-enriched (61.5% of
classified patients), and LAR subtypes were exclusively
assigned to this cluster. This result confirmed that C1 was



Figure 3 Functional annotations of the clustering results of our cohort. (A) Fuzzy-clustering probability of belonging to clusters, from 0 to 1.
(B) Cluster numbering scheme. (C) Clinicopathologic characteristics with significant differences between clusters. Age as a continuous colour
scale, from 28 years old (pale turquoise) to 85 years old (dark blue); Elston-Ellis (EE) histological grades 1 (pale turquoise), 2 (deep sky blue), and 3
(dark blue); Nottingham prognostic index (NPI) 1 (pale turquoise), 2 (deep sky blue), and 3 (darkblue). (D) Immunohistochemistry results for ten
markers: positive (brown) and negative (blue). (E) Molecular subtyping by means of nine gene expression signatures (GES): three single sample
predictors (SSPs) - luminal A (dark blue), luminal B (sky blue), HER2-E (purple), basal-like (red), normal breast-like (green) or unclassified (yellow);
proliferation (continuous colour scale from minimum (6.59; deep sky blue) to maximum (11.05; red)); TNBCtype (basal-like 1 (red), basal-like 2 (dark
red), immunomodulatory (dark green), mesenchymal-like (pink), mesenchymal stem-like (magenta), luminal androgen receptor (blue) and unclassified
tumours (yellow)); Teschendorff’s GES (cell cycle (blue), cell cycle and immune response (orange), extracellular matrix (green), immune response (red),
steroid hormone response (pink) and unclassified (yellow)); claudin-low (claudin-low (yellow), other (darkblue)); vascular endothelial growth factor
(VEGF; continuous colour scale, from minimum (8.13; deep sky blue) to maximum (10.67; red)); and glycolysis (continuous colour scale, from minimum
(9.63; deepskyblue) to maximum (11.88; red)). (F) Gene ontology biological process terms enrichment. Missing values are in white.

Jézéquel et al. Breast Cancer Research  (2015) 17:43 Page 8 of 16
not a basal-like cluster as shown with the SSPs. C2 was
basal-like 1 enriched and mesenchymal enriched (47.6%
and 42.8%, respectively). Basal-like 1 and basal-like 2 rep-
resented 55% of C2. C3 was immunomodulatory enriched
and mesenchymal stem-like enriched (65.5% and 13.8%,
respectively). Mesenchymal stem-like, characterized by
low expression of proliferation genes compared to
mesenchymal-like, was mostly found in C1 and C3. All im-
munomodulatory subtypes were included in C3. Immune
response distinguished C3 from C2. Distribution of
TNBCtype subtypes as a function of PAM50 basal-like or
non-basal-like led to the same conclusion as Masuda and
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colleagues [29] - non-PAM50 basal-like subtypes (C1 in
our study) were mostly composed of LAR and mesenchy-
mal stem-like subtypes (unclassified excluded).

Teschendorff’s gene-expression signature Teschendorff ’s
GES has been designed for ER-negative tumour subtyp-
ing. Steroid hormone receptor, cell cycle (CC+) and cell
cycle and immune response (CC+/IR+) subtypes were ex-
clusively observed in C1, C2 and C2 + C3, respectively
(Figure 3). Of note, most frequently immune response
was mixed with cell cycle (CC+/IR+) (n = 74). Only two
“pure” IR+ subtypes were found (one in C1 and one in
C3). This GES confirmed TNBCtype subtyping of C1 as
steroid hormone receptor and LAR. Immune response
was almost exclusively assigned to C2 and C3 but did not
separate these two clusters.

Vascular endothelial growth factor profile This 13-
GES showed that angiogenesis varied according to the
three clusters (P < 0.0001). Angiogenesis increased from
C1 to C3 (P = 0.0274), and then from C3 to C2 (P =
0.0114).

Glycolysis profile Glycolysis score was significantly dif-
ferent according to cluster (P = 0.0073). The score of C1
was inferior to that of C2 (P = 0.0073) but no different
from that of C3 (P = 0.44). A slight trend was found be-
tween C2 and C3 (P = 0.12).

Signature correlation analyses VEGF/glycolysis, prolif-
eration/VEGF and proliferation/glycolysis profiles were
positively correlated for patients included in our TN co-
hort (r = 0.62, P < 0.0001; r = 0.41, P < 0.0001; r = 0.48, P <
0.0001, respectively). Furthermore, correlation between
VEGF and glycolysis profiles was found in each cluster
(C1: r = 0.63, P = 0.0009; C2: r = 0.57, P < 0.0001; C3: r =
0.52, P = 0.0015). It is important to note that the gene lists
for VEGF score, glycolysis score and proliferation score
have no gene in common and, thus, correlations can be at-
tributed to tumour biology.

Claudin-low Ten patients were subtyped as “claudin-
low” (9.3%). The distribution was: 0% in C1, 2% (1/48) in
C2 and 26% (9/35) in C3. Thus, C3 was claudin-low
enriched but this subtype only represented a quarter of
its number. Claudin-low compared to PAM50 basal-like
tumours (n = 70) showed significant lower proliferation
(P = 0.0076, Wilcoxon’s test). This result is in concord-
ance with current knowledge. Prat and colleagues con-
cluded that these tumours were likely slower-cycling
tumours [6].

Rody’s gene expression signature In order to dissect
immune response, we applied Rody’s immune metagenes
to patients belonging to C2 and C3. In doing so, seven
immune modules representing immune cells or immune
processes were distinguished: B lymphocytes (IgG); mac-
rophages and monocyte/myeloid lineage cells (HCK);
professional antigen-presenting cells (MHC-II); T cells
(LCK); cell types for presentation of intracellular anti-
gens (MHC-I); interferon signal transduction (STAT1);
and interferon response (interferon)) [15]. For each im-
mune module, metagene expressions were always signifi-
cantly higher in C3 compared to C2 (Additional file 7).
Based on a variety of immune cells and immune pro-
cesses, these results demonstrated that high immune re-
sponse (HIR) could be considered as a hallmark of C3.
Considering C2 and C3 patients, the impact of Rody’s
metagenes on EFS and OS analyses was assessed. High
expression of the majority of these metagenes was sig-
nificantly associated with a better outcome: MHC-II (EFS:
P = 0.0045, hazard ratio (HR) = 0.61; OS: P = 0.0117, HR =
0.57), interferon (EFS: P = 0.007, HR = 0.66; OS: P =
0.0138, HR = 0.63), STAT1 (EFS: P = 0.004, HR = 0.68; OS:
P = 0.0069, HR = 0.64), LCK (EFS: 0.0065, HR = 0.66; OS:
P = 0.0086, HR = 0.60) and HCK (EFS: P = 0.0276, HR =
0.62; OS: P = 0.06). A trend was found for MHC-I (EFS:
P = 0.08; OS: P = 0.14). IgG module was not associated
with disease evolution (EFS: P = 0.69; OS: P = 0.43).
Ward’s hierarchical clustering applied to these im-

mune modules separated C2 and C3 patients into two
clusters: one exclusively composed of C3 patients with
HIR (n = 26) and the other composed of a majority
(84%) of C2 patients with low immune response (LIR)
(Figure 4A). All TNBCtype immunomodulatory (n = 19)
were included in the HIR group. EFS analysis showed
that HIR patients had a significantly better outcome
than LIR patients (P = 0.0025; Figure 4B). Hence, im-
mune response subtyping separated TN basal-like pa-
tients into two groups with different outcomes. A
pooled cohort composed of C2, C3 and their equivalent
in the external cohort, C2’ and C3’, (n = 141) confirmed
this finding (P = 0.0212; n = 70 and 71, respectively for
LIR and HIR) (Additional file 8). In our study, Rody’s
metagenes were more powerful than Teschendordff ’s
GES to separate C2 and C3 as a function of immune
response.

M2/M1 GES Of the 649 genes found differentially ex-
pressed by the SAM method, 611 were measured in
Affymetrix® Human Genome U133 Plus 2.0 Arrays and
used for macrophage subtyping (Additional file 9).
Seventy-nine genes were in common between M2/M1
GES and the C2 versus C3 genes list, which included
most differentially expressed genes between C2 and C3.
Considering only C2 and C3 clusters, M2/M1 GES was
significantly associated with a bad outcome (P = 0.02
and 0.04, respectively, for EFS and OS). M2 pro-



Figure 4 C2/C3 immune response dissection. (A) Ward’s hierarchical clustering and heatmap showing the segregation of C2 (red) and C3
(green) patients as a function of the seven Rody’s metagenes (B lymphocytes (IgG); macrophages and monocyte/myeloid lineage cells (HCK);
professional antigen-presenting cells (MHC-II); T-cell (LCK); cell types for presentation of intracellular antigens (MHC-I); interferon signal transduction
(STAT1); interferon response (interferon)) and M2/M1 gene-expression signature (GES) (continuous colour scale, from minimum (8.05, 6.90, 5.06, 7.84,
7.43, 9.68, 11.19 and −1.36 for HCK, LCK, IgG, STAT1, Interferon, MHC-II, MHC-I and M2/M1 GES, respectively; deep sky blue) to maximum (11.46, 12.24,
12.93, 13.21, 12.55, 13.75, 14.69 and −0.68 for HCK, LCK, IgG, STAT1, Interferon, MHC-II, MHC-I and M2/M1 GES, respectively; red). (B) Kaplan-Meier curves
for event-free survival (EFS) analysis of breast cancer patients with high immune response (HIR) and low immune response (LIR).
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tumourigenic macrophage genes were more expressed in
C2 (P < 0.0001), which was characterized by LIR and bad
outcome, and M1 tumour suppressor macrophage genes
were more expressed in C3, which was characterized by
HIR and better outcome. Of note, we did not find any
correlation between VEGF score and M2 macrophage
signature (r = 0.08; P = 0.45).

Single gene-expression intuitive approach
C1 was characterized by overexpression of luminal
markers (AR, ESR1, GATA3, KRT18, KRT19 and MUC1)
and low expression of basal-like markers (CDH3, KIT,
KRT5, KRT6B, KRT14, KRT17) compared to C2 and C3,
leading us to name it LAR (Additional file 10). ESR1 dis-
tribution according to the three clusters showed a
significantly higher expression in C1 compared to C2
(P = 0.0022) and a trend with C3 (P = 0.07). ERBB2 was
only found overexpressed between C1 and C3. Higher
expression of “epithelial cell-cell adhesion” (CDH1 and
EPCAM) and proliferation markers (MKI67, UBE2C,
RACGAP1) was observed between C2 and C3. Low ex-
pression of EMT (CDH2, TGFB1), “immune system re-
sponse” (CD4, CD79A, CXCL2, IL6, VAV1), breast stem
cells (ABCA8, ALDH1A1) and angiogenesis markers
(TEK, TIE1, VEGFC) in C2 differentiated this cluster
from C3. In regard of these results, we may conclude
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that C2 is a true “basal-like” cluster. As detailed above,
biological behaviour of C3 was different from C2. Most
of the underlined differences, except the three claudin
genes (CDLN3, CDLN 4 and CDLN7), characterized a
“claudin-low” cluster that expressed low luminal differ-
entiation markers, high EMT markers, immune response
genes, cancer stem cell-like features and a stem cell-
associated biological process. In regard to a preponder-
ance of immune response genes in C3, we thought that
“immune-related” was more suited to this last cluster.

Gene ontology biological process terms enrichment
One overexpressed gene probe cluster was identified for
each cluster of patients by means of the 5% most variant
gene probes (n = 2,734) heatmap. Those clusters were
named H1 for C1, H2 for C2 and H3 for C3. H1, H2
and H3 were composed of 481, 442 and 222 gene
probes, respectively (Additional file 11). Lists of discrim-
inating gene probes (C1 versus C2, C1 versus C3, C2
versus C3 and C1 versus C2 and C3) were composed of
682, 575, 565 and 565 gene probes, respectively. Twenty-
one GO biological process terms enrichment analyses
demonstrated that C1 was characterized by epithelial cell
differentiation and a hormone metabolic process, C2 by
cell adhesion, locomotion and chemotaxis, and C3 by im-
mune response (Additional file 12).

External validation
Eighty-seven TN patients from GSE21653 were used for
external validation. The same global process, as de-
scribed for our cohort, was used. Results are summa-
rized in Figure 5 and detailed in Additional file 13. In
accordance with the clustering results of our cohort,
GSE21653 TN patients were divided up into one non-
basal-like cluster (C1’) and two basal-like clusters (one
named true basal-like or basal-like (C2’) and the other,
which included claudin-low subtypes (28%), character-
ized by immune response (C3’)). One difference was that
the GSE21653 cohort included PAM50 HER2-E subtypes
in C1’. Moreover, only five patients (5.74%) were differ-
ently classified with PAM.

Discussion
Our work has once again raised the question of finding
a gold standard method for breast cancer molecular sub-
typing; personalized medicine cannot do without effective
identification of patients. We conducted an unsupervised
analysis of microarray gene-expression profiles of a TN
cohort composed of 107 patients. The robustness of our
results was based on concordance of numerous and com-
plementary functional annotation means: bio-clinical data
(age, histological grade, NPI score), immunohistochemis-
try markers (CK5, HER1, Ki67, AR and FOXA1), 17 GES,
intuitive single gene-expression approach and GO
enrichment. Furthermore, our analysis was reinforced by
external validation which confirmed our results. Func-
tional annotation of clusters obtained by means of fuzzy
clustering showed that 22% of these patients were not
basal-like (C1 = LAR), which is in concordance with other
works [30]. Of note, in GSE21653, 20 to 30% of SSP classi-
fied C1’ patients were subtyped as HER2-E; ERBB2 ex-
pression was in concordance with this result (Additional
file 13). As a consequence of this, the TN C1 cluster
should be named “non-basal-like”, because it might be
composed of non-basal-like patients with LAR and/or
HER2-E characteristics. The two other clusters were
enriched in basal-like subtype: C2, which could be consid-
ered as an almost pure basal-like cluster, included patients
with bad outcome, and C3, enriched in basal-like subtypes
but to a lesser extent, included patients with better out-
come. C3 was composed of 26% claudin-low subtypes. Of
note, claudin-low patients were subtyped by means of
GES. Our cohort was probably too small to individualize a
well-separated claudin-low subtype; Prat and colleagues
initially characterized claudin-low subtype in a cohort of
337 patients [6]. Dissection of immune response, which
was high in these two last clusters compared to C1, was
first performed by means of seven metagenes. Results
showed that HIR was a hallmark of C3, and that HIR was
associated with a better outcome than LIR (C2). This was
true for our cohort (P = 0.0195) alone and pooled with
GSE21653 TN patients (P = 0.002) (Figure 2, Additional
file 4). We proposed that C3 should be called “HIR”, be-
cause HIR had the clinical advantage of individualizing a
cluster of patients with good outcome. C2 seemed to cor-
respond to “basal-like immune-suppressed”, and C3 to
“basal-like immune-activated”, recently described by
Burstein and colleagues [31].
In addition to other studies, our work demonstrated

that CK5 should be used rather than CK5/6 to identify
basal-like subtype. Indeed, in our cohort, sensitivity
(based on C2 and C3 results) was 83% for CK5 and only
34% for CK5/6; both markers had similar specificity
(based on C1 results): 77% for CK5 and 82% for CK5/6.
In C1, 5 cases out of 22 were positive for CK5 (23%), 4/
22 were positive for CK5/6 (18%) and 11/22 were posi-
tive for HER1 (50%). In 2004, Abd El-Rehim and col-
leagues showed that 27.4% of breast tumours displayed a
combined luminal and basal phenotype (positivity for
one or more of the luminal markers together with one
or more of the basal markers) [32]. This could explain
why CK5- or CK5/6-positive tumours were found in C1.
We focused on immune response, which is known to

play a major role in tumour progression, because it was
the main characteristic allowing us to distinguish between
the two basal-like-enriched clusters: C2 (LIR) and C3
(HIR). Furthermore, actors or mechanisms of immune
networks constitute potential drug targets suggesting that



Figure 5 Functional annotations of the clustering results for triple-negative patients from GSE21653 (n = 87). (A) Fuzzy-clustering probability
of belonging to clusters, from 0 to 1. (B) Cluster numbering scheme. (C) Clinicopathologic characteristics with significant differences between clusters:
age as a continuous colour scale, from 28 years old (pale turquoise) to 85 years old (dark blue); Elston-Ellis (EE) histological grades 1 (pale turquoise), 2
(deep sky blue), and 3 (dark blue); Nottingham prognostic index (NPI) 1 (pale turquoise), 2 (deep sky blue), and 3 (dark blue). (D) Immunohistochemistry
results for Ki67: positive (brown) and negative (blue). (E) Molecular subtyping by means of nine gene expression signatures (GES): three single sample
predictors (SSPs) - luminal A (dark blue), luminal B (sky blue), HER2-E (purple), basal-like (red), normal breast-like (green) or unclassified (yellow);
proliferation (continuous colour scale from minimum (6.01; deep sky blue) to maximum (10.92; red)); TNBCtype (basal-like 1 (red), basal-like 2 (dark
red), immunomodulatory (dark green), mesenchymal-like (pink), mesenchymal stem-like (magenta), luminal androgen receptor (blue) and unclassified
tumours (yellow)); Teschendorff’s GES (cell cycle (blue), cell cycle and immune response (orange), extracellular matrix (green), immune response (red),
steroid hormone response (pink) and unclassified (yellow)); claudin-low (claudin-low (yellow), other (dark blue)); vascular endothelial growth factor
(VEGF; continuous colour scale, from minimum (8.12; deep sky blue) to maximum (10.82; red)); and glycolysis (continuous colour scale, from minimum
(9.42; deep sky blue) to maximum (13.00; red)). (F) Gene ontology biological process terms enrichment. Missing values are in white.
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some TN patients might benefit from immune-based ther-
apies. In cancer, some immune cells are known to induce
anti-tumoural effects (natural killer cells, CD8+ T cells,
Th1 cells, dendritic cells 1, M1 macrophages, and so
forth), and others induce pro-tumoural effects (myeloid-
derived suppressor cells, CD4+ T cells, Th2 cells, dendritic
cells 2, M2 macrophages, and so forth) [33,34]. These ef-
fects result from complex cross talk between immune
cells, tumour cells and other cell populations of the micro-
environment by means of extracellular signals, including
many cytokines and their soluble receptors [35,36]. In
breast cancer, recent works confirmed that tumour infil-
trating lymphocytes (TILs) were most frequently found in
highly proliferative tumours, including TN, and were
associated with a favourable outcome [37,38]. Today, TILs
are becoming a new breast cancer marker, particularly in
TN and HER2-positive breast cancer [33]. As recom-
mended by an international working group of experts in
2014, TIL score must take into account all mononuclear
cells including lymphocytes and plasma cells, and excludes
granulocytes, other polymorphonuclear leukocytes, den-
dritic cells and macrophages [33]. Nevertheless, macro-
phages are key modulator and effector cells in immune
response and tumour progression [35]. An old, but still
used, classification of macrophages roughly separates them
into two “extreme” polarized subpopulations: the classic-
ally activated type 1 macrophages (M1) and the alternative
activated type 2 macrophages (M2). In 2010, Qian and
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Pollard described six macrophage functions (activated, im-
munosuppressive, angiogenic, metastasis-associated, peri-
vascular and invasive) ascribed to a unique macrophage
subpopulation [39]. Recently, a working group of macro-
phage biologists defined a nomenclature and experimental
guidelines to take into account the heterogeneity of
macrophage activation and polarization [40]. They recom-
mended a nomenclature linked to the activation standards
and counted seven human macrophage subpopulations,
three M1 types and four M2 types [40]. Beside the ex-
treme phenotypes, intermediate phenotypes of macro-
phages should also be evaluated when dissecting immune
response in cancer [41,42]. Within this cell group,
tumour-associated macrophages (TAMs), which are con-
sidered as M2-like, represent a major source of proteases
involved in tumour progression [43]. Very synthetically,
polarized macrophages, together with fibroblasts and vas-
cular endothelial cells from the tumour microenviron-
ment, in conjunction with tumour cells, intervene at
different stages of the cancer process. They have been im-
plicated in the angiogenic switch (high production of
VEGF), local invasion, and metastasis. Thus it is important
to take into account these cells when dissecting immune
response, and to identify their subpopulations because
they have negative and positive effects on cancer
evolution.
In this work, HIR, objectivised by means of Rody’s and

TNBCtype GES, was exclusively related to “anti-
tumoural” response; none of these GES were related to
“pro-tumourigenic” response. Furthermore, Teschnedorff ’s
GES was unable to dissect immune response; immune re-
sponse was high in C2 and C3 (Figure 3E). Almost all
Rody’s immune modules showed that high expression was
linked to good outcome (Figure 4). Expression of LCK
and IgG Rody’s metagenes, as markers for T and B cells,
were in concordance with current knowledge. On the con-
trary, high expression of HCK, which take into account
macrophages and monocyte/myeloid lineage cells, was as-
sociated with favourable outcome. This result was a bit
surprising because, in breast cancer, TAMs are known to
be associated with bad prognosis [34]. Our hypothesis was
that HCK was unable to distinguish between the two ex-
treme macrophage phenotypes. For this reason, we estab-
lished a M2/M1 GES to subtype TAMs into M1-like or
M2-like groups. According to new nomenclature, M2/M1
GES, which should be named M(IL-4)/M(IFN-γ) GES,
showed that M(IL-4) (M2 pro-tumourigenic macro-
phages) were more frequent in LIR (C2), which was char-
acterized by a bad outcome, and that M(IFN-γ) (M1
tumour suppressor macrophages) were more frequent in
HIR (C3), which was characterized by a favourable out-
come. In other words, C2 was characterized by high pro-
tumourigenic and low anti-tumoural immune response
and C3 by low pro-tumourigenic and high anti-tumoural
immune response. Finally, these results are in concord-
ance with current knowledge, and are of particular im-
portance because M2 inhibition, which may play a major
pro-tumourigenic role in C2, represents a potential thera-
peutic strategy. Repolarization of M2 into M1 macro-
phages and inhibition of M2 macrophages both represent
promising ways to treat cancer [44,45]. Cancer treatment
may take advantage of therapies that interfere with M2
macrophages. Although the following model was not
based on breast cancer, but on nude mice xenografted
with colon cancer cells, GTP cyclohydrolase (CGH1)
inhibition by 2,4-diamino-6-hydroxypyrimidine reduced
tumour growth and angiogenesis by shifting the pheno-
type of tumour-associated macrophages from pro-
angiogenic M2 towards M1 [46].
However, some caution must be taken with our results.

First, our main hypothesis was that immune cells and
particularly macrophage subpopulations represented
main key effectors of TN breast cancer. Today, numer-
ous concordant studies support this hypothesis [47-51].
Second, we showed that the M2 macrophage gene-
expression profile was associated with bad outcome, and
the reverse for M1. At this step, we did not demonstrate
a causal link between M2 macrophage cells and out-
come. Further analyses are required to dissect M2-
dependent causal chains or systems that might explain
breast cancer progression and evolution. Phenotypic
markers should also be tested to validate macrophage
distribution. Third, new TN patients are needed to test
the strength of this partition.

Conclusions
We identified three subtypes of TN patients: 1) non-
basal-like (22%); 2) basal-like with LIR and high M2-like
macrophages (45%); and 3) basal-enriched, including
claudin-low subtypes, with HIR and low M2-like macro-
phages (33%). Our study added another well-defined TN
cohort to the scientific community. We showed that our
gene-expression data could be pooled with others to
strengthen unsupervised analyses and to feed databases
[52]. As others have done, we concluded that around
25% of TN patients, including non-basal-like cluster
(LAR in our study), could receive hormonotherapy or
anti-HER2 therapy. Furthermore, based on concordance
between robust molecular results and IHC, we showed
that the CK5 antibody was better suited than the CK5/6
antibody to subtype basal-like patients. This result is of
importance within the framework of the search for a TN
subtyping gold standard method. In this work, we
pointed out that macrophages, particularly M2-like, of-
fered a variety of therapeutic targets in TN patients. In
breast cancer, and particularly in cases of TN basal-like
tumours, future clinical trials evaluating novel immune
therapies will have to be set up with patients stratified
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by means of the composition of their leukocyte infil-
trate, which should include macrophage subpopulation
identification [53]. A lot of work needs to be done in
order to define this new multiparametric biomarker
panel. To this end, cytology together with expression
microarray data deconvolution seem more likely to suc-
ceed [54,55]. To conclude, we hypothesize that TN
basal-like treatment, among other things, will have to
restore the normal balance of immune cells, by means
of targeted immune cell inhibition and/or augmentation,
and that immune therapy will become an important
component of TN basal-like combined therapies.
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(ours and GSE21653; n = 194) shows significantly increased event-free
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subtypes according to the three clusters of our cohort. (A) Sorlie’s
SSP. (B) Hu’s SSP. (C) Parker’s SSP (PAM50). Bar graph plots shows the
distribution of intrinsic subtypes: luminal A (dark blue) and B (light blue),
HER2-E (purple), basal-like (red), normal breast-like (green) or unclassified
(yellow) tumours within each cluster. Whatever the SSP, subtype distributions
show that C1 is a luminal-enriched cluster and not a basal-like cluster, C2 is
an almost pure basal-like cluster, and C3 is a basal-like-enriched cluster.
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the three clusters of our cohort. Bar graph plots show the distribution
of the six TNBCtype subtypes: basal-like 1 (red), basal-like 2 (dark red),
immunomodulatory (dark green), mesenchymal-like (pink), mesenchymal
stem-like (magenta), luminal androgen receptor (blue) and unclassified
tumours (yellow), within each cluster.

Additional file 7: Rody’s metagene expression levels according to
our cohort’s clusters. For each immune module, P value of Tukey's test
for the comparison between C2 and C3 is indicated. Metagene
expressions are always significantly higher in C3 compared to C2.

Additional file 8: Kaplan-Meier curves for event-free survival analysis
based on Rody’s metagenes clustering. Rody’s metagenes clustering was
based on patients included in C2 and C3 (our cohort; see Figure 4A), and in
C2’ and C3’ (GSE21653) (low immune response (LIR), n = 70; high immune
response (HIR), n = 71).

Additional file 9: M2/M1 gene expression signature (GES) genes
list. List of the 611 genes used to compute the M2/M1 GES and their
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Additional file 11: Fuzzy clustering heatmap of the 5% most
variant gene probes. Each column represents a patient (n = 107) and
each row an Affymetrix gene probe (n = 2,734). Green indicates low
expression, red indicates high expression. Clusters of overexpressed
genes used for gene ontology (GO) biological process terms enrichment
are indicated by a bracket: H1 for C1 (blue), H2 for C2 (red) and H3 for C3
(green). H1, H2 and H3 were composed of 481, 442 and 222 gene
probes, respectively.
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enrichment for our cohort.
Additional file 13: External validation process results. Eighty-seven
triple negative (TN) patients of GSE21653 cohort were used for external
validation. The same global process, as described for our cohort, was
used and is described thereafter.
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