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Abstract

Background: Breast cancer biological characteristics change as age advances. Today, there is a lack of knowledge
regarding age-specific molecular alterations that characterize breast tumours, notably in elderly patients. The vast
majority of studies that aimed at exploring breast cancer in function of age are based on clinico-pathological data.
Gene-expression signatures (GES), which in some ways capture biological information in a non-reductionist manner,
represent powerful tools able to explore tumour heterogeneity.

Methods: Twenty-five GES were used for functional annotation of breast tumours in function of age: five for
molecular subtyping, seven for immune response, three for metabolism, seven for critical pathways in cancer and
three for prognosis. Affymetrix® genomics datasets were exclusively used to avoid cross-platform normalization
issues. Available corresponding clinico-pathological data were also retrieved and analysed.

Results: Fifteen publicly available datasets were pooled for a total of 2378 breast cancer patients (whole cohort),
out of whom 1413 were of Caucasian origin. Three age groups were defined: ≤ 40 years (AG1), > 40 to < 70 years
(AG2) and ≥ 70 years (AG3). We confirmed that age influenced the incidence of molecular subtypes. We found a
significant growing incidence of luminal B and a decreasing kinetics for basal-like in function of age. We showed
that AG3 luminal B tumours were less aggressive than AG1 luminal B tumours based on different GES (iron
metabolism, mitochondrial oxidative phosphorylation and reactive stroma), recurrence score prognostic GES
and histological grade (SBR). Contrary to tumours of young patients, tumours of elderly patients concentrated
favourable GES scores: high oestrogen receptor and mitochondrial oxidative phosphorylation, low proliferation,
basal-like, glycolysis, chromosomal instability and iron metabolism, and low GES prognostic scores (van’t Veer
70-GES, genomic grade index and recurrence score).

Conclusions: Functional annotation of breast tumours by means of 25 GES demonstrated a decreasing aggressiveness
of breast tumours in function of age. This strategy, which can be strengthened by increasing the number of
representative GES to gain more insight into biological systems involved in this disease, provides a framework to
develop rational therapeutic strategies in function of age.
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Background
Breast cancer heterogeneity makes it difficult to bring
personalized medicine into the clinic. Since many years,
research aimed at deciphering molecular presentation of
this disease to identify subgroups of patients with clinical
significance, such as prognosis or response to therapy, able
to optimize patient management. The era of large-scale
science, which is linked both to recent technological ad-
vances and to the availability of full genetic information,
has boosted the research for new biomarkers and mo-
lecular subtyping. In 2000 and 2001, Perou and Sorlie
defined five breast cancer molecular subtypes based
on gene-expression profile homologies of an intrinsic
gene list that included 427 unique genes: basal-like,
HER2-E, luminal A, luminal B, and normal breast-like
[1, 2]. They showed that these subgroups of tumours
were linked to histology, and their corresponding markers,
different natural histories, response to treatment, and
prognosis. Since these seminal studies, in breast cancer
research, numerous gene-expression signatures (GES)
with different purposes (molecular subtyping, biological
pathway exploration, prognosis) emerged. Briefly, GES
are composed of combinations of genes ranging from
few to hundreds, which in some ways capture biological
information in a non-reductionist and more informative
manner. For example, researchers demonstrated that p53
GES predicted outcome better than p53 mutation status
alone, and others showed that a signature of MYC activa-
tion, which better reflected MYC transcriptional output,
was more informative than MYC gene expression alone
[3, 4]. In breast cancer, many studies demonstrated that
GES and immunohistochemistry (IHC) were not concord-
ant, notably for triple-negative tumours [5]. Integrated
studies, combining clinico-pathological, IHC and tran-
scriptomic data, demonstrated that GES were powerful
tools to molecularly dissect breast tumours [6].
It is well recognized that breast cancer biological charac-

teristics change as age advances. Today, there is a lack of
knowledge regarding gene-expression molecular dissec-
tion of breast cancer tumours in function of age, notably
in elderly patients [7]. Age-specific molecular alterations
that characterize breast tumours remain to be elucidated.
The vast majority of studies that aimed at exploring breast
cancer in function of age are based on clinico-pathological
data. Three recent works determined intrinsic molecular
subtypes by means of PAM50 GES in function of age,
but limited their analyses only to this subtyping GES
[8–10]. In this study, we conducted functional anno-
tation of breast cancer tumours divided in three age
groups (≤40, > 40 to < 70 and ≥ 70 years) by means of 25
GES. Available clinico-pathological data (oestrogen recep-
tor [ER] status, HER2 status, nodal status [N], Scarff-
Bloom-Richardson [SBR] histological grade, tumour size
and evolution data) were analysed in parallel. Because of a

possible ethnic bias, analyses were done twice, on a whole
cohort composed of patients of mixed geographic origins,
and on a Caucasian subcohort; numbers of patients were
2378 and 1413, respectively.
Functional annotation by means of 25 GES tested in this

study demonstrated a decreasing aggressiveness of breast
tumours in function of age based on continuous GES
scoring. Furthermore, we showed that luminal B tumour
of elderly patients were less aggressive than luminal B
tumour of young patients.

Methods
Data selection
We exclusively looked for publicly available breast
cancer Affymetrix® genomic datasets associated with
clinico-pathological information, including age at diagno-
sis, prognosis and geographic origin of the cohorts in re-
positories such as Gene Expression Omnibus (GEO),
ArrayExpress, author's individual web pages, and in arti-
cles, selecting those with a medium to large sample size
[11, 12]. Among other things, our study aimed at explor-
ing molecular subtype distribution, which is known to
vary in function of population origin [10, 13–16]. For this
reason, we selected a Caucasian cohort from the whole
population. However, precise origin of the patients was ex-
ceptionally indicated in clinico-pathological characteristics
associated with genomic data. So, we selected European
cohorts and three non-European ones (E_TABM_158,
GSE7849 and GSE17907), for whom ethnicity was re-
ported; non-Caucasian patients were excluded from these
three studies. According to the cohorts’ country of origin,
we supposed that they were composed of a large majority
of Caucasian women. Patients who received neoadju-
vant chemotherapy and microdissected samples were
not included.

Data pre-processing
Data pre-processing and normalization were described
elsewhere [17] and are summarized in Additional file 1.

Gene-expression signatures
Twenty-five GES were selected for functional annotation
of breast cancer tumours. Five GES were used for breast
cancer molecular subtyping: PAM50, ER, molecular
apocrine, basal-like and claudin-CD24. Seventeen were
linked to biological processes of importance or cell types:
immune response (B-cell, interferon [IFN], interleukin-8
[IL-8], MHC-1, MHC-2, T-cell, M2-macrophages/M1-
macrophages enrichment [M2/M1]), metabolism (adipo-
cytes, glycolysis, iron [IRGS]) and critical biological path-
ways in cancer (chromosomal instability [CIN], ERBB2,
HOXA, mitochondrial oxidative phosphorylation [MITO/
OXPHOS], proliferation, reactive stroma, VEGF). Finally,
three prognostic GES were also used: van’t Veer 70-GES,
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recurrence score (RS) and genomic grade index (GGI).
Complete GES list, methods and references are briefly
described in Additional file 1.

Statistical analysis
Evolution analysis based on pejorative events (local re-
lapse, metastatic relapse or death), metastatic relapse alone
(MFS) and overall survival (OS) were estimated by the
Kaplan-Meier method and compared between the age
groups by the Log-rank test.
Mantel-Haenszel chi-square trend test was used to ana-

lyse relations between clinico-pathological characteristics
(ER, HER2, SBR histological grade, nodal status, tumour
histological size) and ordered age categories. In addition,
unordered multinomial logistic regression (UMLR) was
used for PAM50 subtype distribution and SBR histological
grade in luminal B tumours in function of continuous age.
Kinetics was determined by the value of odds ratio (OR).
One way analysis of variance (ANOVA), followed by
Tukey post-hoc test for pairwise comparisons in case of
significance, was used to compare continuous variables
between the three age groups. GES subtyping and scoring
were done on patients for whom at least 75 % of GES
genes were available in their expression data (Additional
file 1). Twenty four continuous GES (all GES except
PAM50) score correlations were illustrated with a correl-
ation plot along with the dendrogram corresponding to
average-linkage hierarchical clustering algorithm of GES
with Pearson correlation distance measure.

We considered a two-sided p-value of less than 0.05
to be statistically significant (for multiple comparisons,
Bonferroni correction was applied); the same level was
used for significance analysis of microarrays (SAM) q-
value. Mantel-Haenszel chi-square trend test, UMLR,
hierarchical clustering algorithm and SAM method were
done with R software (version 3.0.2) and packages; coin,
VGAM, amap and samr, respectively. STATA® was used
for survival analyses (version 12.0).

Results
Included patients
We exclusively focused on Affymetrix® genomic datasets to
avoid cross-platform normalization issues. Fifteen publicly
available datasets were pooled for a total of 2378 patients,
out of whom 1413 were of Caucasian origin (Table 1).
Three patients’ age groups were defined: ≤ 40 years (AG1),
> 40 to < 70 years (AG2) and ≥ 70 years (AG3). Numbers of
patients in each age group for both populations are dis-
played in Tables 2 and 3.

Clinico-pathological characteristics according to patients’
age
Associations with known clinico-pathological characteris-
tics are shown in Tables 2 and 3. A significant difference
was found for ER in function of age group (p < 0.0001)
associated with a positive kinetics. This result was in line
with current knowledge [33, 34]. A significant difference
was found for HER2 in the Caucasian cohort (p = 0.0407),

Table 1 Cohorts included in our study

n Study code Affymetrix® array References Patients n Geographic origins Caucasian n

1 E_TABM_158 HG-U133A [18] 112 USA 81

2 GSE2603 HG-U133A [19] 82 USA 0

3 GSE4922 HG-U133A + B [20] 249 Sweden 249

4 GSE6532 HG-U133A + B + Plus2 [21] 401 UK, Sweden 401

5 GSE7378 HG-U133A [22] 54 USA 0

6 GSE7390 HG-U133A [23] 198 Sweden, France, UK 198

7 GSE7849 HG-U95A [24] 75 USA 58

8 GSE9195 HG-U133Plus2 [25] 77 UK, Sweden 77

9 GSE16391 HG-U133Plus2 [26] 55 International 0

10 GSE17907 HG-U133Plus2 [27] 49 France, Tunisia 43

11 GSE19615 HG-U133Plus2 [28] 115 USA 0

12 GSE20685 HG-U133Plus2 [29] 296 Taiwan 0

13 GSE21653 HG-U133Plus2 [30] 265 France 265

14 GSE25055 HG-U133A [31] 309 USA 0

15 GSE45255 HG-U133A [32] 41 Belgium 41

Total 2378 1413

NA not available
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Table 2 Clinico-pathological characteristics according to the three patients’ age groups of the whole cohort

Patients’ group (years and [n]) n 2378 ≤40 (n = 345) 40 < x < 70 (n = 1667) ≥70 (n = 366) p-value

Age (years)

Median (IQR) 54 (45–64) 37 (34–39) 54 (47–61) 74 (72–80)

ER status

Positive 1671 (71 %) 199 (58 %) 1170 (71 %) 302 (83 %) <0.0001

Negative 681 (29 %) 143 (42 %) 477 (29 %) 61 (17 %)

HER2 status

Positive 136 (14 %) 28 (19 %) 89 (13 %) 19 (17 %) 0.4862

Negative 808 (86 %) 121 (81 %) 592 (87 %) 95 (83 %)

Nodal status

Positive 882 (43 %) 130 (49 %) 603 (42 %) 149 (44 %) 0.4010

Negative 1172 (57 %) 138 (51 %) 847 (58 %) 187 (56 %)

SBR grade

1 302 (17 %) 15 (6 %) 223 (17 %) 64 (22 %) <0.0001

2 770 (42 %) 83 (36 %) 561 (44 %) 126 (43 %)

3 742 (41 %) 134 (58 %) 504 (39 %) 104 (35 %)

Tumour size

≤20 mm 626 (46 %) 57 (44 %) 458 (48 %) 111 (42 %) 0.3993

>20 mm 723 (54 %) 72 (56 %) 499 (52 %) 152 (58 %)

Abbreviations: ER oestrogen receptor, IQR interquartile range, SBR Scarff-Bloom-Richardson histological grade

Table 3 Clinico-pathological characteristics according to the three patients’ age groups of the Caucasian cohort

Patients’ group (years and [n]) n 1413 ≤40 (n = 166) 40 < x < 70 (n = 974) ≥70 (n = 273) p-value

Age (years)

Median (IQR) 57 (47–67) 36 (33–38) 56 (49–62) 74 (72–80)

ER status

Positive 1054 (76 %) 90 (55 %) 735 (76 %) 229 (85 %) <0.0001

Negative 341 (24 %) 73 (45 %) 227 (24 %) 41 (15 %)

HER2 status

Positive 85 (23 %) 25 (36 %) 46 (19 %) 14 (22 %) 0.0407

Negative 292 (77 %) 44 (64 %) 198 (81 %) 50 (78 %)

Nodal status

Positive 498 (36 %) 62 (38 %) 319 (33 %) 117 (46 %) 0.0263

Negative 889 (64 %) 100 (62 %) 651 (67 %) 138 (54 %)

SBR grade

1 254 (19 %) 12 (8 %) 182 (20 %) 60 (24 %) <0.0001

2 571 (44 %) 57 (36 %) 403 (45 %) 111 (44 %)

3 482 (47 %) 88 (56 %) 311 (35 %) 83 (33 %)

Tumour size

≤20 mm 537 (49 %) 46 (47 %) 388 (50 %) 103 (45 %) 0.4794

>20 mm 567 (51 %) 52 (53 %) 390 (50 %) 125 (55 %)

Abbreviations: ER oestrogen receptor, IQR interquartile range, SBR Scarff-Bloom-Richardson histological grade
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with a decreasing kinetics for HER2+ in function of age
group. In Caucasian cohort, an increasing kinetics was
found for positive nodal status (N+) according to age
group (p = 0.0263) (Table 3). SBR histological grade distri-
bution was different in function of age in the two cohorts
(p < 0.0001): SBR3 decreased compared with SBR1 from
young to old patients in both cohorts. Histological size,
dichotomized based on 20 mm cut-off, did not vary. How-
ever, a difference was shown when continuous size of
tumour was used in whole cohort (p = 0.0337) and
even in Caucasian one (p = 0.0354). Histological size
was higher in AG3 compared to AG2 for Caucasian
one (p = 0.0336). Histological size and N+ status positive

kinetics in function of age were also concordant with
current knowledge [33, 35, 36].

Evolution analysis
In the whole cohort, no difference in evolution rates was
observed between the three patients’ age groups (p =
0.1265) (Fig. 1a). Similar results were found with MFS
and OS as outcomes (Additional file 2). On the contrary,
in Caucasian cohort, young patients displayed a worse
prognosis compared to patients of the intermediate group
(p = 0.0051); no difference was found between elderly pa-
tients and patients of the intermediate group (p = 0.2794)
(Fig. 1b). We have to underline that evolution analyses in

Fig. 1 Kaplan-Meier curves in function of the three patients’ age groups. a Whole cohort. b Caucasian cohort
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elderly cancer patients must be interpreted cautiously be-
cause undertreatment and comorbidities in older patients
distort them. This point will be discussed later.

Molecular dissection by means of 25 GES
Nineteen GES out of 24 continuous GES showed signifi-
cant differences (ANOVA and Tukey post-hoc test) in
function of age. ERBB2, HOXA, VEGF, Claudin-CD24 and
MHC-2 GES were never significant whatever the cohort.
GES molecular dissection results for the whole cohort and

Caucasian one are displayed in Table 4, Fig. 2 and
Additional file 3.
A total of 2378 patients were subtyped by means of

PAM50 GES. Subtype distributions are displayed in Fig. 3.
Statistical analyses showed a significant growing incidence
of luminal B in function of age (trend test: p = 0.0004 and
p < 0.0001 for whole cohort and Caucasian cohort, re-
spectively). In order to strengthen this result based on
ordered age categories, we performed UMLR, which uses
continuous age. UMLR result was concordant with trend
test (OR > 1; p < 0.05 for both cohorts). Only trend test

Table 4 Continuous GES analyses interpretation in function of three age groups

GES name Whole cohort Caucasian cohort

p-value p-value Results p-value p-value Results

1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

Molecular subtyping

ER <0.0001 <0.0001 <0.0001 0.0014 1 < 2 < 3 <0.0001 <0.0001 <0.0001 0.0096 1 < 2 < 3

Molecular-
apocrine

<0.0001 <0.0001 <0.0001 0.3376 1 < 2 ≈ 3 <0.0001 <0.0001 <0.0001 0.5479 1 < 2 ≈ 3

Basal-like <0.0001 <0.0001 <0.0001 <0.0001 1 > 2 > 3 <0.0001 <0.0001 <0.0001 0.0006 1 > 2 > 3

Claudin-CD24 0.8457 NS 0.9813 NS

Immune response

B-cell <0.0001 0.7488 <0.0001 <0.0001 1 ≈ 2 > 3 0.0001 0.9398 0.0053 0.0001 1 ≈ 2 > 3

T-cell 0.0016 0.7797 0.0667 0.0010 2 > 3 1 ≈ 2 and 1 ≈ 3 0.0204 0.9736 0.1891 0.0153 2 > 3 1 ≈ 2 and 1 ≈ 3

MHC-1 0.0175 0.8578 0.0368 0.0215 1 ≈ 2 > 3 0.0300 0.6309 0.0471 0.0589 1 > 3 1 ≈ 2 and 2 ≈ 3

MHC-2 0.0133 0.0616 0.9987 0.0623 NS 0.0486 0.1769 0.9901 0.1133 NS

M2/M1 0.0136 0.3213 0.0113 0.0616 1 < 3 1 ≈ 2 and 2 ≈ 3 0.0429 0.2421 0.0341 0.2445 1 < 3 1 ≈ 2 and 2 ≈ 3

IFN 0.0067 0.3113 0.0059 0.0326 1 ≈ 2 > 3 0.0633 NS

IL-8 0.0004 0.0091 0.0003 0.0917 1 > 2 ≈ 3 <0.0001 <0.0001 <0.0001 0.3518 1 > 2 ≈ 3

Metabolism

Adipocytes 0.0118 0.0140 0.5359 0.2931 1 < 2 1 ≈ 3 and 2 ≈ 3 0.2272 NS

Glycolysis 0.0044 0.1734 0.0032 0.0418 1 ≈ 2 > 3 0.0037 0.0112 0.0031 0.4653 1 > 2 ≈ 3

IRGS 0.0013 0.0012 0.0047 0.9587 1 > 2 ≈ 3 0.0122 0.0458 0.0085 0.3879 1 > 2 ≈ 3

Critical biological pathways in cancer

CIN <0.0001 <0.0001 0.0003 0.9997 1 > 2 ≈ 3 <0.0001 <0.0001 0.0012 0.7143 1 > 2 ≈ 3

ERBB2 0.0771 NS 0.0473 0.9297 0.1280 0.0506 NS

HOXA 0.7895 NS 0.5566 NS

MITO/OXPHOS <0.0001 0.2278 <0.0001 0.0006 1 ≈ 2 < 3 0.0013 0.8029 0.0097 0.0018 1 ≈ 2 < 3

Proliferation <0.0001 <0.0001 0.0003 0.9989 1 > 2 ≈ 3 <0.0001 <0.0001 0.0013 0.9542 1 > 2 ≈ 3

Reactive stroma <0.0001 0.1912 0.0487 <0.0001 1 ≈ 2 > 3 0.0001 0.1684 0.3841 0.0001 2 > 3 1 ≈ 2 and 1 ≈ 3

VEGF 0.4340 NS 0.0743 NS

Prognosis

70-GES <0.0001 <0.0001 0.0001 0.9441 1 > 2 ≈ 3 <0.0001 <0.0001 <0.0001 0.9839 1 > 2 ≈ 3

GGI <0.0001 <0.0001 0.0008 0.9303 1 > 2 ≈ 3 0.0004 0.0003 0.0031 0.9902 1 > 2 ≈ 3

RS <0.0001 <0.0001 <0.0001 0.0006 1 > 2 > 3 <0.0001 <0.0001 <0.0001 0.0183 1 > 2 > 3

1: ≤ 40 years; 2: 40 < x < 70 years; 3: ≥ 70 years; ER oestrogen receptor, IFN interferon, IRGS iron regulatory gene signature, CIN chromosomal instability,
MITO/OXPHOS mitochondrial oxidative phosphorylation, NS not significant (p > 0.05), 70-GES van’t Veer and colleagues prognostic GES, GGI genomic grade index,
RS recurrence score
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was significant for growing incidence of luminal A for
whole cohort (p = 0.0092). A decreasing kinetics for basal-
like was found for the whole cohort (trend test: p < 0.0001;

UMLR: OR < 1; p < 0.0060) and for the Caucasian one
(trend test: p < 0.0001; UMLR: OR < 1; p < 0.0005). No
other age-related kinetics was found for other subtypes. It

Fig. 2 Molecular dissection of breast cancer tumours in function of age. Average hierarchical clustering and heatmap showing the segregation of
three age groups as a function of 24 GES scores. a Whole cohort. b Caucasian cohort. These figures are illustrations of table 4 statistical analyses.
First row presents the three age groups: ≤ 40 years (a, n = 345; b, n = 166) (sky blue), 40 < x < 70 years (a, n = 1667; b, n = 974) (medium blue)
and≥ 70 years (a, n = 366; b, n = 273) (dark blue), from left to right. Other rows, from top to bottom, present PAM50 GES subtyping (basal-like
(red); HER2-E (purple); luminal A (dark blue); luminal B (sky blue); normal breast-like (green); unclassified (yellow)) and GES scores in function of
age (green: low score; red and green grid pattern: intermediate score; red: high score; sky blue: not significant or not interpretable)
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is a bit surprising to notice an increasing incidence of
luminal B, which is known to be a bad prognostic subtype,
because breast cancer in advanced age has been associated
with a slightly increased probability of favourable tumour
biology [33]. Aggressive subtypes should be underrep-
resented and, on the contrary, less aggressive subtypes
should be overrepresented; as we found, basal-like kinetics
was in agreement with this. One hypothesis could be that
luminal B tumours of elderly patients are less aggressive
than those of younger patients. To explore this hypothesis,
we evaluated SBR histological grade distribution in lu-
minal B tumours in function of age (Fig. 4). We chose to
conduct analysis with only SBR1 (less aggressive) and
SBR3 (high aggressive) because clinical interpretation of
SBR2 is complicated. Analyses showed that SBR1 percent-
age increased and SBR3 decreased in function of age in
luminal B tumours in whole cohort (trend test: p = 0.0168;
UMLR: OR = 0.96, p = 0.0035) and even in Caucasian co-
hort (trend test: p = 0.0259; UMLR: OR = 0.95, p = 0.0042),
which was consistent with our hypothesis. Furthermore,
GES analyses of patients belonging to AG1 and AG3

showed an “AG1 >AG3” profile for reactive stroma, IRGS
and RS, and an “AG1 < AG3” profile for MITO/OXPHOS,
which testifies to the aggressiveness of AG1 luminal B
tumours compared to AG3 luminal B tumours, in both
cohorts or in the whole cohort (Additional file 4). Evolu-
tion analysis of luminal B patients in function of the three
age groups did not show any difference (whole cohort:
p = 0.7717; Caucasian cohort: p = 0.3969). For reasons
cited above (evolution analyses biases in elderly) and dis-
cussed later, this result did not invalidate our hypothesis.
ER GES showed an increasing kinetics in function of

age groups as demonstrated above by means of IHC-
measured ER. Molecular apocrine scores were the smallest
in young patients and higher in the two other age groups
suggesting an increased androgen receptor signalling in
these last ones. This finding was concordant with some
studies based on IHC, which indicated a higher rate of
apocrine carcinoma in elderly and a correlation with meno-
pausal status [37, 38]. Molecular apocrine GES scores often
clustered with ER (Additional file 3). Basal-like GES scores
were in concordance with basal-like PAM50 subtyping;
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Fig. 3 Distribution of the five PAM50 molecular subtypes in function of age. a Whole cohort. b Caucasian cohort
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the same decreasing kinetics was found in function of
age groups.
Molecular dissection of the three age groups by means

of seventeen GES linked to biological processes of import-
ance or cell types showed concordant results in both co-
horts for B-cell (AG1 ≈AG2 > AG3), T-cell (AG2 >AG3),
IL-8, IRGS, proliferation and CIN (AG1 >AG2 ≈AG3),
MITO/OXPHOS (AG1 ≈AG2 <AG3), and M2/M1 (AG1
<AG3) (Table 4). When focusing only on the two extreme
age groups, there were more concordant results between
the two cohorts: basal-like, B-cell, MHC-1, IL-8, CIN, pro-
liferation, glycolysis and IRGS displayed an “AG1 >AG3”
profile, whereas ER, molecular apocrine, MITO/OXPHOS
and M2/M1 displayed an “AG1 < AG3” profile.
Immune response (IR) evaluated by B-cell, MHC-1

and IL-8 GES was lower in elderly patients for both
cohorts. This result could be due to immunosenescence,
which was demonstrated in different transcriptomic
works, rather than local low IR or local immunosuppres-
sion [39, 40]. Here, we showed that IL-8 and basal-like
always clustered together (Additional file 3). IL-8, member

of the CXC chemokine family of angiogenesis/inflamma-
tion-related chemokines, is overexpressed in breast cancer,
is linked to bad prognosis, has a direct role in angiogenesis
and is involved in cancer stem-like cells (CSC) regulation
[41, 42]. Because CSC are associated with basal-like sub-
type in breast cancer, IL-8/basal-like cluster might indir-
ectly illustrate IL-8/CSC biological pathway [43]. M2/M1
showed an opposite result: high score in elderly patients
(AG1 < AG3). In a recent study, which aimed at subtyping
triple negative breast cancer (TNBC) tumours, we found
that IR was associated with good prognosis in a basal-like-
and claudin-low-enriched TNBC subtype [6]. On the
contrary, M2/M1 high scores, meaning enrichment in M2
pro-tumourigenic macrophages were associated with a
bad prognosis for pure basal-like TNBC subtype. M2/M1
GES applied on TNBC and PAM50 basal-like patients of
our study failed to reach significance in whole cohort (p =
0.3722; AG1 = 36, AG2 = 149, AG3 = 21) and in Caucasian
cohort (p = 0.3166; AG1 = 8, AG2 = 46, AG3 = 12). This
GES needs further investigations to define its scope of use
in breast cancer.
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Fig. 4 SBR histological grade distribution in luminal B tumours in function of age. a Whole cohort. b Caucasian cohort
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Elderly patients had the lowest stromal reaction for the
whole cohort and a lower stromal reaction compared to
the intermediate age group for Caucasian one. This meta-
gene captured different clinico-biological information. Its
pattern of expression is similar to that of mammospheres
and epithelial to mesenchymal signature metagene and is
associated with chemoresistance [44]. A weak correlation
was found for reactive stroma and adipocytes GES scores
(Additional file 3).
70-GES and GGI scoring displayed an “AG1 > AG2 ≈

AG3” profile and RS scoring an “AG1 > AG2 > AG3”
profile, respectively. In the first case, AG1 was the worst
prognostic group. In the second case, a decreasing prog-
nostic kinetics was shown, starting with AG1 as the
worst prognosis age group and ending with AG3 as the
best prognosis age group. RS score results might confirm
the negative effect of different and less effective thera-
peutic management compared with younger patients on
survival of elderly patients, which, despite best prognostic
scores, is not significantly different from AG1 patients’
survival, neither in whole cohort, nor in Caucasian one
(while, in the latter cohort, AG2 patients’ survival is sig-
nificantly better than AG1 patients’) (Fig. 1). Furthermore,
70-GES, GGI and RS clustered strongly with proliferation
(Additional file 3). This can be explained by the fact that
proliferation is the common driving force of these prog-
nostic GES [45, 46].
GES analyses interpretation in function of ER status in

the three age groups confirmed that proliferation (prolif-
eration GES, 70-GES, GGI and RS) was of no value in
predicting aggressiveness and prognosis in ER-negative
breast cancer tumours (Additional file 5) [45].
SAM analysis identified 1116 genes with statistically

significant changes in expression between the two extreme
age-groups, AG1 and AG3: 432 overexpressed and 684
underexpressed genes in AG3 [47]. GO biological process
enrichment analyses of these two gene lists by means of
ToppGene web tool showed that cell cycle and cell migra-
tion, which are considered as basal-like hallmark, charac-
terized AG1, and that oxidation-reduction process and
lipid metabolism, which are considered as luminal hall-
mark, characterized AG3 (Additional file 6) [48, 49].
Although these non-hypothesis-driven results might be
seen as too overly broad, they corroborated GES mo-
lecular dissection of breast tumours in function of age.

Discussion
Functional annotation may be separated into two ways
of analyses: a quantitative one by means of GES, which
assigns scores to patients, and a qualitative one based on
gene lists, which assigns a “Gene Ontology” enrichment
score to a cluster representative gene list [49].
In this work, we focused on GES scoring and used

“Gene Ontology” enrichment score to corroborate our

findings. Functional annotation according to the three age
groups by means of clinico-pathological data was done to
confirm that our cohort was representative of breast
cancer population. Because of a possible ethnic bias, ana-
lyses were done twice: on the whole cohort and on the
Caucasian one. Finally, there were only slight differences
between whole cohort results and Caucasian results.
Statistical comparisons could not be done because these
cohorts were not independent.
GES used in our study can be classified into different

categories: molecular subtyping (n = 5), immune response
(n = 7), metabolism (n = 3), critical biological pathways in
cancer (n = 7) and prognosis (n = 3). One question that
emerged is potential biological redundancy between GES.
Except for prognosis GES (70-GES, RS and GGI), CIN
and PAM50, which are enriched in proliferation genes,
other GES captured different biological information based
on varying pathways. Numbers of genes in common be-
tween these last GES are equal or close to zero (Additional
file 7). Except M2/M1 GES all other IR GES have no genes
in common. However it is well known that different
combination of genes can capture the same biological
information. In order to look for overlapping biological
information, we compared GO enrichment terms (bio-
logical process tree) linked to each GES’s gene list (Fisher's
exact test; p < 0.01). Results are displayed in Additional
files 8 and 9. Only a few remarks can be made. In some
cases, limited GES similarities exist and are concordant
with biological knowledge. Biological process similarities
emerged for IR GES (B-cell, IFN, IL-8, MHC-1, MHC-2
and T-cell) and as expected for GES enriched in prolifera-
tion genes (Proliferation, GGI, CIN, PAM50, RS and 70-
GES). Another biological process cluster is found for ER,
RS, Molecular apocrine and PAM50. RS and PAM50 are
strongly dependent on ER pathway. Out of 16 cancer
genes included in RS GES, four belong to ESR1 cluster:
ESR1, PGR, BCL2 and SCUBE2. Link between ER and
molecular apocrine GES is explained by the fact that
molecular apocrine subtype has a gene expression profile
resembling that of ER-positive tumours [50, 51]. Our
strategy might be improved by enriching GES list. Fo-
cusing on other and non-redundant critical biological
pathways in cancer and increasing breast tumour tran-
scriptome deconvolution will certainly enhance molecular
dissection performance.
Molecular dissection by means of GES tested in this

study confirmed that breast cancer tumours of young
patients were more aggressive than tumours of older pa-
tients. Furthermore, we showed that tumour aggressive-
ness decreased regularly in function of age groups based
on continuous GES scoring. Finally, tumours of elderly
patients concentrated favourable GES scores: high ER,
MITO/OXPHOS, low proliferation, basal-like, glycolysis,
CIN and IRGS, and low GES prognostic score (70-GES,
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GGI and RS). These biological features were not linked
to favourable disease evolution, but this result must be
interpreted cautiously in elderly patients. Undertreat-
ment in older patients with breast cancer is known to
have a strong negative effect on survival [36, 52–54].
Furthermore, in our study, evolution criteria were: local
relapse, metastatic relapse, or death. Due to non-cancer-
related death linked to comorbidity, which we could not
identify, this last pejorative event is likely higher in eld-
erly patients and may significantly skew evolution ana-
lyses [55]. One study reported that 44 % of undertreated
elderly patients died during follow-up period without
disease recurrence [54].
We confirmed that age influences the incidence of

molecular subtypes and found a significant growing inci-
dence of luminal B and a decreasing kinetics for basal-
like in function of age. As we underlined, luminal B
kinetics was surprising, but concordant with Jenkin’s and
de Kruijf ’s studies [8, 9]. On the contrary, Sweeney and
colleagues found an opposite result [10]. In this work,
we showed that AG3 luminal B tumours were less aggres-
sive than AG1 luminal B tumours based on SBR histo-
logical grade and four GES (IRGS, MITO/OXPHOS,
reactive stroma and RS). Our results are concordant with
an IHC study conducted by Morrison and colleagues [56].
They found high proliferation (Ki67 > 14 %), high mutated
P53 (≥10 %) and high Nottingham grade in young luminal
B (≤40 years) compared to older luminal B patients
(≥50 years). At this time, it is premature to definitively
conclude and additional studies will be necessary to con-
firm these results.
In our study, the GES molecular dissection with the

most complicated results interpretation were those pro-
vided by IR GES. An “AG1 > AG3” profile was found for
B-cell, MHC-1 and IL-8, an “AG2 > AG3” for T-cell in
both cohorts, and an “AG1 ≈AG2 > AG3” for IFN for
whole cohort. Aside from M2/M1 scores, when focusing
only on the two extreme age groups, these results dem-
onstrated a high IR in young patients and a low IR in
elderly patients. Immunity is known to play a dual role
in the complex interactions between tumours and the
host. In established cancer, some immune cells are known
to induce anti-tumoural effects (immunosurveillance) (NK
cells, CD8+ T cells, Th1 cells, dendritic cells 1, M1 macro-
phages…), and others, pro-tumoural effects (myeloid-
derived suppressor cells, CD4+ T cells, Th2 cells, dendritic
cells 2, M2 macrophages…) [57-59]. A dynamic model,
called “immunoediting”, more appropriately emphasizes
the dual roles of immunity and describes tumour and im-
mune system interactions in a chronological three phase
process: elimination (immunosurveillance), dynamic equi-
librium and escape [60, 61]. The disruption of this equilib-
rium results from Darwinian selection of a new population
of tumour clones able to escape from immune detection

and/or elimination, allowing tumour progressive growth
and dissemination. A second level of complexity is due to
an age-dependent general decline of immune function that
has been termed immunosenescence, which is associated
with high circulating level of pro-inflammatory cytokines.
As a consequence of these facts, most obvious, reductionist
and parsimonious questions which can be asked are: In
elderly patients, is low intra-tumoural IR principally due to
a local effect of immunosenescence? In young patients with
high intra-tumoural IR, does bad prognosis depend in part
upon IR escape as proposed in immunoediting dynamic
model? In answering these questions, we will be able to
progress in the selection of immunotherapy strategies in
function of age.

Conclusions
Our study demonstrated that a panel of GES may be used
to decipher the heterogeneity of breast cancer in function
of age and represented a preliminary work. A GES list
including most of relevant biological pathways in breast
cancer will certainly help to gain more insight into bio-
logical systems involved in this disease and will provide a
framework to develop rational therapeutic strategies based
on meaningful subtyping. We believe that GES are effi-
cient tools able to dissect tumours because they do not
depend on only one prototypic marker, but are composed
of a combination of genes involved and/or correlated to a
particular molecular pathway, and for this reason, capture
more efficiently biological information.

Availability of supporting data
The datasets, listed in Table 1, used in this article are
publicly available on EBI website (www.ebi.ac.uk) for
E_TABM_158, and on GEO website (www.ncbi.nlm.nih.
gov/geo) for all other cohorts.

Additional files

Additional file 1: GES listing, methods and references. (PDF 114 kb)

Additional file 2: Metastasis-free survival (MFS) and overall survival
(OS) analyses. MFS: 2A1: whole cohort; 2A2: Caucasian cohort. OS: 2B1:
whole cohort; 2B2: Caucasian cohort. (PDF 230 kb)

Additional file 3: GES scoring of breast cancer in function of age.
Correlation matrices show Pearson correlation coefficients between
continuous GES (red indicates a positive correlation; blue, a negative
correlation) and dendrograms show mutual relationships of all signatures
(scores were used for average-link hierarchical clustering using the Pear-
son correlation as a distance metric). 2A1: AG1, whole cohort; 2A2: AG2,
whole cohort; 2A3: AG3 whole cohort; 2B1: AG1, Caucasian cohort; 2B2:
AG2, Caucasian cohort; 2B3: AG3, Caucasian cohort. (PDF 1689 kb)

Additional file 4: GES analyses differentiating AG1 and AG3 luminal
B patients. AG1 > AG3 means that AG1 GES score is superior to AG3 GES
score, and inversely. (PDF 57 kb)

Additional file 5: Continuous GES analyses interpretation in
function of ER status in the three age groups. (PDF 75 kb)

Jézéquel et al. BMC Medical Genomics  (2015) 8:80 Page 11 of 13

http://www.ebi.ac.uk
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
dx.doi.org/10.1186/s12920-015-0153-6
dx.doi.org/10.1186/s12920-015-0153-6
dx.doi.org/10.1186/s12920-015-0153-6
dx.doi.org/10.1186/s12920-015-0153-6
dx.doi.org/10.1186/s12920-015-0153-6


Additional file 6: GO biological process enrichment analyses of
most differentially expressed genes between AG1 and AG3. Head of
columns represents SAM gene lists used as ToppGene inputs. The ten
first significant biological processes are displayed (cutoff p-value = 0.01).
(PDF 45 kb)

Additional file 7: Number of genes in common between GES.
(PDF 46 kb)

Additional file 8: Number of GO enrichment terms (biological tree)
in common between GES’s gene lists. (PDF 68 kb)

Additional file 9: Percentage of GO enrichment terms (biological
tree) in common between GES’s gene lists, sorted in decreasing
order. (PDF 99 kb)

Abbreviations
70-GES: van’t Veer prognostic GES; AG1: age group n°1 (≤40 years); AG2: age
group n°2 (>40 to < 70 years); AG3: age group n°3 (≥70 years); ANOVA: analysis
of variance; CIN: chromosomal instability; CSC: cancer stem-like cells;
ER: oestrogen receptor (+: positive); GES: gene-expression signature;
GGI: genomic grade index; IFN: interferon; IHC: immunohistochemistry;
IR: immune response; IRGS: iron regulatory gene signature; IL-8: interleukin-8;
MITO/OXPHOS: mitochondrial oxidative phosphorylation; M2-macrophages/
M1-macrophages enrichment; N: nodal status (+: positive); OR: odds ratio;
PAM: prediction analysis for microarrays; RS: recurrence score; SAM: significance
analysis of microarrays; SBR: Scarff-Bloom-Richardson histological grade;
TNBC: triple negative breast cancer; UMLR: unordered multinomial logistic
regression; VEGF: vascular endothelial growth factor.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
PJ, ZS and MC conceived and designed the study. WG performed
bioinformatics. HL, CGC, LC and SC carried out statistical analyses. PJ, WG, ZS
and MC selected patient clinico-pathological data. PJ, ZS and MC interpreted
data. All authors have been involved in drafting the manuscript. All authors
read and approved the final manuscript.

Acknowledgements
We acknowledge UNICANCER (Fédération Nationale des Centres de Lutte
contre le Cancer, France), which supplied statistician salary (Hamza Lasla).

Author details
1Bioinfomics unit, Integrated Centre for Oncology - René Gauducheau, Bd J.
Monod, Nantes, Saint Herblain Cedex 44805, France. 2Cancer Genomic Unit,
Integrated Centre for Oncology - René Gauducheau, Bd J. Monod, Nantes,
Saint Herblain Cedex 44805, France. 3INSERM U892, IRT-UN, 8 quai
Moncousu, Nantes Cedex 44007, France. 4Départemental de Vendée - site de
Montaigu, Polyvalent medicine service, Centre Hospitalier, 54, rue Saint
Jacques, BP 259, Montaigu 85602, France. 5Biostatistics unit, Integrated
Centre for Oncology - René Gauducheau, Bd J. Monod, Nantes, Saint
Herblain Cedex 44805, France. 6Mathematics laboratory, UMR CNRS 6623 et
Université de Franche Comté, 16 route de Gray, Besançon Cedex 25030,
France. 7Medical oncology service, Integrated Centre for Oncology - René
Gauducheau, Bd J. Monod, Nantes, Saint Herblain Cedex 44805, France.
8Biopatholgy department, Integrated Centre for Oncology - René
Gauducheau, Bd J. Monod, Nantes, Saint Herblain Cedex 44805, France.

Received: 12 June 2015 Accepted: 17 November 2015

References
1. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al.

Molecular portraits of human breast tumours. Nature. 2000;406:747–52.
2. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene

expression patterns of breast carcinomas distinguish tumor subclasses with
clinical implications. Proc Natl Acad Sci USA. 2001;98:10869–74.

3. Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A, et al. An
expression signature for p53 status in human breast cancer predicts

mutations status, transcriptional effects, and patients survival. Proc Natl
Acad Sci USA. 2005;102:13550–5.

4. Miller TW, Balko JM, Ghazoui Z, Dunbier A, Anderson H, Dowsett M, et al.
A gene expression signature from human breast cancer cells with acquired
hormone independence identifies MYC as a mediator of antiestrogen
resistance. Clin Cancer Res. 2011;17:2024–34.

5. Prat A, Perou CM. Deconstructing the molecular portraits of breast cancer.
Mol Oncol. 2011;5:5–23.

6. Jézéquel P, Loussouarn D, Guérin-Charbonnel C, Campion L, Vanier A,
Gouraud W, et al. Gene-expression molecular subtyping of triple-negative
breast cancer tumours: importance of immune response. Breast Cancer Res.
2015;17:43.

7. Thomas GA, Leonard RCF. How age affects the biology of breast cancer.
Clin Oncol. 2009;21:81–5.

8. de Kruijf E, Bastiaannet E, Rubertá F, de Craen AJ, Kuppen PJ, Smit VT, et al.
Comparison of frequencies and prognostic effect of molecular subtypes
between young and elderly breast cancer patients. Mol Oncol. 2014;8:1014–25.

9. Jenkins EO, Deal AM, Anders CK, Prat A, Perou CM, Carey LA, et al. Age-specific
changes in intrinsic breast cancer subtypes. Oncologist. 2014;19:1076–83.

10. Sweeney C, Bernard PS, Factor RE, Kwan ML, Habel LA, Quesenberry Jr CP,
et al. Intrinsic subtypes from PAM50 gene expression assay in a population-
based breast cancer cohort: differences by age, race, and tumor
characteristics. Cancer Epidemiol Biomarkers Prev. 2014;23:714–24.

11. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene
expression and hybridization array data repository. Nucleic Acids Res.
2002;30:207–10.

12. Hubble J, Demeter J, Jin H, Mao M, Nitzberg M, Reddy TB, et al.
Implementation of GenePattern within the Stanford Microarray Database.
Nucleic Acids Res. 2009;37(Database Issue):D898–901.

13. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, et al. Race,
breast cancer subtypes, and survival in the Carolina breast cancer study.
JAMA. 2006;295:2492–502.

14. Su Y, Zheng Y, Zheng W, Gu K, Chen Z, Li G, et al. Distinct distribution and
prognostic significance of molecular subtypes of breast cancer in Chinese
women: a population-based cohort study. BMC Cancer. 2011;11:292.

15. Preat F, Simon P, Noel JC. Differences in breast carcinoma
immunohistochemical subtypes between immigrant Arab and European
women. Diagn Pathol. 2014;9:26.

16. Singh M, Ding Y, Zhang LY, Song D, Gong Y, Adams S, et al. Distinct breast
cancer subtypes in women with early-onset disease across races. Am J
Cancer Res. 2014;4:337–52.

17. Jézéquel P, Campone M, Gouraud W, Guérin-Charbonnel C, Leux C,
Ricolleau G, et al. bc-GenExMiner: an easy-to-use online platform for
gene prognostic analyses in breast cancer. Breast Cancer Res Treat.
2012;131:765–75.

18. Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL, et al.
Genomic and transcriptional aberrations linked to breast cancer
pathophysiologies. Cancer Cell. 2006;10:529–41.

19. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, et al. Genes that
mediate breast cancer metastasis to lung. Nature. 2005;436:518–24.

20. Ivshina AV, George J, Senko O, Mow B, Putti TC, Smeds J, et al. Genetic
reclassification of histologic grade delineates new clinical subtypes of breast
cancer. Cancer Res. 2006;66:10292–301.

21. Loi S, Haibe-Kains B, Desmedt C, Lallemand F, Tutt AM, Gillet C, et al.
Definition of clinically distinct molecular subtypes in estrogen receptor-
positive breast carcinomas. J Clin Oncol. 2007;25:1239–46.

22. Zhou Y, Yau C, Gray JW, Chew K, Dairkee SH, Moore DH, et al. Enhanced NF
kappa B and AP-1 transcriptional activity associated with antiestrogen
resistant breast cancer. BMC Cancer. 2007;7:59.

23. Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B, et al. Strong
time dependence of the 76-gene prognostic for node-negative breast
cancer patients in the TRANSBIG multicenter independent validation series.
Clin Cancer Res. 2007;13:3207–14.

24. Anders CK, Acharya CR, Hsu DS, Broadwater G, Garman K, Foekens JA, et al.
Age-specific differences in oncogenic pathway deregulation seen in human
breast tmors. PLoS One. 2008;2, e1373.

25. Loi S, Haibe-Kains B, Desmedt C, Wirapati P, Lallemand F, Tutt AM, et al.
Predicting prognosis using molecular profiling in estrogen receptor-positive
breast cancer treated with tamoxifen. BMC Genomics. 2008;9:239.

26. Desmedt C, Giobbie-Hurder A, Neven P, Paridaens R, Christiaens MR, Smeets A,
et al. The gene expression grade index: a potential predictor of relapse for

Jézéquel et al. BMC Medical Genomics  (2015) 8:80 Page 12 of 13

dx.doi.org/10.1186/s12920-015-0153-6
dx.doi.org/10.1186/s12920-015-0153-6
dx.doi.org/10.1186/s12920-015-0153-6
dx.doi.org/10.1186/s12920-015-0153-6


endocrine-treated breast cancer patients in the BIG 1–98 trial. BMC Med
Genomics. 2009;2:40.

27. Sircoulomb F, Bekhouche I, Finetti P, Adélaïde J, Ben Hamida A, Bonansea J,
et al. Genome profiling of ERBB2-amplified breast cancers. BMC Cancer.
2010;10:539.

28. Li Y, Zou L, Li Q, Haibe-Kains B, Tian R, Li Y, et al. Amplification of LAPTM4B
and YWHAZ contributes to chemotherapy resistance and recurrence of
breast cancer. Nat Med. 2010;16:214–8.

29. Kao KJ, Chang KM, Hsu HC, Huang AT. Correlation of microarray-based
breast cancer molecular subtypes and clinical outcomes: implications for
treatment optimization. BMC Cancer. 2011;11:143.

30. Sabatier R, Finetti P, Cervera N, Lambaudie E, Esterni B, Mamessier E, et al.
A gene expression signature identifies two prognostic subgroups of basal
breast cancer. Breast Cancer Res Treat. 2011;126:407–20.

31. Hatzis C, Pusztai L, Valero V, Booser DJ, Esserman L, Lluch A, et al. A
genomic predictor of response and survival following taxane-anthracycline
chemotherapy for invasive breast cancer. JAMA. 2011;305:1873–81.

32. Nagalla S, Chou JW, Willingham MC, Ruiz J, Vaughn JP, Dubey P, et al.
Interactions between immunity, proliferation and molecular subtype in
breast cancer prognosis. Genome Biol. 2013;14:R34.

33. Diab SG, Elledge RM, Clark GM. Tumor characteristics and clinical outcome
of elderly women with breast cancer. J Natl Cancer Instit. 2000;92:550–6.

34. Dunnwald LK, Rossing MA, Li CI. Hormone receptor status, tumor
characteristics, and prognosis: a prospective cohort of breast cancer
patients. Breast Cancer Res. 2007;9:R6.

35. Wildiers H, Van Calster B, van de Poll-Franse LV, Hendrickx W, Røislien J,
Smeets A, et al. Relationship between age and axillary lymph node
involvement in women with breast cancer. J Clin Oncol. 2009;27:2931–7.

36. Schonberg MA, Marcantonio ER, Li D, Silliman RA, Ngo L, McCarthy EP.
Breast cancer among the oldest old: tumor characteristics, treatment
choices, and survival. J Clin Oncol. 2010;28:2038–45.

37. Honma N, Sakamoto G, Akiyama F, Esaki Y, Sawabe M, Arai T, et al. Breast
carcinoma in women over the age of 85: distinct histological pattern and
androgen, oestrogen, and progesterone receptor status. Histopathology.
2003;42:120–7.

38. Agoff S, Swanson P, Linden H, Hawes S, Lawton T. Androgen receptor
expression in estrogen receptor-negative breast cancer. Immunohistochemical,
clinical, and prognostic associations. Am J Clin Pathol. 2003;120:725–31.

39. Cao JN, Gollapudi S, Sharman EH, Jia Z, Gupta S. Age-related alterations
of gene expression patterns in human CD8+ T cells. Aging Cell.
2010;9:19–31.

40. Harries LW, Hernandez D, Henley W, Wood AR, Holly AC, Bradley-Smith RM,
et al. Human aging is characterized by focused changes in gene expression
and deregulation of alternative splicing. Aging Cell. 2011;10:868–78.

41. Todorovic-Rkovic N, Milovanovic J. Interleukin-8 in breast cancer
progression. J Interferon Cytokine Res. 2013;33:563–70.

42. Singh J, Simoes B, Howell SJ, Farnie G, Clarke R. Recent advances reveal IL-8
signaling as a potential key to targeting breast cancer stem cells. Breast
Cancer Res. 2013;15:210.

43. Honeth G, Bendahl PO, Ringnér M, Saal LH, Gruvberger-Saal SK, Lövgren K,
et al. The CD44+/CD24- phenotype is enriched in basal-like breast tumors.
Breast Cancer Res. 2008;10:R53.

44. Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V, et al.
A stroma-related gene signature predicts resistance to neoadjuvant
chemotherapy in breast cancer. Nat Med. 2009;15:68–74.

45. Desmedt C, Haibe-Kains B, Wirapati P, Buyse M, Larsimont D, Bontempi G, et
al. Biological processes associated with breast cancer clinical outcome
depend on the molecular subtypes. Clin Cancer Res. 2008;14:5158–65.

46. Wirapati P, Sotiriou C, Kunkel S, Farmer P, Pradervand S, Haibe-Kains B, et al.
Meta-analysis of gene expression profiles in breast cancer: toward a unified
understanding of breast cancer subtyping and prognosis signatures. Breast
Cancer Res. 2008;10:R65.

47. Tusher V, Tibshirani R, Chu G. Significance analysis of microarrays applied
to transcriptional responses to ionizing radiation. Proc Natl Acad Sci USA.
2001;98:5116–21.

48. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene
ontology: tool for the unification of biology. The Gene Ontology
Consortium. Nat Genet. 2000;25:25–9.

49. Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list
enrichment analysis and candidate gene prioritization. Nucleic Acids Res.
2009;37:W305–11.

50. Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D,
et al. Identification of molecular apocrine breast tumours by microarray
analysis. Oncogene. 2005;24:4660–71.

51. Doane AS, Danso M, Lal P, Donaton M, Zhang L, Hudis C, et al. An estrogen
receptor-negative breast cancer subset characterized by a hormonally
regulated transcriptional program and response to androgen. Oncogene.
2006;25:3994–4008.

52. Muss HB, Woolf S, Berry D, Cirrincione C, Weiss RB, Budman D, et al.
Adjuvant chemotherapy in older and younger women with lymph <?show
[?A3B2 show $9#?]?>node-positive breast cancer. JAMA. 2005;293:1073–81.

53. Biganzoli L, Wildiers H, Oakman C, Marotti L, Loibl S, Kunkler I, et al.
Management of elderly patients with breast cancer: updated
recommendations of the international society of geriatric oncology (SIOG)
and European society of breast cancer specialists (EUSOMA). Lancet Oncol.
2012;13:e148–160.

54. Rocco N, Rispoli C, Pagano G, Ascione S, Compagna R, Danzi M, et al.
Undertreatment of breast cancer in the elderly. BMC Surg. 2013;13:S26.

55. Satariano WA, Ragland DR. The effect of comorbidity on 3-year survival of
women with primary breast cancer. Ann Intern Med. 1994;120:104–10.

56. Morrison DH, Rahardja D, King E, Peng Y, Sarode VR. Tumour biomarker
expression relative to age and molecular subtypes of invasive breast cancer.
Br J Cancer. 2012;107:382–7.

57. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, et al.
Stromal gene expression predicts clinical outcome in breast cancer.
Nat Med. 2008;14:518–27.

58. Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, et al.
The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer:
recommendations by an international TILs-working group 2014. Ann Oncol.
2015;26:259–71.

59. Hagerling C, Casbon AJ, Werb Z. Balancing the innate immune system in
tumor development. Trends Cell Biol. 2015;25:214–20.

60. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting.
Annu Rev Immunol. 2004;22:329–60.

61. Liu K, Caldwell SA, Abrams SI. Immune selection and emergence of
aggressive tumor variants as negative consequences of Fas-mediated
cytotoxicity and altered IFN-γ-regulated gene expression. Cancer Res.
2005;65:4376–88.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Jézéquel et al. BMC Medical Genomics  (2015) 8:80 Page 13 of 13


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Data selection
	Data pre-processing
	Gene-expression signatures
	Statistical analysis

	Results
	Included patients
	Clinico-pathological characteristics according to patients’ age
	Evolution analysis
	Molecular dissection by means of 25 GES

	Discussion
	Conclusions
	Availability of supporting data

	Additional files
	Abbreviations
	Competing interests
	Author’s contributions
	Acknowledgements
	Author details
	References



