HAL
open science

Specific IgE and IgG measured by the MeDALL allergen-chip depend on allergen and route of exposure: The EGEA study

Valérie Siroux, Christian Lupinek, Yvonne Resch, Mirela Curin, Jocelyne Just, Thomas Keil, Renata Kiss, Karin Lodrup Carlsen, Erik Melen, Rachel Nadif, et al.

- To cite this version:

Valérie Siroux, Christian Lupinek, Yvonne Resch, Mirela Curin, Jocelyne Just, et al.. Specific IgE and IgG measured by the MeDALL allergen-chip depend on allergen and route of exposure: The EGEA study. Journal of Allergy and Clinical Immunology, 2017, 139 (2), pp. 643 - 654. 10.1016/j.jaci.2016.05.023 . inserm-01815134

HAL Id: inserm-01815134 https://inserm.hal.science/inserm-01815134

Submitted on 13 Jun 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Specific IgE and IgG measured by the MeDALL allergen-chip depend on allergen and route of exposure - the EGEA study

Valérie Siroux ${ }^{\text {a,b,c }}$, Christian Lupinek ${ }^{d}$, Yvonne Resch ${ }^{d}$, Mirela Curin ${ }^{\text {d }}$, Jocelyne Just ${ }^{\text {e, }}{ }^{\text {f }}$, Thomas Keil ${ }^{\mathrm{g}, \mathrm{h}}$, Renata Kiss ${ }^{\mathrm{d}}$, Karin Lodrup Carlsen ${ }^{\mathrm{i}, \mathrm{j}}$, Erik Melén ${ }^{\mathrm{k}, \mathrm{l}}$, Rachel Nadif ${ }^{\mathrm{m}, \mathrm{n}}$, Isabelle Pin ${ }^{\text {a,b,c }, ~ I n g e b j ø r g ~ S k r i n d o ~}{ }^{\mathrm{j}, \mathrm{o}}$, Susanne Vrtala ${ }^{\mathrm{d}, \mathrm{p}}$, Magnus Wickman ${ }^{1, \mathrm{~m}}$, Josep Maria Anto ${ }^{\text {q,r,s,t }}$, Rudolf Valenta ${ }^{\text {d }}$, Jean Bousquet ${ }^{m, n, u}$

${ }^{\text {a }}$ Univ. Grenoble Alpes. IAB. Team of Environmental Epidemiology applied to Reproduction and Respiratory Health. F-38000 Grenoble. France.
${ }^{\mathrm{b}}$ INSERM. IAB. Team of Environmental Epidemiology applied to Reproduction and Respiratory Health. F-38000 Grenoble. France.
${ }^{\text {c }}$ CHU de Grenoble. IAB. Team of Environmental Epidemiology applied to Reproduction and Respiratory Health. F-38000 Grenoble. France.
${ }^{\text {d }}$ Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria.
${ }^{e}$ Assistance Publique-Hôpitaux de Paris, Hôpital Armand-Trousseau, Allergology Department, Paris, France
${ }^{\text {f }}$ Université Paris 6 Pierre et Marie Curie, Paris, France
${ }^{\mathrm{g}}$ Institute for Social Medicine, Epidemiology and Health Economics, Charité Universitätsmedizin Berlin, Berlin, Germany
${ }^{h}$ Institute for Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany
${ }^{i}$ Dept of Paediatrics, Oslo University Hospital, Oslo, Norway
${ }^{j}$ Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
${ }^{\mathrm{k}}$ Institute of Environmental Medicine and the Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
'Sachs Children and Youth Hospital, Stockholm, Sweden
${ }^{m}$ INSERM U1168, VIMA (Aging and chronic diseases. Epidemiological and public health approaches), 16 avenue Paul Vaillant Couturier, F-94807, Villejuif, France
${ }^{n}$ Univ Versailles St-Quentin-en-Yvelines, UMR-S 1168, F-78180, Montigny le Bretonneux, France
${ }^{\circ}$ Department of Otorhinolaryngology, Akershus University Hospital, Norway ${ }^{\mathrm{p}}$ Christian Doppler Laboratory for the Development of Allergen chips, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria.
${ }^{\text {q }}$ Centre for Research in Environmental Epidemiology (CREAL)
${ }^{r}$ IMIM (Hospital del Mar Medical Research Institute)
${ }^{\text {s }}$ Universitat Pompeu Fabra (UPF)
${ }^{\text {t }}$ CIBER Epidemiología y Salud Pública (CIBERESP)
${ }^{\text {u }}$ University hospital, Montpellier, France and MeDALL (Mechanisms of the Development of Allergy, FP7)

Disclosure of potential conflict of interest related to the submitted work

Rudolf Valenta has received research grants from Biomay AG, Vienna, Austria and Thermofisher, Uppsala, Sweden. He serves as a consultant for Biomay AG, Vienna, Austria, Thermofisher, Uppsala, Sweden and Fresenius Medical Care, Bad Homburg, Germany. Jean Bousquet serves in scientific advisory boards from Almirall, Meda, Merck, MSD, Novartis, Sanofi-Aventis, Takeda, Teva, Uriach. Magnus Wickman has recieved research grants from ThermoFisher Scientific.

Corresponding author

54 Valérie Siroux

55 Institut Albert Boniot
56 Inserm/CNRS/Univ Grenoble-Alpes U 1209
57 Equipe d'épidémiologie environnementale appliquée à la reproduction et à la santé respiratoire

Rond point de la chantourne
38706 La Tronche cedex
Tel : +33 476549556
Mail : Valerie.siroux@ujf-grenoble.fr publique, the Scientific committee "AGIR for chronic diseases", grant F4605 of the Austrian Science Fund (FWF) to RV and by the European Commission's Seventh Framework 29 Program MeDALL under grant agreement no. 261357.

Manuscript word count: 3605

Abstract

Background: The nature of allergens, route and dose of exposure may affect the natural development of IgE and $\lg G$ responses.

Aim: To investigate the natural lgE and $\lg G$ responses towards a large panel of respiratory and food allergens in subjects exposed to different respiratory allergen loads.

Methods: A cross-sectional analysis was conducted in 340 adults of the EGEA cohort (Epidemiological study of the Genetics and Environment of Asthma, bronchial hyperresponsiveness and atopy) (170 with and 170 without asthma). IgE and IgG to 47 inhalant and food allergen components were analyzed in sera using the MeDALL microarray technology and compared between 5 French regions according to the route of allergen exposure (inhaled vs. food allergens).

Results: Overall 48.8% of the population had allergen-specific $\operatorname{IgE} \geq 0.3$ ISU to at least one of the 47 allergens with no significant differences across the regions. For ubiquitous respiratory allergens (i.e., grass-, olive/ash pollen, house dust mites), specific IgE did not show marked differences between regions and specific $\operatorname{IgG}(\geq 0.5$ ISU $)$ was present in most subjects everywhere. For regionally occurring pollen allergens (ragweed, birch, cypress), IgE sensitization was significantly associated with regional pollen exposure. For airborne allergens cross-reacting with food allergens, frequent \lg recognition was observed even in regions with low allergen prevalence (Bet v 1) or for allergens less frequently recognized by IgE (profilins).

Conclusions: The variability of allergen specific lgE and lgG frequencies depends on exposure, route of exposure and overall immunogenicity of the allergen. Allergen contact by oral route might preferentially induce $\lg \mathrm{G}$ responses.

Key messages

IgE and IgG towards respiratory allergens are usually associated with inhalant allergen exposures but $\lg G$ is frequent in subjects exposed to cross-reacting food allergens. Oral exposure preferentially induces \lg g responses.

Capsule summary

Inhalant and oral routes of exposure induce different patterns of sensitization. Oral route may preferentially induce IgG responses whereas respiratory route is important for $\lg E$ sensitization. A geographical pattern of IgE response to pollen exposure exists in France, depending on regional pollen exposure.

Key words

$\operatorname{IgE}, \operatorname{lgG}$, allergen components, respiratory allergens, food allergens, EGEA, cohort, epidemiology, MeDALL, microarray

Abbreviations

Bet v: Betula verrucosa
Cyn d: Cynodon dactylon
EGEA: Epidemiological study of the Genetics and Environment of Asthma, bronchial hyperresponsiveness and atopy

Fel d: Felis domesticus
FP7: Framework Programme 7 (European Union)
IgE: Immunoglobulin E
\lg : Immunoglobulin G
Mal d: Malus domestica
MeDALL: Mechanisms of the development of allergy
Phl p: Phleum pratense
PR-10: pathogenesis-related protein family PR-10

Introduction

Allergic patients are characterized by the production of specific immunoglobulin E (IgE) antibodies against allergens ${ }^{1}$ whereas allergen-specific IgG antibodies occur in both allergic and non-allergic individuals. ${ }^{2}$ Allergen-specific lgG antibodies play a role in allergen-specific clinical tolerance, either occurring naturally or induced by allergenspecific immunotherapy. ${ }^{3-7}$ For certain allergens IgE and IgG responses differ. ${ }^{8}$ Allergenspecific lgG may be associated with exposure to the respective allergen. ${ }^{9,10}$ However, population data regarding the role of \lg production to a broad panel of common food and inhalant allergens are not available.

The route and dose of exposure to allergens are highly relevant for $\lg E$ and $\lg G$ sensitization. Oral route may favour an IgG response whereas inhaled exposure may favour an $\lg E$ response. ${ }^{8,11}$ Investigating the $\lg G$ response to several molecule groups like profilins (e.g., Bet v 2, Phl p 12), including both inhalant and food allergens, or polcalcins, i.e., calcium-binding allergens (e.g., Bet v 4, Phlp7), including only inhalant allergens, could provide additional insight into the role of the route of exposure for allergic sensitisation.

The microarray technology allows measurement of allergen-specific lgE and $\lg G$ antibody responses to many allergen components. In MeDALL, the ImmunoCAP ISAC chip technology was improved to increase its sensitivity and to incorporate new allergens. ${ }^{12-16}$ The resulting MeDALL chip has been validated ${ }^{15,16}$ and more than 6000 sera from 7 European birth cohorts (e.g., BAMSE and ECA) ${ }^{17,18}$ have been tested so far.

The Epidemiological study of the Genetics and Environment of Asthma, bronchial hyperresponsivness and atopy - EGEA ${ }^{19-21}$ is a cohort of adults and children with and without asthma recruited in five French cities (Paris, Lyon, Grenoble, Montpellier and Marseille). Pollen exposure varies widely among these different places. While grass pollen exposure is similar across France, exposure to pollens of birch, cypress and ragweed exhibits strong geographical variability.

As part of the MeDALL project, ${ }^{15}$ the present study investigates the geographical variability of allergen-specific IgE and IgG towards a large variety of different respiratory and food allergens using the MeDALL micro-array technology in sera from the EGEA
cohort obtained from subjects recruited in different places in France. We addressed if there are differences among the types of allergens, routes of allergen exposure and levels of respiratory allergen exposure on allergen-specific IgE and IgG production.

Methods

Population and study setting

The EGEA cohort is composed of patients with asthma enrolled in chest clinics and their first-degree relatives, and a group of control subjects, all recruited in the early 1990s in 5 French cities. Protocol and characteristics have been previously published. ${ }^{22,23}$ Briefly, 2047 participants were enrolled at baseline (EGEA1) including 388 children (<16 years) and adult patients with asthma from chest clinics, their 1244 first-degree relatives and 415 population-based control subjects. Subjects were recruited through self-completed questionnaires and an overall matching by months at exam, age (decade), sex and centre. About 11 years later, this population was invited for a follow-up (EGEA2) and 1601 participants (77.1% of the original cohort +58 new family members) were subjected to a complete examination, which included serum samples. ${ }^{21}$ EGEA collection is certified ISO 9001 and referenced in the Biobank network by the number BB-0033-00043.

The present analysis was conducted in 340 adult participants obtained at the follow-up (i.e., EGEA2) (170 with and 170 without asthma). Participants were randomly selected among all followed-up subjects with available serum and data on genetic polymorphisms (to facilitate further analyses), skin prick tests, and total IgE at baseline (EGEA1) and follow-up (EGEA2) visits and non-missing data for asthma status.

Written consent was obtained from all individuals. Ethical approval was obtained for both surveys (Cochin Royal Hospital, Paris for EGEA1 and Necker-Enfants Malades Hospital, Paris for EGEA2).

Asthma, allergic rhinitis phenotypes and Skin Prick Tests (SPT)

The definition of ever asthma was based on a positive answer to either "Have you ever had attacks of breathlessness at rest with wheezing?" or "Have you ever had asthma attacks?" or being recruited as an asthma case. ${ }^{23}$ Allergic rhinitis ever was defined by a positive answer to "Have you ever had allergic rhinitis?" or "Have you ever had hay fever?". Subjects with a positive answer to "Have you had a problem with sneezing or runny or blocked nose when you did not have a cold or flu in the last 12 months" have been defined as active allergic rhinitis.

SPT was performed for 11 allergens (cat, Dermatophagoides pteronyssinus, Blattela
germanica, olive, birch, Parieteria judaica, timothy grass, ragweed pollen, Aspergillus, Cladosporium herbarum, Alternaria tenuis). Positive SPT was defined by a mean wheal diameter $\geq 3 \mathrm{~mm}$.

Measurement of allergen-specific $\lg E$ and $\lg G$ with the MeDALL allergen-chip

lgE and $\lg G$ were determined in anonymized samples with the MeDALL-chip as described. ${ }^{15,16}$ It comprises 176 allergen components including aero- and food allergen components. The measurement of allergen-specific lgE - and $\lg G$ reactivities was performed as described. ${ }^{16,18,24}$.

The present study is focused on outdoor allergen sources whose distribution varied in the different geographical areas (birch pollen, cypress pollen, ragweed pollen, olive/ash pollen, timothy grass pollen), and on allergens from indoor allergen sources (house dust mites). We studied IgG to the PR-10 group of allergens with cross-reactive food allergens. ${ }^{18}$ To further address the hypothesis that allergen contact mainly by the oral route induces IgG response, three common food allergens were also studied (milk, egg, fish) allowing to compare the frequency of IgE and lgG recognition across respiratory and food allergens. Overall, 47 representative allergen components were analysed in detail (Table 2).

Geographical exposure to allergens

The geographical distribution of the studied pollens across France in 2006 was obtained from the RNSA (Réseau National de Surveillance Aérobiologique), the French aerobiology network in charge of the analysis of biological particles in air samples (http://www.pollens.fr). ${ }^{25,26}$ Data are presented as the daily mean of grains $/ \mathrm{m}^{3}$ across the year 2006, a year included in the EGEA2 data collection period (2003-2007).

Biases

The random selection of the EGEA2 participants to the present analysis was a priori unrelated to allergen exposure and allergic status, minimizing the risk for selection bias. In both subjects with and without asthma, subjects included in the analysis did not differ regarding allergic sensitization as defined by ≥ 1 positive reaction in SPT using 12 different extracts, level of total IgE and allergic rhinitis phenotype as compared to non-included participants (Table E1). Regarding exposure we did not observe marked differences
between included and non-included subjects, although included subjects with asthma were more often recruited in Lyon and Grenoble (Table E1).

Statistical methods

According to previous studies, $\lg E$ and lgG positivity to allergen was defined by a threshold of 0.3 ISU and 0.5 ISU, respectively ${ }^{16-18}$. Ordinal categorical variables were also studied both for $\operatorname{IgE}(<0.3<1<3<10<30$ and ≥ 30 ISU $)$ and $\operatorname{IgG}(<0.5<1.5<5<15<50$ and ≥ 50 ISU) because of the non-Gaussian distribution. Chi 2 test was computed when applicable. Non-parametric Kruskal-Wallis tests were also applied to address whether the IgE and IgG levels (considered as continuous outcomes) differed among centres. Odds Ratios (OR) were estimated to assess the magnitude of the association between centres and allergen-specific lgE (or lgG) sensitization using multinomial logistic regression adjusted on age, sex, asthma and rhinitis status.

Results

Characteristics of study subjects

In this study, 340 sera from different centers (Paris: $\mathrm{n}=96$; Lyon: $\mathrm{n}=75$; Marseille: $\mathrm{n}=41$; Montpellier: $n=22$; Grenoble: $n=106$) were available. The demographic characteristics of participants are presented in Table 1. The population included 47% men and the mean age was 43 years. Fifty-two percent of participants had allergic rhinitis ever and 37.6% had atopic dermatitis ever. Eighty-two participants reported to have received some form of allergen immunotherapy (AIT).

Most frequently recognized allergens by IgE

Overall, 48.8% of the population had allergen-specific $\lg E \geq 0.3$ to at least one of the allergen components selected, which is in strong agreement with the prevalence of atopy (defined by positive SPT to at least one of 11 aeroallergens) in this population (Cohen Kappa coefficient $=0.68$). The agreement between SPT and allergen-specific IgE was strong for each allergen (table E2). Pollen allergens most frequently recognized by IgE were Phl p 1 (33.8\%), Phl p 4 (22.4\%), Ole e 1 (20.9\%), Phl p 5 (18.2\%), Cup a 1 (18.2\%), Phl p 2 (15.3\%), Phl p 6 (14.4\%) and Bet v 1 (10\%) (Table 2). The indoor allergens most frequently recognized by IgE were Der p 2 (27.4\%), Der p 23 (27.4\%), Der p 1 (24.4\%), Fel d 1 (23.8\%), Der p 5 (16.5\%), Der p 4 (15.9\%), Der p 7 (13.2\%), Can f 5 (11.2\%), Der p 21 (10\%) (Table 2). Regarding food allergens, the family of PR-10 proteins (i.e., Mal d 1: apple; Cor a 1.0401: hazelnut; Ara h 8: peanut; Pru p 1: cherry; Gly m 4: soy) that crossreact with the major birch pollen allergen Bet v 1 were most frequently recognized by lgE ($7.6-2.4 \%$ patients), followed by Gal d 1 (ovomucoid, egg) and Bos d 4 (lactalbumin, milk) with 0.6% and 0.3%. These patterns where consistent in the population who did not receive AIT, although the prevalence of IgE recognition was lower as compared to the whole study population (Table 2).

Similarities and discrepancies between IgE and IgG recognition

Distinct patterns of IgE and lgG recognition frequencies were found (Table 2). In general, respiratory allergens (Ole e 1, Phl p 1, Phl p 4, Der p 1, Der p 2, Der p 23, Fel d 1) frequently recognized by IgE antibodies ($\geq 20 \%$ subjects) were frequently recognized by lgG as well ($\geq 60 \%$ subjects). Likewise, some respiratory allergens less frequently
recognized by IgE antibodies ($\leq 6 \%$ subjects), were also recognized at low frequency (i.e., <40\%) by $\lg G($ Phl p 7, Phl p 11, Bet v 4, Ole e 7, Amb a 1). On the other hand, other respiratory allergens also less frequently recognized by IgE antibodies were recognized in $>80 \%$ by lgG (Phl p 12, Bet v 2, Ole e 9). Similar patterns were observed in the population without AIT.

Geographical variation of IgE and $\operatorname{Ig} G$ recognition

Although the IgE sensitisation to at least one of the analysed allergens (Table 2) did not vary significantly across the geographical areas (from 39.0% to $54.7 \%, \mathrm{p}=0.46$), we observed considerable geographical differences for some specific allergens (Fig. 1 and Table 3).

For several major respiratory allergens the lgE and lgG frequencies in the different regions followed to a large extent the exposure levels with the corresponding allergen sources (e.g., ragweed exposure: Amb a 1; grass pollen exposure: Phl p 1 and exposure to cypress: Cup a 1) (Fig. 1 and table 3). For example, in agreement with similar levels of grass pollen exposure across France, IgE recognition frequencies for the major timothy grass pollen allergen, Phl p 1, were similar across the geographical areas (the adjustedORs for each center as compared to Paris varied between 0.68 to $1.29, p>0.50$; Table 3) and lgG recognition of Phl p 1 was higher than 90% in each area. Inversely, lgE and IgG recognition frequencies for the cypress pollen allergen Cup a 1 showed marked geographical differences with adjusted OR of $7.4(95 \% \mathrm{Cl} 2.1,25.3)$ and $7.8(95 \% \mathrm{Cl} 0.98-$ 62.2) in Montpellier, the city showing the highest level of pollen exposures, as compared to Paris. Similar patterns were observed in subjects with and in subjects without asthma (Table E3), as well as in subjects without AIT (Table E4), although results should be interpreted cautiously because of the sample size .

However, for Bet v 1 the geographic pattern of $\lg E$ and $\lg G$ recognition differed. $\lg E$ recognition frequencies to Bet v 1 followed the exposure levels of birch pollen in the different regions whereas $\lg G$ recognition was high ($>60 \%$) in all regions. This was also observed for food allergens that showed immunological cross-reactivity with Bet v 1 (PR10 proteins, e.g., Mal d 1 from apple, Cor a 1.0401 from hazelnut, Ara h 8 from peanut, Pru p 1 from cherry, Gly m 4 from soy) (Fig. 1).

Regarding ubiquitously occurring allergens such a highly cross-reactive plant allergens (calcium-binding allergens: Phl p 7, Bet v4; profilins: Phlp 12, Bet v 2), house dust mite allergens (e.g., Der p 1, $\operatorname{Der} p$ 2, $\operatorname{Der} p$ 23, $\operatorname{Der} p$ 10, $\operatorname{Der} p$ 11, $\operatorname{Der} p$ 14) and food allergens whose sensitization occurs primarily by oral route (e.g., Bos d 4, Gal d 1, Gad c 1), we found little geographic variation of $\lg E$ and lgG recognition frequencies (Fig. 1 and 2). Nevertheless, for some of these allergen components the IgG concentration varied across the regions (as indicated by the non-parametric Kruskal-Wallistest estimated on the continuous variables) and IgE reactivity against major indoor allergens from house dust mite (i.e., Der p 2, Der p 23, Der p 1) tended to be lower in Lyon and Marseille (Fig. 2). In each region, Der p 10, Der p 11 and Der p 14, for which exposure also occurs via the gut (Der p 10 cross-reacts with tropomyosin from shrimp) or the skin, were rarely recognized by $\lg E$ but frequently by lgG (Table 2, Fig. 2).

Very few subjects showed IgE reactivity to allergens of milk (Bos d 4) and egg (Gal d 1), and these allergens were recognized by lgG in about 90% of the subjects with no differences across the geographical areas (Fig. 3).

Discussion

Microarrayed allergens are increasingly used to determine the profile of molecular IgE sensitization in populations. ${ }^{27,28}$ However, to the best of our knowledge, the current study is the first systematic study comparing $\lg E$ and $\lg G$ responses to a large panel of respiratory and food allergens in a geographically defined population. It shows a large geographical variability in the distribution of IgE and IgG antibodies in France which could be summarized as following: 1) for ubiquitous allergens such as pollens of grass, olive/ash and to a lesser extent allergens from house dust mites, IgE antibodies were scattered around the different French regions (up to 34% of participants) and IgG was present in most subjects without any geographical difference (over 85\%), 2) on the other hand, for regional pollen (ragweed, birch, cypress), IgE responses mirrored regional pollen exposure, but lgG response varied depending on allergen sources: high for pollen allergens cross-reacting with food allergens (Bet v 1 and other PR-10 allergen components) and glycosylated components (e.g., Cup a 1 and Phl p 4) ${ }^{29}$, low for the other pollen allergens with only respiratory exposure and no cross-reactivity with food allergens (e.g., ragweed), and 3) for food allergens, lgG responses were frequent whereas $\lg E$ responses were rare. These results indicate that contact with allergen by the oral route may preferentially induce IgG responses whereas allergen contact by respiratory route appears important for IgE sensitization.

Strengths and weaknesses

One strength lies in the solid phenotypic characterization of a large population, with a fair distribution of asymptomatic subjects and subjects with asthma and/or rhinitis. As in most epidemiological settings, the definition of asthma and rhinitis was based on a standardized questionnaire, which might have lead to misclassification bias on the disease status, but should not have biased our results on the effects of the geographical area and routes of exposure in IgE and IgG recognition. As compared to the general population, our study population is enriched with subjects with asthma and consequently has higher percentages of IgE-sensitizations, leading to an increased statistical power to address allergen-specific IgE-responses. Indeed, since the main aim of the present manuscript was the parallel analysis of allergen-specific IgE and IgG responses towards a comprehensive set of allergen molecules to dissect variations in geographic sensitization
profiles and possible routes of sensitization, a normal population would not have been appropriate as the percentage of allergic subjects would have been too low and it would have required a much larger sample size. This population selection should not have affected our results on the geographical variability of IgE and $\operatorname{Ig} G$ sensitisation, but does not allow assessing the community-based prevalence of IgE and IgG responses. The study is specific to France, but can help to understand and assess the differences between ubiquitous and regional allergens in other countries as well as IgE and IgG responses to allergens in general.

The effect of immunotherapy on specific-IgE or specific-lgG levels could not be tested since only allergic patients had received this form of treatment and there will necessarily be higher frequencies of IgE recognition in individuals who received AIT as compared to those who did not. However, the frequency of subject who had received AIT was similar across centres and even though AIT induces Ig it does not completely eliminate lgE reactivity to the micro-arrayed allergens and therefore does not affect the geographic $\lg E$ results. Although we do not have detailed information on AIT (as the targeted allergens) we do not think that AIT might differentially influence the IgE/IgG profile according to the allergen. For instance, it is unlikely that subjects in areas without birch pollen developed IgG against this allergen (i.e. Bet $v 1$ and Bet v 1-related food allergens) due to AIT because birch-pollen specific AIT was probably not prescribed in this area. Also, naturally occurring $\lg G$ does not affect lgE recognition in the chip analysis because naturally occurring \lg s seems to react with epitopes different from those recognized by $\operatorname{lgE}{ }^{8}$. Finally the sensitivity analysis conducted among subjects not having received AIT showed strong robustness of the observed associations.

The exposure to allergens was not addressed at the individual level, but by study centre locations. This ecological approach for exposure assessment might be a source of exposure misclassification, characterized here by the Berkson error type which has been shown to weaken the precision of the estimates, but as compared to the classical error does not induce major bias on risk estimates ${ }^{30}$. Also, we considered the center of recruitment and did not take into account the residential history of the participants. This may have lead to exposure misclassification because some individuals might have lived in different areas with potentially different exposures.

A major strength relates to the use of the improved microarray technology, which contains a larger number of important allergens than the commercial ISAC chips. ${ }^{15,16}$ The MeDALL chip used in this study is as sensitive for lgE detection as the quantitative ImmunoCAP assay and can be used also for the detection of allergen-specific IgG responses with high specificity and sensitivity. ${ }^{15,16}$ Furthermore, the allergen repertoire on the MeDALL chip covers most of the relevant allergen sources. ${ }^{17}$ Although lgG can interfere with IgE binding on allergen-microarrays, we have proven that it does not affect the sensitivity to pick up sensitizations. ${ }^{17}$ Moreover, we found that IgE results were in good agreement with results obtained by skin prick testing.

Interpretation of the results

In accordance with a recent cross-sectional analysis in the United States, IgE sensitisation to at least one of the studied allergens did not vary across the French regions but allergen-specific sensitisation against some allergen components exhibited geographical variations. ${ }^{31}$ This may indicate that genetic susceptibility for sensitization, probably similar across the country, favors an IgE immune response in the same percentage of the population overall, but specificities of IgE reactions are linked to exposure. Indeed, chip testing reveals that the molecular IgE sensitization profile for respiratory allergens in France correlates very well with exposure data: some plants being prevalent in defined areas (birch, ragweed and cypress) and some allergen sources being found across France (grass, olive/ash pollen). ${ }^{32-34}$ Patients with a subclinical sensitization to birch pollen exist in an area without atmospheric birch pollen exposure. ${ }^{35}$ For cypress pollen, IgE patterns also reflect pollen dispersion but $\lg G$ is found in most participants because of the carbohydrate nature of the allergen which makes it a pan-allergen. ${ }^{29}$ The lower IgE recognition frequency of Der p 1 and Der p 2 in Lyon was a priori not expected but might be related to factors like living habits.

Some respiratory allergens induce $\lg G$ only in few patients because they are poorly immunogenic (e.g., Phl p 2) but nevertheless they often lead to IgE-sensitization. ${ }^{36,37}$ This follows properties of the antigens themselves. We found that IgG reactivity to the highly cross-reactive pollen allergens Phl p 12 and Bet v 2 (i.e., profilins) ${ }^{38}$ and PR-10 proteins ${ }^{39}$ was very common in each region whereas IgE and IgG reactivity to another class of cross-
reactive pollen allergens, the calcium-binding allergens from birch (Bet v4) and timothy grass (Phlp7) was low in all regions. PR-10 and profilins are present in pollen and plantderived foods whereas the polcalcins, i.e., calcium-binding allergen components are present only in pollen. This probably explains the differences in IgG reactivity between PR-10 and profillins (high) by comparison to calcium-binding components (low). This is supported by a recent study suggesting that foodborne PR-10 allergens initiate an early IgG-response to PR-10 molecules but no IgE-response. ${ }^{11}$ Certain house dust mite allergens that are rare targets for lgE (Der p 10, Der p 11 and $\operatorname{Der} p 14,<10 \%$ in our population) are frequently recognized by \lg antibodies ($>60 \%$ in our population). Interestingly, these allergens are mainly present in mite bodies and therefore allergen contact occurs mainly via the skin ${ }^{40}$ or via cross-reactive food allergens (e.g., Der p 10 is cross-reactive with tropomyosin from shrimps).

In conclusion, the results from the analysis of lgE and lgG responses against a comprehensive set of respiratory and food allergens in the present study suggest that lgG response is related to exposure via the respiratory tract, the gastrointestinal tract and possibly via the skin whereas IgE sensitization occurs mainly when the subject is exposed via the respiratory tract. However, only a fraction of these subjects develops lgE antibodies. ${ }^{18}$ The results of the present study will be valuable for better understanding when allergen-specific interventions like avoidance or immunotherapy should be undertaken or not.

Acknowledgments

The authors thanks the EGEA cooperative group:
Coordination : V Siroux (epidemiology, PI since 2013); F Demenais (genetics); I Pin (clinical aspects); R Nadif (biology); F Kauffmann (PI 1992-2012).

Respiratory epidemiology : Inserm U 700, Paris : M Korobaeff (Egea1), F Neukirch (Egea1); Inserm U 707, Paris : I Annesi-Maesano (Egea1-2) ; Inserm CESP/U 1018, Villejuif : F Kauffmann, N Le Moual, R Nadif, MP Oryszczyn (Egea1-2), R Varraso ; Inserm U 823, Grenoble : V Siroux.

Genetics : Inserm U 393, Paris : J Feingold ; Inserm U 946, Paris: E Bouzigon, F Demenais, MH Dizier ; CNG, Evry : I Gut (now CNAG, Barcelona, Spain), M Lathrop (now Univ McGill, Montreal, Canada).

Clinical centers : Grenoble : I Pin, C Pison; Lyon : D Ecochard (Egea1), F Gormand, Y Pacheco ; Marseille : D Charpin (Egea1), D Vervloet (Egea1-2) ; Montpellier : J Bousquet ; Paris Cochin : A Lockhart (Egea1), R Matran (now in Lille) ; Paris Necker : E Paty (Egea1-2), P Scheinmann (Egea1-2) ; Paris-Trousseau : A Grimfeld (Egea1-2), J Just.

Data and quality management : Inserm ex-U155 (Egea1) : J Hochez ; Inserm CESP/U 1018, Villejuif : N Le Moual ; Inserm ex-U780 : C Ravault (Egea1-2) ; Inserm ex-U794 : N

Chateigner (Egea1-2) ; Grenoble : J Quentin-Ferran (Egea1-2).
The authors thank all those who participated in the setting of the study and in the various aspects of the examinations involved: interviewers; technicians for lung function testing, skin prick tests, and IgE determinations; coders; those involved in quality control and data and sample management; and all those who supervised the study in all centers. They are also grateful to the biobanks in Lille (CIC-Inserm), and Annemasse (Etablissement français du sang) where biological samples are stored. They are indebted to all the individuals who participated, without whom the study would not have been possible.

The authors thanks the RNSA (Réseau National de Surveillance Aérobiologique), the French aerobiology network in charge of the analysis of biological particles in air samples, for providing access to the data of pollen concentrations across France.

The authors thank Rob Aalberse, Amsterdam, The Netherlands for thoughtful discussions.

The study was supported in part by Inserm Aviesan Itmo santé publique, the Scientific committee "AGIR for chronic diseases", grant F4605 of the Austrian Science Fund (FWF) to RV and by the European Commission's Seventh Framework 29 Program MeDALL under grant agreement no. 261357.

References

1. Valenta R. The future of antigen-specific immunotherapy of allergy. Nat Rev Immunol 2002;2:446-53.
2. Jenmalm MC, Bjorksten B. Development of immunoglobulin G subclass antibodies to ovalbumin, birch and cat during the first eight years of life in atopic and non-atopic children. Pediatr Allergy Immunol 1999;10:112-21.
3. Hofmaier S, Comberiati P, Matricardi PM. Immunoglobulin G in IgE-mediated allergy and allergen-specific immunotherapy. Eur Ann Allergy Clin Immunol 2014;46:6-11.
4. Matsuoka T, Shamji MH, Durham SR. Allergen immunotherapy and tolerance. Allergol Int 2013;62:403-13.
5. Akdis M, Akdis CA. Mechanisms of allergen-specific immunotherapy: multiple suppressor factors at work in immune tolerance to allergens. J Allergy Clin Immunol 2014;133:621-31.
6. Larche M, Akdis CA, Valenta R. Immunological mechanisms of allergen-specific immunotherapy. Nat Rev Immunol 2006;6:761-71.
7. Braza F, Chesne J, Castagnet S, Magnan A, Brouard S. Regulatory functions of B cells in allergic diseases. Allergy 2014;69:1454-63.
8. Curin M, Swoboda I, Wollmann E, et al. Microarrayed dog, cat, and horse allergens show weak correlation between allergen-specific IgE and IgG responses. J Allergy Clin Immunol 2014;133:918-21 e6.
9. Lau S, Illi S, Platts-Mills TA, et al. Longitudinal study on the relationship between cat allergen and endotoxin exposure, sensitization, cat-specific IgG and development of asthma in childhood--report of the German Multicentre Allergy Study (MAS 90). Allergy 2005;60:766-73.
10. Erwin EA, Woodfolk JA, James HR, Satinover SM, Platts-Mills TA. Changes in cat specific IgE and IgG antibodies with decreased cat exposure. Ann Allergy Asthma Immunol 2014;112:545-50 e1.
11. Hofmaier S, Hatzler L, Rohrbach A, et al. "Default" versus "pre-atopic" IgG responses to foodborne and airborne pathogenesis-related group 10 protein molecules in
birch-sensitized and nonatopic children. J Allergy Clin Immunol 2015;135:1367-74 e8.
12. Hiller R, Laffer S, Harwanegg C, et al. Microarrayed allergen molecules: diagnostic gatekeepers for allergy treatment. FASEB J 2002;16:414-6.
13. Canonica GW, Ansotegui IJ, Pawankar R, et al. A WAO - ARIA - GA(2)LEN consensus document on molecular-based allergy diagnostics. World Allergy Organ J 2013;6:17.
14. Melioli G, Bonifazi F, Bonini S, et al. The ImmunoCAP ISAC molecular allergology approach in adult multi-sensitized Italian patients with respiratory symptoms. Clin Biochem 2011;44:1005-11.
15. Bousquet J, Anto J, Auffray C, et al. MeDALL (Mechanisms of the Development of ALLergy): an integrated approach from phenotypes to systems medicine. Allergy 2011;66:596-604.
16. Lupinek C, Wollmann E, Baar A, et al. Advances in allergen-microarray technology for diagnosis and monitoring of allergy: the MeDALL allergen-chip. Methods 2014;66:106-19.
17. Skrindo I, Lupinek C, Valenta R, et al. The use of the MeDALL-chip to assess IgE sensitization: a new diagnostic tool for allergic disease? Pediatr Allergy Immunol 2015;26:239-46.
18. Westman M, Lupinek C, Bousquet J, et al. Early childhood IgE reactivity to pathogenesis-related class 10 proteins predicts allergic rhinitis in adolescence. J Allergy Clin Immunol 2015;135:1199-206 e1-11.
19. Kauffmann F, Dizier MH, Annesi-Maesano I, et al. EGEA (Epidemiological study on the Genetics and Environment of Asthma, bronchial hyperresponsiveness and atopy)-- descriptive characteristics. Clin Exp Allergy 1999;29 Suppl 4:17-21.
20. Boudier A, Curjuric I, Basagana X, et al. Ten-year follow-up of cluster-based asthma phenotypes in adults. A pooled analysis of three cohorts. Am J Respir Crit Care Med 2013;188:550-60.
21. Siroux V, Boudier A, Bousquet J, et al. Phenotypic determinants of uncontrolled asthma. J Allergy Clin Immunol 2009;124:681-7.
22. Kauffmann F, Dizier MH. EGEA (Epidemiological study on the Genetics and Environment of Asthma, bronchial hyperresponsiveness and atopy)--design issues. EGEA Co-operative Group. Clin Exp Allergy 1995;25 Suppl 2:19-22.
23. Kauffmann F, Dizier MH, Pin I, et al. Epidemiological study of the genetics and environment of asthma, bronchial hyperresponsiveness, and atopy: phenotype issues. Am J Respir Crit Care Med 1997;156:S123-S9.
24. Wollmann E, Hamsten C, Sibanda E, et al. Natural clinical tolerance to peanut in African patients is caused by poor allergenic activity of peanut IgE. Allergy 2015.
25. Thibaudon M. [The pollen-associated allergic risk in France]. Allerg Immunol (Paris) 2003;35:170-2.
26. Thibaudon M, Caillier J. Dévelopement temporel et géographique des allergènes polliniques principaux en France: 1987-2001. Allerg Immunol (Paris) 2002;34:1547.
27. Hatzler L, Panetta V, Lau S, et al. Molecular spreading and predictive value of preclinical IgE response to Phleum pratense in children with hay fever. J Allergy Clin Immunol 2012;130:894-901 e5.
28. Panzner P, Vachova M, Vitovcova P, Brodska P, Vlas T. A comprehensive analysis of middle-European molecular sensitization profiles to pollen allergens. Int Arch Allergy Immunol 2014;164:74-82.
29. Douladiris N, Savvatianos S, Roumpedaki I, Skevaki C, Mitsias D, Papadopoulos NG. A molecular diagnostic algorithm to guide pollen immunotherapy in southern Europe: towards component-resolved management of allergic diseases. Int Arch Allergy Immunol 2013;162:163-72.
30. Armstrong BG. Effect of measurement error on epidemiological studies of environmental and occupational exposures. Occup Environ Med 1998;55:651-6.
31. Salo PM, Arbes SJ, Jr., Jaramillo R, et al. Prevalence of allergic sensitization in the United States: results from the National Health and Nutrition Examination Survey (NHANES) 2005-2006. J Allergy Clin Immunol 2014;134:350-9.
32. Bousquet J, Guerin B, Hewitt B, Lim S, Michel FB. Allergy in the Mediterranean area. III: Cross reactivity among Oleaceae pollens. Clin Allergy 1985;15:439-48.
33. Palomares 0, Swoboda I, Villalba M, et al. The major allergen of olive pollen Ole e 1 is a diagnostic marker for sensitization to Oleaceae. Int Arch Allergy Immunol 2006;141:110-8.
34. Castro L, Mas S, Barderas R, et al. Sal k 5, a member of the widespread Ole e 1-like protein family, is a new allergen of Russian thistle (Salsola kali) pollen. Int Arch Allergy Immunol 2014;163:142-53.
35. Yamagiwa M, Hattori R, Ito Y, et al. Birch-pollen sensitization in an area without atmospheric birch pollens. Auris Nasus Larynx 2002;29:261-6.
36. Heiss S, Mahler V, Steiner R, et al. Component-resolved diagnosis (CRD) of type I allergy with recombinant grass and tree pollen allergens by skin testing. J Invest Dermatol 1999;113:830-7.
37. Vrtala S, Ball T, Spitzauer S, et al. Immunization with purified natural and recombinant allergens induces mouse IgG1 antibodies that recognize similar epitopes as human IgE and inhibit the human IgE-allergen interaction and allergeninduced basophil degranulation. J Immunol 1998;160:6137-44.
38. Valenta R, Duchene M, Ebner C, et al. Profilins constitute a novel family of functional plant pan-allergens. J Exp Med 1992;175:377-85.
39. Ebner C, Hirschwehr R, Bauer L, et al. Identification of allergens in fruits and vegetables: IgE cross-reactivities with the important birch pollen allergens Bet v 1 and Bet v 2 (birch profilin). J Allergy Clin Immunol 1995;95:962-9.
40. Banerjee S, Resch Y, Chen KW, et al. Der p 11 is a major allergen for house dust miteallergic patients suffering from atopic dermatitis. J Invest Dermatol 2015;135:102-9.

	n (\%) / m (sd)
Number of males (\%)	159 (46.8 \%)
Mean age (\pm sd)	43.4 ($\pm 16.8)$
Status at recruitment	
Asthma cases, n (\%)	83 (24.4)
First-degree relatives of cases, \mathbf{n} (\%)	184 (54.1)
Controls, n (\%)	73 (21.5)
Recruitment center	
Paris, n (\%)	96 (28.2)
Lyon, n (\%)	75 (22.1)
Marseille, n (\%)	41 (12.0)
Montpellier, n (\%)	22 (6.5)
Grenoble, n (\%)	106 (31.2)
Asthma ever, n (\%)	170 (50\%)
Asthma in the past 12 months, n (\%)	138 (87.3 \%)
Allergic sensitization (≥ 1 positive SPT among the 11 allergen sources)*, n (\%)	197 (57.9\%)
Total lgE > $100 \mathrm{IU} / \mathrm{ml}{ }^{* *}$, n (\%)	145 (42.7 \%)
Allergic rhinitis ever, n (\%)	176 (52.4 \%)
Allergic rhinitis in the past 12 months, n (\%)	138 (44.8 \%)
Blood eosinophil counts > $250 \mathrm{~mm}^{3}$, n (\%)	86 (25.4 \%)
Atopic dermatitis ever, n (\%)	127 (37.6 \%)
$\mathrm{FEV}_{1}<80 \%$ of predicted value, (\%)	46 (13.6 \%)
Combined Asthma (ever) and allergic rhinitis (ever) phenotypes:	
No asthma and no rhinitis, n (\%)	121 (31.0 \%)
No asthma but rhinitis, n (\%)	48 (14.3 \%)
Asthma but no rhinitis, n (\%)	39 (11.6 \%)
Asthma and rhinitis, n (\%)	128 (38.1 \%)

TABLE I. Description of the study population ($\mathrm{n}=340$)
*11 allergen sources were : cat, Dermatophagoides pteronyssinus, Blattella germanica, olive, birch, Parietaria judaica, timothy grass, ragweed, Aspergillus, Cladosporium herbarum, Alternaria tenuis
** The threshold of $100 \mathrm{IU} / \mathrm{ml}$ has been used as in many other studies

TABLE II. Allergen specific IgE and IgG description

| | In all $(\mathbf{n}=\mathbf{3 4 0})$ | In subjects without AIT* $^{*}(\mathbf{n}=\mathbf{2 5 8})$ |
| :---: | :---: | :---: | :---: |
| | $\operatorname{lgE} \geq 0.3 \quad \operatorname{lgG} \geq 0.5 \mathrm{ISU}$ | $\operatorname{IgE} \geq 0.3 \mathrm{ISU} \quad \operatorname{IgG} \geq 0.5 \mathrm{ISU}$ |

Food allergens

Apple	rMal d 1	26	7.6	284	84.0	14	5.4	216	84.0
Hazelnut	rCor a	24	7.1						
	1.0401			234	69.2	12	4.7	176	68.5
Peanut	rAra h 8	16	4.7	233	68.9	6	2.3	180	70.0

Peach	rPru p 1	20	5.9	242	71.6	10	3.9	180	70.0
Soy	rGly m 4	8	2.4	292	86.4	2	0.8	221	86.0
Milk	nBos d 4	1	0.3	299	88.5	1	0.4	232	90.3
	nBos d 8	0	0.0	309	91.4			234	91.1
Egg	nGal d 1	2	0.6	289	85.5			217	84.4
Codfish	rGad c 1	0	0.0	95	28.1			72	28.0

* Allergen Immunotherapy

TABLE III. Adjusted odds ratios* for different centers of recruitment for being lgE- or IgG-positive to different airborne allergens

Allergen	Center	$\operatorname{lgE}(<0.3 ; \geq 0.3)$					$\operatorname{lgG}(<0.5 ; \geq 0.5)$				
		OR	Lower 95\% CI	$\begin{gathered} \text { Upper } \\ 95 \% \mathrm{Cl} \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{p} \\ \text { value } \end{array}$	Global p value	OR	Lower 95\% CI	$\begin{gathered} \text { Upper } \\ 95 \% \mathrm{Cl} \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{p} \\ \text { value } \end{array}$	Global p value
Amb a 1	Lyon	-					3.56	1.81	7.02	<0.01	0.001
	Marseille	-					2.52	1.09	5.85	0.03	
	Montpellier	-					0.79	0.23	2.67	0.70	
	Grenoble	-					1.32	0.69	2.51	0.40	
Bet v 1	Lyon	-					1.57	0.8	3.09	0.19	0.5
	Marseille	-					1.64	0.7	3.83	0.26	
	Montpellier	-					0.93	0.34	2.54	0.88	
	Grenoble	-					1.53	0.83	2.83	0.17	
Cup a 1	Lyon	0.67	0.24	1.84	0.44	0.0009	1.38	0.66	2.87	0.39	0.29
	Marseille	3.56	1.17	10.9	0.03		1.7	0.64	4.49	0.29	
	Montpellier	7.37	2.15	25.3	<0.01		7.79	0.98	62.2	0.05	
	Grenoble	0.85	0.36	1.96	0.7		1.05	0.56	1.96	0.88	
Phl p 1	Lyon	0.81	0.36	1.83	0.61	0.69	4.87	0.57	41.7	0.15	-
	Marseille	1.29	0.47	3.58	0.62		-				
	Montpellier	0.68	0.2	2.26	0.52		1.28	0.14	11.9	0.83	
	Grenoble	1.28	0.63	2.6	0.5		1.33	0.42	4.2	0.62	
Derp 1	Lyon	0.37	0.15	0.96	0.04	0.01	13.6	1.68	110	0.01	-
	Marseille	0.28	0.07	1.12	0.07		-				
	Montpellier	1.00	0.28	3.58	0.99		0.81	0.21	3.08	0.76	
	Grenoble	1.53	0.75	3.11	0.24		4.22	1.28	13.9	0.02	
Derp 2	Lyon	0.32	0.13	0.81	0.02	0.004	2.48	1.05	5.85	0.04	0.12
	Marseille	0.41	0.13	1.36	0.15		1.42	0.54	3.73	0.48	
	Montpellier	0.91	0.27	3.07	0.88		7.1	0.86	58.7	0.07	
	Grenoble	1.67	0.83	3.38	0.15		1.87	0.89	3.9	0.1	

*Odds Ratio (reference: Paris) adjusted for age, sex, asthma status and rhinitis status Some ORs could not be estimated because of sample size (represented by - in the table) ORs associated with a p value <0.05 are presented in bold.

Figure legends

FIG 1. IgE and IgG recognition frequencies and intensities for genuine pollen marker allergens from (A) ragweed (Amb a 1), (B) birch (Bet v 1), (C) cypress (Cup a 1), (D) olive/ash (Ole e 1), (E) timothy grass (Phl p 1) and for cross-reactive pollen allergens (F) timothy grass polcalcin(Phl p 7), (G) birch polcalcin (Bet v 4), (H) timothy grass profilin (Phl p 12) and (I) birch profilin (Bet \vee 2), and for the Bet v 1-related food allergen from (J) apple (Mal d 1) in different regions of France. Shown are the percentages of subjects (y-axes) with $\lg E$ (upper panel) and IgG reactivity (middle panel) to the allergens in the different cities of France (x-axes) and the pollen counts in the different areas of France (lower panels). Antibody levels are colour-coded and shown in ISU (ISAC standardized units).
P values assessing the differences across centres were estimated from the non-parametric Kruskal-Wallis test.

FIG 2. lgE and lgG recognition frequencies and intensities for respiratory house dust mite allergens derived from mite feces, i.e., (A) Der p 1, (B) Der p 2, (C) Der p 23 and from mite bodies, i.e., (D) Der p 10, (F) Der p 11 and (F) Der p 14, respectively. Shown are the percentages of subjects (y-axes) with $\lg E$ (upper panel) and lgG reactivity (lower panel) to the allergens in the different cities of France (x-axes). Antibody levels are color-coded and shown in ISU.

P values assessing the differences across centers were estimated from the non-parametric Kruskal-Wallis test.

FIG 3. IgG recognition frequencies and intensities for classical food allergens derived from (A) milk (Bos d 4), (B) egg (Gal d 1) and (C) fish (Gad c 1). Shown are the percentages of subjects (y-axes) with \lg reactivity to the allergens in the different cities of France (x-axes). Antibody levels are color-coded and shown in ISU.
P values assessing the differences across centers were estimated from the non-parametric Kruskal-Wallis test.

Online repository

Specific IgE and IgG measured by the MeDALL allergen-chip depend on allergen and route of exposure - the EGEA study

Valérie Siroux ${ }^{\text {a,b,c }}$, Christian Lupinek ${ }^{d}$, Yvonne Resch ${ }^{d}$, Mirela Curin ${ }^{\text {d }}$, Jocelyne Just ${ }^{\text {e, }}{ }^{\text {, }}$, Thomas Keil ${ }^{\mathrm{g}, \mathrm{h}}$, Renata Kiss ${ }^{\mathrm{d}}$, Karin Lodrup Carlsen ${ }^{\mathrm{i}, \mathrm{j}}$, Erik Melén ${ }^{\mathrm{k}, \mathrm{l}}$, Rachel Nadif ${ }^{\mathrm{m}, \mathrm{n}}$, Isabelle Pin ${ }^{\text {a,b,c }}$, Ingebjørg Skrindo ${ }^{\mathrm{j}, \mathrm{o}}$, Susanne Vrtala ${ }^{\text {d, } \mathrm{p}}$, Magnus Wickman ${ }^{1, m}$, Josep Maria Anto ${ }^{\text {q,r,s,t }}$, Rudolf Valenta ${ }^{\text {d }}$, Jean Bousquet ${ }^{m, n, u}$

TABLE EI. Comparison of included and non-included subjects

	Subjects without asthma			Subjects with asthma		
	NonIncluded	Included	$\begin{gathered} P \\ \text { value } \end{gathered}$	NonIncluded	Included	P value
n	697	170		507	170	
Age, m (sd)	46.3 (16.0)	46.8 (16.7)	0.68	38.8 (16.8)	40.0 (16.4)	0.42
Sex, \%males	46.6	47.7	0.81	49.1	41.2	0.07
Center of recruitment			0.51			0.02
Paris, \%	26.7	27.7		35.1	28.8	
Lyon, \%	17.9	22.9		13.0	21.2	
Marseille, \%	17.8	14.1		16.4	10.0	
Montpellier, \%	7.0	5.9		8.1	7.1	
Grenoble, \%	30.6	29.4		27.4	32.9	
Cat ownership ${ }^{1}$, \%	53.2	48.2	0.24	49.1	52.9	0.39
Allergic rhinitis ever, \%	30.2	28.4	0.65	70.1	76.7	0.10
Allergic sensitization (≥ 1 SPT among 12 allergens), \%	38.9	34.7	0.33	76.3	81.2	0.20
Total lgE>100IU/ml, \%	30.7	24.7	0.13	59.2	60.6	0.75

${ }^{1}$ current cat ownership or in childhood

TABLE E2. Agreement between SPT and allergen specific-IgE for those $\mathbf{7}$ allergen sources that showed a prevalence for positive SPT > 5\% in the study population.

	number of components on the MeDALL chip, n	positive SPT, \%	Allergen specific- IgE ≥ 0.3 for at least one of the allergen components, $\%$	Cohen Kappa coefficient
Timothy Grass	8	33.5	39.4	0.76
House dust mite	15	33.5	34.7	0.83
Cat	3	21.8	23.8	0.76
Olive	3	20.6	21.2	0.79
Birch	3	10.6	13.8	0.71
Alternaria	2	8.8	9.4	0.65
Ragweed	1	5.9	3.8	0.71

TABLE E3. Unadjusted odds ratios for different centers of recruitment for being IgE- or lgG-positive to different airborne allergens (reference: Paris), by asthma status

Allergen	Center	In subjects without asthma ($\mathrm{n}=170$)								In subjects with asthma ($\mathrm{n}=170$)							
		$\operatorname{lgE}(<0.3 ; \geq 0.3)$				$\operatorname{lgG}(<0.5 ; \geq 0.5)$				$\operatorname{lgE}(<0.3 ; \geq 0.3)$				$\operatorname{lgG}(<0.5 ; \geq 0.5)$			
		OR	Lower 95\% Cl	Upper $95 \% \mathrm{Cl}$	p value	OR	Lower 95\% Cl	Upper $95 \% \mathrm{Cl}$	p value	OR	Lower 95\% Cl	$\begin{aligned} & \text { Upper } \\ & 95 \% \mathrm{Cl} \end{aligned}$	p value	OR	Lower 95\%Cl	Upper $95 \% \mathrm{Cl}$	p value
Amb a 1	Lyon	-				2.25	0.91	5.61	0.08	-				5.46	2.09	14.3	<0.01
	Marseille	-				1.46	0.5	4.26	0.49	-				3.9	1.17	13	0.03
	Montpellier	-				1.25	0.28	5.62	0.77	-				0.35	0.04	3.08	0.35
	Grenoble	-				1.17	0.47	2.88	0.74	-				1.43	0.57	3.55	0.45
Bet v 1	Lyon	-				1.57	0.66	3.75	0.31	-				1.08	0.4	2.9	0.87
	Marseille	-				1.23	0.46	3.33	0.68	-				0.79	0.23	2.73	0.71
	Montpellier	-				0.88	0.22	3.45	0.85	-				0.72	0.19	2.81	0.64
	Grenoble	-				1.66	0.73	3.77	0.23	-				1.08	0.45	2.6	0.86
Cup a 1	Lyon	0.59	0.05	6.79	0.67	2.36	0.85	6.52	0.1	0.55	0.2	1.52	0.25	0.97	0.36	2.64	0.96
	Marseille	3.21	0.5	20.7	0.22	1.96	0.62	6.23	0.25	2.55	0.82	7.89	0.1	2.27	0.45	11.5	0.32
	Montpellier	15	2.25	100	0.01	2.06	0.39	10.9	0.39	2.27	0.63	8.19	0.21	-			
	Grenoble	0.94	0.13	6.94	0.95	1.43	0.6	3.43	0.42	0.69	0.29	1.63	0.39	0.74	0.31	1.77	0.5
Phl p 1	Lyon	0.56	0.15	2.01	0.37	2.59	0.26	26	0.42	0.88	0.37	2.09	0.78	-			
	Marseille	0.98	0.26	3.63	0.97	-				1	0.33	3.01	0.99	-			
	Montpellier	3.25	0.74	14.2	0.12	0.61	0.06	6.59	0.69	0.18	0.04	0.89	0.04	0.98	0.1	9.64	0.98
	Grenoble	1.22	0.44	3.41	0.71	1.6	0.26	10	0.61	1.02	0.47	2.2	0.96	1.16	0.27	4.89	0.84
Der p 1	Lyon	0.45	0.08	2.48	0.36	7.79	0.93	65.4	0.06	0.32	0.12	0.85	0.02	-			
	Marseille	-				-				0.35	0.1	1.22	0.1	-			
	Montpellier	0.93	0.1	8.99	0.95	1.85	0.2	16.7	0.59	0.57	0.15	2.13	0.4	0.27	0.05	1.4	0.12
	Grenoble	0.73	0.18	2.9	0.66	4.82	0.97	24	0.06	1.51	0.7	3.26	0.3	2.4	0.42	13.7	0.32
Der p 2	Lyon	0.45	0.08	2.48	0.36	2.14	0.77	5.96	0.14	0.27	0.1	0.72	0.01	2.15	0.53	8.74	0.29
	Marseille	0.76	0.14	4.26	0.76	1.14	0.39	3.33	0.81	0.4	0.12	1.31	0.13	1.37	0.26	7.21	0.71
	Montpellier	0.93	0.1	8.99	0.95	-				0.69	0.19	2.46	0.56	2.15	0.24	19	0.49
	Grenoble	1.15	0.32	4.04	0.83	1.62	0.65	4.02	0.3	1.48	0.68	3.22	0.32	1.63	0.52	5.06	0.4

TABLE E4. Adjusted odds ratios for different centers of recruitment for being lgE- or lgG-positive to different allergens (reference: Paris) among subjects without allergen immunotherapy

Allergen	Center	$\operatorname{lgE}(<0.3 ; \geq 0.3)$				$\operatorname{lgG}(<0.5 ; \geq 0.5)$			
		OR	Lower 95\% Cl	Upper 95\% Cl	p value	OR	$\begin{aligned} & \text { Lower } \\ & 95 \% \mathrm{Cl} \end{aligned}$	$\begin{gathered} \text { Upper } \\ 95 \% \mathrm{Cl} \end{gathered}$	$\begin{array}{r} p \\ \text { value } \end{array}$
Amb a 1	Lyon	-				2.60	1.20	5.65	0.02
	Marseille	-				1.92	0.73	5.03	0.18
	Montpellier	-				0.79	0.19	3.25	0.74
	Grenoble	-				1.15	0.55	2.42	0.72
Bet v 1	Lyon	0.42	0.08	2.19	0.30	1.77	0.81	3.85	0.15
	Marseille	-			0.95	1.60	0.62	4.13	0.34
	Montpellier	-			0.97	0.50	0.15	1.64	0.25
	Grenoble	0.87	0.25	2.98	0.82	1.34	0.67	2.69	0.40
Cup a 1	Lyon	0.51	0.10	2.58	0.42	1.35	0.58	3.16	0.48
	Marseille	4.64	0.99	21.70	0.05	1.71	0.55	5.36	0.36
	Montpellier	13.79	2.64	72.02	0.00	5.32	0.64	44.38	0.12
	Grenoble	1.33	0.39	4.54	0.65	0.84	0.41	1.73	0.64
Phl p 1	Lyon	0.74	0.26	2.12	0.57	3.46	0.37	32.18	0.28
	Marseille	2.17	0.61	7.67	0.23	-			
	Montpellier	1.24	0.28	5.45	0.78	0.76	0.07	7.86	0.82
	Grenoble	1.17	0.48	2.85	0.72	1.17	0.31	4.33	0.82
Der p 1	Lyon	0.64	0.19	2.12	0.46	11.25	1.37	92.65	0.02
	Marseille	0.16	0.02	1.50	0.11	-			
	Montpellier	0.45	0.05	4.29	0.48	0.57	0.14	2.34	0.44
	Grenoble	1.61	0.64	4.10	0.31	3.39	1.00	11.47	0.05
Derp 2	Lyon	0.53	0.16	1.71	0.29	2.31	0.93	5.78	0.07
	Marseille	0.49	0.11	2.28	0.36	1.57	0.53	4.63	0.41
	Montpellier	0.68	0.12	4.01	0.67	5.23	0.62	44.38	0.13
	Grenoble	2.07	0.83	5.17	0.12	1.98	0.89	4.40	0.10

*Odds Ratio (reference: Paris) adjusted for age, sex, asthma status and rhinitis status
Some ORs could not be estimated because of sample size (represented by - in the table)
ORs associated with a p value ≤ 0.05 are presented in bold.

E-FIGURE Legend

FIG E1. IgE and IgG recognition frequencies and intensities in subjects not reported allergen immunotherapy for (A) ragweed (Am b a1), (B) birch (Bet v 1), (C) Cypress (cup a 1), (D) timothy grass (Phl p 1), (E) houst dust mit (Der p 1), (F) house dust mite (Der p 10) and (G) apple (Mal d 1)

