
HAL Id: inserm-01809417
https://inserm.hal.science/inserm-01809417

Submitted on 6 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Long-Term Toxicity of [213]Bi-Labelled BSA in Mice
Laetitia Dorso, Edith Bigot-Corbel, Jérôme Abadie, Maya Diab, Sebastien

Gouard, Frank Bruchertseifer, Alfred Morgenstern, Catherine Maurel, Michel
Chérel, François Davodeau

To cite this version:
Laetitia Dorso, Edith Bigot-Corbel, Jérôme Abadie, Maya Diab, Sebastien Gouard, et al.. Long-Term
Toxicity of [213]Bi-Labelled BSA in Mice. PLoS ONE, 2016, 11 (3), �10.1371/journal.pone.0151330�.
�inserm-01809417�

https://inserm.hal.science/inserm-01809417
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE

Long-Term Toxicity of 213Bi-Labelled BSA in
Mice
Laëtitia Dorso1,2,3,5, Edith Bigot-Corbel1,2,3,4, Jérôme Abadie5, Maya Diab1,2,3,
Sébastien Gouard1,2,3, Frank Bruchertseifer6, Alfred Morgenstern6, Catherine Maurel1,2,3,
Michel Chérel1,2,3,7, François Davodeau1,2,3,8*

1 Nuclear Oncology, Nantes-Angers Cancer Research Center (CRCNA) UMR 892 Inserm, Nantes, France,
2 University of Nantes, Nantes, France, 3 CNRS, UMR 6299, Nantes, France, 4 Biochemistry Department,
Laënnec Hospital, Nantes, France, 5 L'UNAMUniversity, Oniris, AMaROC Unit, Nantes, France,
6 European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, Germany,
7 Nuclear Medicine, ICO institut de Cancerologie de l'Ouest - Centre René Gauducheau, Nantes, France,
8 Nuclear Medicine, University Hospital, Nantes, France

* davodeau@nantes.inserm.fr

Abstract

Background

Short-term toxicological evaluations of alpha-radioimmunotherapy have been reported in

preclinical assays, particularly using bismuth-213 (213Bi). Toxicity is greatly influenced not

only by the pharmacokinetics and binding specificity of the vector but also by non-specific

irradiation due to the circulating radiopharmaceutical in the blood. To assess this, an acute

and chronic toxicity study was carried out in mice injected with 213Bi-labelled Bovine Serum

Albumin (213Bi-BSA) as an example of a long-term circulating vector.

Method

Biodistribution of 213Bi-BSA and 125I-BSA were compared in order to evaluate 213Bi uptake

by healthy organs. The doses to organs for injected 213Bi-BSA were calculated. Groups of

nude mice were injected with 3.7, 7.4 and 11.1 MBq of 213Bi-BSA and monitored for 385

days. Plasma parameters, including alanine aminotransferase (ALT), aspartate aminotrans-

ferase (AST), blood urea nitrogen (BUN) and creatinine, were measured and blood cell

counts (white blood cells, platelets and red blood cells) were performed. Mouse organs

were examined histologically at different time points.

Results

Haematological toxicity was transient and non-limiting for all evaluated injected activities. At

the highest injected activity (11.1 MBq), mice died from liver and kidney failure (median sur-

vival of 189 days). This liver toxicity was identified by an increase in both ALT and AST and

by histological examination. Mice injected with 7.4 MBq of 213Bi-BSA (median survival of

324 days) had an increase in plasma BUN and creatinine due to impaired kidney function,

confirmed by histological examination. Injection of 3.7 MBq of 213Bi-BSA was safe, with no

plasma enzyme modifications or histological abnormalities.
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Conclusion

Haematological toxicity was not limiting in this study. Liver failure was observed at the high-

est injected activity (11.1 MBq), consistent with liver damage observed in human clinical tri-

als. Intermediate injected activity (7.4 MBq) should be used with caution because of the risk

of long-term toxicity to kidneys.

Introduction
The high Linear Energy Transfer (LET) and the short path of alpha particles (a few tens of μm)
enable tumour cells to be destroyed by fewer than ten alpha tracks per cell [1]. These properties
are suited to targeting small clusters of cells, isolated cells in haematological pathologies, or for
the treatment of micro metastasis in consolidation treatment. Targeted radionuclide therapy
(TRNT) with alpha particles is thus complementary to TRNT with beta particles, whose milli-
metric path is better suited to bulky tumour treatment.

Contrary to external beam irradiation, which delivers well-known homogenous irradiation
doses to a defined organ volume, the doses delivered to healthy organs during alpha or beta
TRNT are much more difficult to estimate. Therefore, establishing the relationship between
the absorbed dose and toxicity remains a challenge for medical dosimetry [2]. For particles
with a short path length, the energy deposition within an organ is not homogenous and
depends on the binding sites of the radiolabelled vector within tissue ultrastructures [1]. TRNT
may induce kidney failure, which is isotope and vector-dependent at equivalent doses to organs
[3]. Thus, the toxic effect of this irradiation depends firstly on the biodistribution of the radio-
labelled vector, and secondly on the histological organ structure. For example, in the case of the
liver, hepatocytes, whose cell diameter is in the range of 40 μm, are extensively irradiated by
the radiolabelled vector circulating in the blood capillaries bordering them. The resulting cross-
fire effect leads to irradiation of the whole liver volume even without the specific uptake of the
radiolabelled vector. Thus, in TRNT, the systemic injection of a radiopharmaceutical corre-
sponds to a total body irradiation with variable doses and dose rates to each organ. There are
few data enabling an evaluation of the radiation effect on quiescent cells, probably because of
the inherent difficulties of working with these cells in tissue culture. The ionising radiation
effect on healthy organs needs to be assessed by means of an overall monitoring of organ func-
tion and confirmed by histological examination of irradiated tissues.

Numerous 213Bi toxicity studies have been performed in the course of preclinical RIT assays
[4–9]. Most of them were carried out during short-term studies on tumour-bearing mice and
did not provide information on the long-term effects of a systemic irradiation with 213Bi [10,
11]. However, injected activities that effectively reduce tumour sizes and show no acute toxicity
to healthy organs could result in long-term tissue damage and organ failure [5].

Toxicity is closely related to the pharmacokinetics of the vector used for TRNT. Given the
short half-life of bismuth-213 (213Bi), the use of small-size vectors, such as radiolabelled pep-
tides with fast pharmacokinetics, pre-targeted radioimmunotherapy (RIT) approaches, or anti-
body fragments like Fab’, enables high radiation doses to be delivered to the tumour within the
time of 213Bi decay [6]. The rapid clearance of these kinds of vector from the blood limits their
myelotoxicity. However, their elimination via the kidneys raises the possibility of renal toxicity,
which appears in mice more than 10 weeks after treatment with infra-therapeutic doses [12].

Conversely, the use of larger vectors, like antibodies or F(ab')2 antibody fragments, to target
tumours rapidly accessible to an effective blood supply limits kidney toxicity at the cost of
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prolonged irradiation of haematopoietic bone marrow and healthy organs due to the serum
stability of the vectors and their low extravasation rate [11]. With such 213Bi-radiolabelled mac-
romolecules, healthy organs are substantially irradiated from the blood content. Moreover, free
bismuth also contributes to the global mean dose to organs due to dechelation from the vector
that occurs over time. The elimination of bismuth is known to involve urinary and biliary
excretion but the respective contributions of these two excretion routes is dependent on the bis-
muth formulation and the mode of administration. Dechelation of bismuth for macromole-
cules like soluble proteins, antibodies or Fab’2 antibody fragments is largely determined by the
strength of the interaction between bismuth and the chelating agent used for radiolabelling.

This study thus aims to assess the long-term tissue damage in a preclinical setting by using
213Bi radiolabelled BSA as an example of a non-specific macromolecule vector. In fact, BSA has
a slow diffusion rate across the vascular endothelium during the time of 213Bi decay [13]. Its
size (66 kDa and 7 nm in diameter) is above the physiological upper limit of pore size in the
walls of non-fenestrated blood capillaries [14]. Because BSA is larger than the limit of renal fil-
tration, like F(ab')2 and IgG currently used in RIT, it is contained within the plasma volume.
Therefore, using 213Bi-labelled BSA (213Bi-BSA) it is possible to evaluate the toxicity inherent
in radioimmunotherapy with macromolecules due to either irradiation from the blood or the
release of free bismuth following dechelation of 213Bi from the chelating agent CHX-A”-
DTPA, currently used to radiolabel macromolecule vectors. 213Bi-BSA was injected intrave-
nously into healthy nude mice, at increasing activities. Mice were monitored for 385 days after
injection. Blood-cell counts, measurement of blood biochemical parameters and the histopath-
ological examination of organs were performed during this period in order to understand bet-
ter the acute and chronic alpha-emitter-induced radiotoxicity.

Materials and Methods

Animals
NMRI-nu (nu/nu) female mice, 7 to 8 weeks old and weighing between 28.4 and 34.8 g, were
purchased from Janvier1, Le Genest St Isle, France. Mice were housed under standard condi-
tions (standard diet and water ad libitum). All animal experimentation was carried out in the
laboratory animal facilities (approval number: B-44-279). Experiments performed in this study
were approved by the Ethics Committee for Animal Experimentation—Pays de la Loire Region,
France (license N° CEEA 2012 171 for the biodistribution study, license N° CEEA 2013 2 for
the RIT study). Animal caretakers that check the changes in behaviour, posture and appearance
performed the monitoring of animals daily. The humane endpoints were a weight loss above
15% of initial weight or animals in a state of prostration. Animals that reach one of these end-
points were euthanized by cervical dislocation by caretakers. Blood sample collection was per-
formed by retro orbital puncture under anaesthesia by isoflurane inhalation. In order to
minimize animals suffering during blood samples collection, an eye drop of tetracaine 1% was
applied. A table summarising the number of mice used in the study is presented in S1 Table.

Radiolabelling, preparation and quality control of 213Bi-BSA and
125I-BSA
BSA was modified with 2-(4-isothiocyanatobenzyl)-cyclohexyl-diethylenetriaminepenta-acetic
acid (SCN-CHX-A”-DTPA, Macrocyclics) as previously described [15]. In brief, BSA and non-
specific antibodies were incubated with 20 equivalents (mol/ mol) of CHX-A”-DTPA in car-
bonate buffer (0.05 M, pH 8.7) overnight at room temperature and then purified by HPLC on a
Sephadex G200 gel-filtration column (Amersham Biosciences, Saclay, France). The mean
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chelate number per BSA molecule was 2, as assessed with 4 equivalents of citrate-acetate (0.02–
0.15 M, pH 5.5) buffered 111In solution. For labelling with 213Bi, the BSA-CHX-A”-DTPA was
incubated with 213Bi eluted from a 225Ac/213Bi generator (Institute for Transuranium Elements,
Karlsruhe, Germany) for 10 min in 0.8 M ammonium acetate (pH 5.3). The resulting 213Bi-
labelled BSA was separated from unbound 213Bi by size-exclusion chromatography using a
PD-10 column (GE Healthcare) [16]. Radiochemical purity, checked by ITLC-SG using 10%
TCA as solvent [17], was greater than 95%.

BSA was labelled with 125I (Perkin Elmer, Courtaboeuf France) using the iodogen method
as described previously [18]. The 125I-labelled BSA (125I- BSA) was purified on a PD10 column
(GE Healthcare). Radiolabelling efficiency, estimated by ITLC, was above 95%.

Biodistribution study and dosimetry
For biodistribution with 125I-BSA, mice were injected via the caudal vein with 5 μg of 125I- BSA
(39.5 MBq/mg). Three mice were sacrificed at 15, 45, 90 and 180 minutes after injection. Dif-
ferent organs were collected and weighed. The amount of radionuclide activity in tissues was
measured in parallel with a standard of injected activity using a gamma scintillation counter.

Biodistribution of 213Bi-BSA was performed following the same protocol. Mice were
injected with 5 μg of 213Bi-BSA (346 MBq/mg). The decay of bismuth was corrected and
adjusted to the time of sacrifice. The results were expressed as the mean percentage of the
injected dose per gram of tissue (%ID/g) ± standard deviation (SD).

The absorbed doses to organs were estimated from the biodistribution data obtained with
213Bi-BSA by calculating the area under the curve according to the trapeze method with Prism
software (Graph Pad software, San Diego, CA) in order to determine the total number of disin-
tegrations in each organ for the considered time period for an arbitrary injected dose of 1 MBq.
The dose to the organs per injected MBq was calculated by multiplying the total number of dis-
integrations by the mean energy of alpha particles. Beta and gamma emissions were not taken
into account. The absorbed dose to organs of 213Bi deduced from the 125I-BSA biodistribution
data was calculated after correction of 125I-BSA biodistribution for the decay of 213Bi. The same
method of integration applied to 213Bi-BSA was used for the dose calculation of 125I-BSA bio-
distribution corrected for 213Bi decay.

In vivo toxicological investigations
A single intravenous injection (caudal vein) was given of PBS to the control group (n = 5) and
increasing activities of 213Bi-BSA: 3.7 MBq (n = 5), 7.4 MBq (n = 7) and 11.1 MBq (n = 5)). Sur-
vival and body weight were monitored weekly for 55 weeks. Blood was collected by retro orbital
puncture into EDTA tubes in order to measure haematological parameters, and into lithium-
heparin tubes in order to measure biochemical parameters. Counts of total white blood cells
(WBC), red blood cells (RBC) and platelets were made on the day of injection and at weekly
intervals thereafter for 35 days for control mice (n = 5) and for mice injected with 3.7 MBq
(n = 5), 7.4 MBq (n = 7) and 11.1 MBq (n = 5) of 213Bi-BSA. The samples were counted on an
MS9/5 vet haematology analyser (Melet Schloesing Laboratories, Osny, France). Biochemical
parameters were measured using the plasma obtained after centrifugation of lithium-heparin
blood samples. Blood urea nitrogen (BUN) and creatinine levels as well as aspartate amino-
transferase (AST) and alanine aminotransferase (ALT) plasmatic activities were determined on
the day of injection and at monthly intervals thereafter for 55 weeks on a Hitachi 917 Roche
Analyzer (Meylan, France) using dedicated reagents. BUN was measured using the urease
method, creatinine by the creatininase method, and AST and ALT using the International Fed-
eration of Clinical Chemistry method without pyridoxal phosphate. All biochemical
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parameters were expressed as the percentage ± SD of the counts relative to the baseline value
(day 0, representing the day of the injection of 213Bi-BSA). Biochemical parameters were mea-
sured in control mice injected with PBS (n = 5) and in mice injected with 3.7 MBq (n = 5), 7.4
MBq (n = 7) and 11.1 MBq (n = 5) of 213Bi-BSA.

Survival curves were calculated using the Kaplan-Meier method and compared using the
log rank test. Body weight, AST, ALT, BUN and creatinine curves were compared using the
Mann-Whitney test. All analyses were 2-sided. P values of 0.05 or less were considered
significant.

Histological examination of mouse organs
Mice from the long-term follow-up were used for histological examination: control group
(n = 5); 3.7 MBq group (n = 3); 7.4 MBq group (n = 4) and 11.1 MBq group (n = 2). Dedicated
animals injected with 11.1 MBq (n = 4) were sacrificed 26 weeks after injection and mice
injected with 3.7 MBq (n = 3) and 7.4 MBq (n = 4) were sacrificed 35 weeks after injection.
Age-matched NMRI-nu mice from the same supplier (Janvier Labs, France) were used as his-
torical controls (n = 3 and n = 2, respectively). Liver, kidney, lung, heart and spleen were fixed
in 4% neutral-buffered formalin and processed by routine methods. Sections were stained with
Haematoxylin-Eosin-Saffron (HES), Periodic Acid Schiff (PAS) and Masson’s Trichrome
(MT) and evaluated with a Nikon Eclipse 5DI light microscope by two certified veterinary
pathologists. The observations were graded as follows: 0 (absent), 1 (moderate), 2 (marked)
and 3 (severe). Because of the number of animals, semi-quantitative variables (histological
grade occurrence) of the different groups were compared using Fisher’s exact test. P values
�0.05 were considered significant. R software (R development Core Team, Vienna, Austria)
was used for the analysis.

Results

Pharmacokinetics and dosimetry
The biodistribution of 213Bi-BSA was measured at 15, 45, 90, and 180 min after injection
(Fig 1). The mean doses to organs deduced from the biodistribution data are given in Table 1.
The highest mean absorbed doses were delivered to blood, lung, heart, liver and kidneys. Free
bismuth is known to accumulate in the liver and kidneys and to be eliminated by faecal and
urinary excretion [19]. The comparison of mean absorbed doses to organs deduced from 213Bi-
BSA biodistribution with mean absorbed doses calculated by applying 213Bi decay to 125I-BSA
biodistribution revealed the lowest dose accumulation in liver, kidney, spleen and heart and
the highest doses in stomach and lung when 125I was used in place of 213Bi to radiolabel BSA
(Table 1). In order to evaluate the contribution of 213Bi-BSA blood content and free 213Bi
uptake to the mean absorbed dose to organs, organ to blood activity ratios obtained with 213Bi-
BSA and 125I-BSA at different time points were compared. These ratios give insight into isotope
accumulation in the different organs. A significant increase in these ratios was observed for
liver, spleen and kidney for the biodistribution performed with 213Bi-BSA, in accordance with
the known metabolism of proteins and the residualizing properties of bismuth-213. Con-
versely, the stomach to blood ratio increased for the biodistribution performed with 125I-BSA,
consistent with the accumulation of free iodine in this organ due to the expression of iodine
symporter (Table 2). No significant differences in organ to blood activity ratios were observed
for other organs between 213Bi-BSA and 125I-BSA. The differences between 213BI-BSA and
125I-BSA mean doses to heart and lung may be related to their high blood content, which ren-
ders dose evaluation to organ tissues difficult to assess accurately.
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Toxicity: weight and survival
Three groups of nude mice were injected with PBS in the control group and with 213Bi-BSA at
increasing activities: 3.7 MBq, 7.4 MBq, and 11.1 MBq. Body weight and survival were moni-
tored every 9–10 days over a 385-day period (Fig 2A and 2B). In the 11.1 MBq injected group,
all mice died between day 97 and day 221 with a median survival of 189 days. All mice injected
with 7.4 MBq died between day 269 and day 357 with a median survival of 324 days. In the 3.7
MBq injected group (n = 5), one mouse died at day 165 and a second one at day 255 without
prior weight loss or abnormal blood parameter and without obvious signs of suffering at daily
monitoring. Autopsy was not feasible on these animals and we were not able to define the real

Fig 1. 213Bi-BSA biodistribution in nudemice. Biodistribution of 213Bi-BSA was determined at 15, 45, 90
and 180 minutes after injection. Three mice were sacrificed at each time point. The results are expressed as
the percentage of injected activity per gram ± SD.

doi:10.1371/journal.pone.0151330.g001

Table 1. Mean dose to organs with 213Bi-BSA and comparison with mean dose to organs calculated applying 213Bi decay to 125I-BSA
biodistribution.

Gy/MBq Gy/MBq Gy/3.7 MBq Gy/7.4 MBq Gy/11.1 MBq
125I-BSA 213Bi-BSA 213Bi-BSA 213Bi-BSA 213Bi-BSA

Blood 1.25 1.14 4.22 8.44 12.65

Liver 0.22 0.38 1.41 2.81 4.22

Kidney 0.26 0.30 1.11 2.22 3.33

Gut 0.09 0.09 0.33 0.67 1.00

Lung 0.56 0.49 1.81 3.63 5.44

Muscle 0.04 0.05 0.19 0.37 0.56

Spleen 0.15 0.22 0.81 1.63 2.44

Skin 0.10 0.07 0.26 0.52 0.78

Brain 0.04 0.05 0.19 0.37 0.56

Heart 0.29 0.38 1.41 2.81 4.22

Bone 0.13 0.11 0.41 0.81 1.22

Stomach 0.13 0.05 0.19 0.37 0.56

doi:10.1371/journal.pone.0151330.t001
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causes of their death. All mice in the control group survived to the end of the monitoring
period. Significant differences in survival were found between the control and the 7.4 MBq
group (p = 0.0062), between the control and the 11.1 MBq group (p = 0.0014), between the 7.4
MBq and the 11.1 MBq group (p = 0.0005) and between the 3.7 MBq and the 11.1 MBq group
(p = 0.034). No significant difference was found between the control and the 3.7 MBq group,
or between the 3.7 MBq and the 7.4 MBq group (Fig 2A).

The body weight curves (Fig 2B) can be subdivided into several phases. During the first 10
days, all injected mice experienced a body weight loss less than or equal to 10% of their initial
body weight. This first phase corresponded to acute and transient radiotoxicity since all mice
recovered their initial weight between days 20 and 30 after injection, and continued to gain
weight until day 75. No significant differences were observed between injected and control
groups at this time. A subsequent drop in weight was observed for all injected animals com-
pared to the control group up to day 150. Thereafter, differences between the injected groups
began to appear. The weight curves of the 11.1 MBq group rapidly decreased concomitantly
with the death of mice between day 97 and day 221. The weight of mice injected with 3.7 and
7.4 MBq stabilised during this period below the level of the control animals. Likewise for the
11.1 MBq group, the weight of mice of the 7.4 MBq group dropped between day 300 and day
350, during the period when death occurred. In the 3.7 MBq group, the weight of mice normal-
ised and paralleled that of the control group.

Haematological toxicity
Haematotoxicity was assessed by counting white blood cells (WBC), red blood cells (RBC) and
platelets in control mice and mice injected with 0, 3.7, 7.4, and 11.1 MBq of 213Bi- BSA (Fig 3).
Independently of the injected activity, haematological toxicity appeared rapidly after injection
and was transient.

Table 2. Organ to blood activity ratio with 125I-BSA and 213Bi-BSA at different times.

15min 45min 90min 180min

213Bi-BSA 125I-BSA p 213Bi-BSA 125I-BSA p 213Bi-BSA 125I-BSA p 213Bi-BSA 125I-BSA p

Liver 0.23 +/-
0.03

0.18 +/-
0.01

ns 0.37 +/-
0.05

0.16 +/-
0.01

**** 0.45 +/-
0.04

0.19 +/-
0.03

**** 0.72+/-
0.09

0.23 +/-
0.07

****

Kidney 0.22 +/-
0.03

0.21 +/-
0.03

ns 0.29 +/-
0,03

0.18 +/-
0.03

** 0.30 +/-
0.03

0.24 +/-
0.03

ns 0.23
+/-0.05

0.44 +/-
0.07

****

Spleen 0.14 +/-
0.04

0.15 +/-
0.04

ns 0.22 +/-
0.01

0.12 +/-
0.01

* 0.23 +/-
0.06

0.09 +/-
0.03

** 0.38 +/-
0.13

0.13 +/-
0.02

****

Stomach 0.03 +/-
0.003

0.06 +/-
0.01

ns 0.05 +/-
0.01

0.10 +/-
0.01

* 0.06
+/-0.003

0.16 +/-
0.02

** 0.13 +/-
0.06

0.33 +/-
0.04

****

Heart 0.33+/- 0.11 0.21 +/-
0.04

ns 0.32 +/-
0.07

0.22 +/-
0.02

ns 0.36 +/-
0.04

0.27 +/-
0.02

ns 0.38
+/-0.14

0.33 +/-
0.13

ns

Lung 0.37 +/-
0.08

0.39+/- 0.09 ns 0.50 +/-
0.20

0.46+/- 0.15 ns 0.41 +/-
020

0.54 +/-
0.08

ns 0.51 +/-022 0.37 +/-
0.05

ns

The results are given as the mean +/- SD of organ to blood activity ratio at different times for each organ. Statistical significance between 125I-BSA and
213Bi-BSA organ to blood activity ratios was estimated with an unpaired t test:

*: p<0.01;

**: p<0.001;

***: p<0.0001;

****: p<0.00001).

doi:10.1371/journal.pone.0151330.t002
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Fig 2. Total body weight and survival of mice injected with increasing activities of 213Bi-BSA. Three groups of mice were injected with 213Bi-BSA at
increasing activities: 3.7 MBq (n = 5), 7.4 MBq (n = 7), and 11.1 MBq (n = 5) while a control group (n = 5) was injected with PBS. (A) In the 11.1 MBq injected
group, the median survival period was 189 days. In the 7.4 MBq injected group, it was 324 days. In the 3.7 MBq injected group, one mouse died at day 165
and a second one at day 255. The median survival time was not reached in this group. All mice in the control group survived to the end of the assay. *:
significant differences. (B) Total body weights were monitored over a 385-day period on the same animals. *: significant differences.

doi:10.1371/journal.pone.0151330.g002
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Fig 3. Haematological toxicity in mice injected with increasing activities of 213Bi-BSA. Blood counts of
WBC (A), RBC (B), and platelets (C) were performed in mice injected with PBS, 3.7 MBq, 7.4 MBq and 11.1
MBq of 213Bi-BSA. The mean numbers (± SD) at each time point are shown.

doi:10.1371/journal.pone.0151330.g003
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As early as three days after injection, a drop in WBC was observed, with a minimum at day
7. WBC decreased to 18.4%, 16.2% and 4.7% of the initial value (determined at day 0) for
injected activities of 3.7, 7.4 and 11.1 MBq, respectively. A return to the initial WBC counts
was observed at day 14 after injection for all injected activities (Fig 3A).

The minimum of the platelet count was reached at day 7 with 65.2%, 41.9% and 19.3% of
the initial value for injected activities of 3.7, 7.4 and 11.1 MBq, respectively. A return to the ini-
tial number of platelets was observed at day 14 for the 3.7 and 7.4 MBq groups and at day 24
for the 11.1 MBq group (Fig 3B).

RBC counts remained unchanged for the 3.7 and 7.4 MBq groups but decreased to 48.7% of
the initial value for the 11.1 MBq injected group at day 14, returning to the initial value at day
24 (Fig 3C).

Haematological data thus indicate that even the 11.1 MBq-injected activity was not myeloa-
blative since mice injected with 11.1 MBq of 213Bi- BSA died between day 97 and day 221 with
numbers of WBC, platelets and RBC comparable to those before injection and of the control
group, indicating that toxicity to the bone marrow was not the dose-limiting toxicity [20].

Analysis of hepatic and renal biochemical parameters
Plasmatic ALT and AST were measured to evaluate hepatic function since they reflect hepatic
cytolysis. In the group of mice injected with 11.1 MBq, which died before day 220, an increase
in AST (x3) and ALT (x5) was observed starting at day 100 and continuing to increase until
death (x5 for AST and x10 for ALT). This indicated hepatocyte damage (necrosis or cytolysis),
as ALT activity was higher than AST (Fig 4). For the two other groups, an increase in AST and
ALT was also observed from day 250, which was more pronounced and sustained in the 7.4
MBq group than in the 3.7 MBq group.

To evaluate kidney damage, blood urea nitrogen (BUN) and creatinine were measured (Fig 5).
Uraemia is an indicator of kidney impairment but is also influenced by endogenous and exoge-
nous catabolism. Serum creatinine represents a good indicator of the severity of renal impairment,
particularly of GFR (glomerular filtration rate), as its plasma level increases when the functional
nephron mass is reduced by 50%. Acute kidney injury (AKI) corresponds to a rapid loss of kidney
function within the week after treatment. None of the injected mice, whatever the injected activity,
showed an early elevation of azotaemia in the days after injection of 213Bi-BSA that would evi-
dence AKI. The increase in azotaemia observed long-term after injection of mice with 11.1 and
7.4 MBq of 213Bi-BSA, (after 100 days and 200 days, respectively) is consistent with a chronic kid-
ney injury (CKI). The severity of chronic kidney injury (CKI) is defined by the value of the glo-
merular filtration rate (GFR). In CKI, an increase in azotaemia is observed (creatininaemia and
elevated BUN in plasma). Animals presenting a long-term elevated BUN and creatininaemia also
present histological evidence of renal injury, most likely due to renal damage causing CKI. In the
group of mice injected with 11.1 MBq, a parallel increase in uraemia and creatininaemia was
observed before death, but not in all mice, contrary to the mice of the 7.4 MBq group, which all
experienced a gradual and parallel increase in creatininaemia (x4) and uraemia (x5) (Fig 5) after
day 250 consistent with chronic kidney injury (CKI). In the 3.7 MBq group, uraemia and creatini-
naemia remained low throughout the monitoring period, indicating that this injected activity was
safe for the kidneys. For a more detailed analysis, a table summarising the time of animal death
and the increases in blood parameters of liver and kidney is presented in S2 Table.

Histological examination of the liver
The liver of injected animals showed several microscopic changes. The severity of these
changes increased with the injected activity. The more salient changes were cellular atypias
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Fig 4. Monitoring of plasmatic ALT and AST for liver toxicity assessment. (A) ALT and (B) AST activity were assessed monthly in plasma of mice
injected with PBS (control), 3.7 MBq, 7.4 MBq and 11.1 MBq of 213Bi-BSA. The mean level of ALT and AST (± SD) was expressed relative to the ALT and
AST plasma activities at day 0 taken as a reference.

doi:10.1371/journal.pone.0151330.g004
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Fig 5. Plasmatic creatinine and blood urea nitrogen (BUN) monitoring for kidney toxicity assessment. (A) Creatinine and (B) BUN were assessed
monthly in plasma of mice injected with PBS (control), 3.7 MBq, 7.4 MBq and 11.1 MBq of 213Bi-BSA. The mean level of creatinine and BUN (± SD) was
expressed relative to the creatinine and BUN plasma levels at day 0 taken as a reference.

doi:10.1371/journal.pone.0151330.g005
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(cytomegaly, karyomegaly, intra-nuclear cytoplasmic invagination (INCI), inflammation and
fibrosis (Fig 6A, 6B and 6C). In rodents, extramedullary haematopoiesis (EMH) is commonly
encountered in the liver and spleen in physiological conditions. In the liver, it is characterised
by groups of dozens of haematopoietic precursors located in the space of Disse [21]. Extrame-
dullary haematopoiesis is also encountered secondarily to radiation-induced myelotoxicity and
failure of central haematopoiesis [21]. In our study, EMH did not significantly increase in mice
injected with 213Bi-BSA compared to control groups (Fig 7C), and thus does not appear to be a
major consequence of alpha irradiation in accordance with the limited myelotoxicity deter-
mined by blood cell enumeration. Activity-dependent increases of centrolobular fibrosis and
periportal inflammatory cell infiltration indicated interstitial injury (Fig 7F). There was a statis-
tically significant difference between the control and mice injected with 7.4 MBq (p = 0.0204)
(Fig 6C). Isolated cellular necrosis was another indicator of hepatocyte injury. This was charac-
terised by a small basophilic nucleus within a shrunken, acidophilic cytoplasm, often sur-
rounded by a rim of degenerated neutrophils (Fig 7D). Although isolated necrosis seemed to be
activity-dependent, no statistically significant difference could be found compared to the con-
trol group. The incidence and severity of cellular atypias (cytomegaly, karyomegaly and INCI)
increased with injected activities. Cytomegaly is defined by the enlargement of the hepatocyte
cytoplasm, due to an increase in the cytosolic protein content or number of organelles (e.g.
smooth endoplasmic reticulum, peroxisomes, or mitochondria). It is generally considered an
adaptive response to chemical stress. Karyomegaly is characterised by an increased size of
hepatocyte nuclei and correlates with hepatocyte polyploidy, which occurs when there is dupli-
cation of nuclear material in the absence of cytokinesis (Fig 7E) [21]. The occurrence of these
atypias was activity-dependent (Fig 6A). Intra-nuclear cytoplasmic invagination (INCI) corre-
sponds to the protrusion of cytoplasm into an invagination of the hepatocyte nuclear mem-
brane (Fig 7E). INCI is are common in the liver of aged mice but, in this study, there was a
statistically significant difference between control and mice injected with 3.7 MBq (p = 0.0070),
7.4MBq (p = 0.0114) and 11.1MBq (P = 0.0031) (Fig 6B). These atypias were thus a conse-
quence of a radiation-induced process. Finally, although histological changes can be observed
in mice injected with 3.7 MBq of 213Bi-BSA compared to control animals (Fig 6B and 6C), the
liver of mice from this group did not show significant histological changes that would indicate
a major liver toxicity at this injected activity, in agreement with the maintenance of a basal
level of ALT and AST up to the end of the study (Fig 4A and 4B) (S2 Table).

Histological examination of the kidney
Kidney examination revealed several histological anomalies. The severity of these cellular aty-
pias (cytomegaly, karyomegaly), proteinaceous casts and glomerulosclerosis increased with the
injected activity (Fig 8A, 8B and 8C). Basophilic tubules, cytomegaly, and karyomegaly sug-
gested regenerative changes (Fig 9C).

Tubular injuries were also identified through wrinkled and thickened basement membranes,
demonstrated by PAS stain. Dilation of Bowman spaces and some cortical tubules occurred
secondarily to tubular loss or tubular obstruction due to proteinaceous casts. All these findings
characterise tubular injury and their frequency and severity increased in an activity-dependent
manner, though no significant differences between control and injected mice could be shown.
Glomerular injury was characterised by capsular and mesangial sclerosis and gave rise to pro-
teinaceous casts, visible by PAS staining (Fig 9F). Glomerular injuries were also identified
through wrinkled and thickened basement membranes demonstrated by PAS staining. Some
moderate interstitial lesions were recorded, such as moderate inflammatory cell infiltration
and fibrosis (Masson’s Trichrome) (Fig 9I). Similarly to tubular injury, glomerular injury
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Fig 6. Grade of activity-related hepatic histological features. Activity-related increases in (A) cytomegaly/
karyomegaly, (B) intranuclear cytoplasmic inclusion, and (C) inflammation/fibrosis of control mice (n = 10),
mice injected with 3.7 MBq (n = 5), 7.4MBq (n = 8) and 11.1 MBq (n = 6). Histological features were graded on
histological slides as follows: 0 (absent), 1 (moderate), 2 (marked) and 3 (severe). Histological grade
occurrences in the different groups were compared using Fisher’s exact test. P values�0.05 were
considered significant.

doi:10.1371/journal.pone.0151330.g006
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seemed to be activity-dependent although no statistically significant difference between groups
could be shown. This is probably due to the limited sample size and the setting of histological
analysis, which was performed on mice dedicated to histopathological analysis at specific fol-
low-up times irrespective of biochemical evidence of kidney failure, which occurred late in the
follow-up period. In the group of mice injected with 3.7 MBq of 213Bi-BSA, the histological
changes were limited compared to control mice (Fig 8B, 8E and 8H). These histological
changes did not seem to impair kidney function, at least during the long-term follow-up, in
agreement with the limited increase in BUN detected in the mice of this group at the end of the
assay (Fig 5A and 5B) (S2 Table).

Histological examination of lung, heart and spleen
Lung, heart and spleen showed no histological alteration. Classic X-ray radiation-induced inju-
ries, such as pulmonary radiation fibrosis, vascular changes in heart, lymphoid depletion in the
white pulp of the spleen, or diffuse fibrosis of the red pulp, were not observed.

Relationship between histological and biochemical analysis
Even though statistical correlations were not always found between the injected activity and
histological observations, the biochemical data of hepatocyte cytolysis (activity-dependent
increase in AST and ALT) were consistent with hepatocyte and interstitial injury at the highest
injected activity. Similarly, despite not reaching statistical significance in some cases, histologi-
cal modifications observed in the kidney (dilation of Bowman spaces, glomerulosclerosis, intra-
tubular proteinaceous casts) were consistent with the increase in blood creatinine and BUN
levels, clearly suggesting impaired renal function at 7.4 MBq injected activity due to tubular
and glomerular injury.

Fig 7. Liver histology of control and 213Bi-BSA injectedmice. (A) Control liver, 26 weeks post-injection,
(B) livers of mice 26 weeks after injection of 3.7 MBq 213Bi-BSA, and (C, D, E, F) livers of mice 26 weeks after
injection of 11.1 MBq 213Bi-BSA. Livers of mice injected with 3.7 MBq 213Bi-BSA do not show any significant
histological injury. Livers of mice injected with 11.1 MBq 213Bi-BSA show extramedullary haematopoiesis (C,
arrow), isolated necrosis (D, arrow), karyomegaly (Ka), cytomegaly (Cy) and intranuclear acidophilic
cytoplasmic invagination (INCI) (E). Inflammation and fibrosis are rarely observed (F, arrow). Haematoxylin-
Eosin-Saffron (bar = 100 μm).

doi:10.1371/journal.pone.0151330.g007
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Fig 8. Grade of activity-related renal histological features. Activity-related increases in (A) cytomegaly/
karyomegaly, (B) proteinaceous casts and (C) glomerulosclerosis, of control mice (n = 8), mice injected with
3.7 MBq (n = 5), 7.4 MBq (n = 8) and 11.1 MBq (n = 6). Histological features were graded as follows: 0
(absent), 1 (moderate), 2 (marked) and 3 (severe). Histological grade occurrences in the different groups
were compared using Fisher’s exact test. P values�0.05 were considered significant.

doi:10.1371/journal.pone.0151330.g008
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Discussion
The tolerance dose of normal tissues to whole organ volume X-ray irradiation is well estab-
lished and ranks organs from the most to the least radiosensitive as bone marrow, lung, kidney,
heart and liver [22]. This study of body irradiation by systemically administered 213Bi-BSA
gives a different scheme of long-term toxicity, with kidney and liver being more radiosensitive
than lung and heart on the basis of biochemical parameters and/or histological analysis. The
toxicity to bone marrow induced by 213Bi-BSA is transient and not limiting at the injected
activities used in this study. This pattern of long-term toxicity is not linked to the mean
absorbed dose to organs since the lung received the highest dose (0.49 Gy/MBq) followed by
the liver and heart (0.38 Gy/MBq) and kidney (0.30 Gy/MBq). Thus, the mean absorbed dose
to the organ was insufficient to take into account the specificity of high-LET alpha particle irra-
diation. While the energy deposit is homogenous for X or gamma rays, the actual energy depo-
sition to an organ for a given mean absorbed dose of high-LET radiation is influenced by the
location of dose deposition at the cellular scale. It is beyond the scope of this article to provide
a microdosimetric modelling of an alpha irradiation of mouse organs from the blood volume,
but the unexpected radioresistance of lung to alpha particles compared to its high radiosensi-
tivity to external beam irradiation underlines the necessity to investigate dose deposition at the
cellular level in order to link organ damage to injected activity.

Fig 9. Kidney histology of control and 213Bi-BSA injectedmice.Comparison between kidneys of (A, D,
G) control animals, (B, E, H) kidneys of mice 35 weeks after injection of 3.7 MBq of 213Bi-BSA, (C and I) 26
weeks after injection of 11.1 MBq of 213Bi-BSA and (F) 35 weeks after injection of 7.4 MBq of 213Bi-BSA.
Control kidneys, Haematoxylin-Eosin-Saffron (A), Periodic Acid Schiff (D), and Masson’s Trichrome (G).
Kidneys of mice injected with 3.7 MBq 213Bi-BSA do not show any significant histological injury (B (HES), E
(PAS) and H (MT)). Kidneys of mice injected with 11.1 or 7.4 MBq 213Bi-BSA show basophilic tubules,
karyomegaly and cytomegaly (C, arrow) (HES), proteinaceous casts (F, arrow), (PAS), and
glomerulosclerosis (I, arrow) (MT) (bar = 100 μm).

doi:10.1371/journal.pone.0151330.g009
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As far as lung is concerned, the tridimensional distribution of cells and their effective proba-
bility of being crossed by alpha tracks may explain their lower radiosensitivity to alpha particles
for at least three simple reasons. Firstly, because of its alveolar structure, the density of the lung
is one quarter that of the liver so that the dose to organ takes into account the energy of the
alpha particles lost in the air volume, contrary to other organs where virtually all the energy is
deposited in cells. Secondly, the distance between cells and blood capillaries and the density of
the vascular network per volume of tissue is lower in lung compared to liver. Thirdly, the cell
shape influences the quantity of energy deposited by an alpha particle. As an example, the
energy deposited by an alpha track crossing a type I pneumocyte is limited because of their flat
shape with a cytoplasm covering the alveolar surface as a sheet of around 0.4 μm in thickness.

Similarly, the histological structure of the bone marrow may explain the limited toxicity of
alpha particles. Although myelotoxicity is a concern in radioimmunotherapy, the kinetics of
WBC, RBC and platelet reconstitutions after 213Bi-BSA irradiation are very fast and correspond
to the time required for each haematopoietic population to differentiate and be exported from
the bone marrow to the periphery. The minimum number of platelets and leucocytes appeared
to be independent of the injected activity but, at 11.1 MBq, the recovery of a normal platelet
count was delayed (24 days vs. 14 days for 3.7 and 7.4 MBq injected activities). This could
reflect a partial destruction of the bone marrow stroma, which would impair central haemato-
poiesis and correlate with the appearance of extramedullary haematopoiesis in the liver at
injected activities higher than 3.7 MBq.

Watchman et al. clearly showed that a large number of bone marrow haematopoietic stem
cells are located further than 70 μm from the nearest blood vessel [20]. Even if some 213Bi-BSA
leaves the blood flow and moves by convection into the interstitial space, it is likely that a suffi-
cient number of stem cells located far from a blood vessel are protected from alpha irradiation
and able to repopulate the bone marrow. In fact, following total body irradiation, as little as 5%
of the pool of stem cells is sufficient to reconstitute haematopoiesis successfully [23]. This
observation of a limited alpha RIT myelotoxicity is consistent with previous long-term toxicity
assays in rodents that point out a limiting toxicity to kidneys.

In our long-term toxicity assay, we also observed a significant increase in BUN and creati-
nine at 7.4 and 11.1 MBq injected activities, corresponding to a mean absorbed dose to kidney
of 2.22 and 3.33 Gy, respectively. This increase in BUN and creatinine is concomitant with the
death of animals. We thus confirm in this assay that toxicity to kidney is limiting for alpha RIT
applications. However, in our assay, this toxicity to kidney is observed at a low mean dose com-
pared to previous studies. Using 213Bi-PAI2 as a radiolabelled vector, Song et al. observed kid-
ney damage at a mean dose to kidney of 11.5 to 14.4 Gy leading to death at 23 and 24 weeks,
respectively, with no sign of toxicity to other organs [5]. In line with this finding, Behr et al.
using 213Bi-CO17-1A Fab’ defined the MTD at 25.9 MBq and concluded that the correspond-
ing dose of 54 Gy to kidney seemed to be well tolerated although 35% of the mice died after 6
months [6]. Using 213Bi radiolabelled peptides, a dose of 6 and 11 Gy to kidney with 213Bi-
DOTA-PESIN and 213Bi-AMBA, respectively, led to tubular degeneration and karyomegaly 20
weeks after treatment, with recovery 10 weeks later due to the regeneration potential of the
renal tubular epithelium [7].

A major difference between these assays and ours is the use of small vectors with a size
under the kidney filtration threshold. With this kind of vector, blood clearance is fast and most
of the radiolabelled vector is eliminated by the renal route during the time of 213Bi decay, lead-
ing to high doses to kidney.

Whereas the mean dose to blood with small vectors remains under 0.3 Gy/MBq, the mean
dose to blood calculated with 213Bi-BSA is 1.14 Gy/MBq. Because of the fast filtration of the
small vectors and rapid decrease of the blood dose, the irradiation of kidney glomeruli from the

Long-Term Toxicity of 213Bi-Labelled BSA in Mice

PLOS ONE | DOI:10.1371/journal.pone.0151330 March 16, 2016 18 / 23



blood should be shortened compared to tubular irradiation. Conversely, larger vectors with a
size above the kidney filtration threshold, like 213Bi-BSA, may tend toward a stronger irradia-
tion of glomeruli compared to tubules due to their lasting presence in the blood. Reabsorption
of radiolabelled vector by the proximal tubule may also be limited in the case of large vectors
compared to small ones and thus the dose to tubules is probably lower for high molecular
weight vectors. This difference in the local irradiation of the nephron substructure may partly
explain the toxicity observed at a low mean dose to the kidney with 213Bi-BSA in our study
compared to smaller 213Bi-radiolabelled vectors.

Another non-exclusive explanation of toxicity at the low dose to kidney in our assay may be
related to the length of the follow-up. In fact, it has been shown that toxicity to kidney is
delayed when the injected dose decreases. Song et al., studying the toxicity of 213Bi-PAI2 in
mice, noted that in a 13-week follow-up period, the MTD deduced from weight loss was up to
1420 MBq/kg [5]. During this period, damage to kidney was mild but mice asymptomatic at 13
weeks become symptomatic at 20 weeks and reached the end-point at 30 weeks. A similar
influence of the dose on the time of renal toxicity occurrence was observed in a long-term tox-
icity study by the team of Back et al. measuring glomerular filtration after injection of an 211At-
labelled Fab’(2) in non-tumour-bearing mice. A 50% reduction in glomerular filtration was
observed at 8–30 weeks for animals receiving a mean dose to kidney of 14 Gy, but 11 Gy to kid-
ney was sufficient to induce the same glomerular filtration reduction in the period of 31–61
weeks. They also observed a progressive reduction in glomerular filtration a long time after
injection (42–50 weeks) for doses to kidney above 3 Gy [2]. The age of mice at the time of kid-
ney failure should thus be considered in the dose-toxicity response. In our assay, in the 7.4
MBq group, corresponding to a mean dose to kidney of 2.22 Gy, all mice died between weeks
38 and 51 with a huge increase in creatinine and BUN and histological changes revealing kid-
ney damage. The physiological changes in kidney structure and function with aging resulting
in a decreased glomerular filtration rate might also be considered when comparing the dose-
toxicity relationship [24, 25]. A partial destruction of the functional glomeruli with a mean
dose to kidney of 2–3 Gy would leave enough intact nephrons to ensure renal function in
young animals but would hasten kidney senescence in aging mice, leading to precocious kidney
failure.

A third characteristic of alpha RIT toxicity with high molecular weight radiolabelled vectors
like BSA, IgG or Fab’(2) IgG fragment is the high mean dose to the blood (1.14 Gy/MBq to kid-
ney with 213Bi-BSA). Consequently, the use of a large vector with a size over the kidney filtra-
tion threshold and with a liver elimination route leads to a sustained irradiation of healthy
organs from the blood and to a particular pattern of toxicity, as illustrated by this study and by
previous assays in rodents, dogs and humans using 213Bi-radiolabelled antibodies in the con-
text of a conditioning regimen for haematopoietic cell transplantation or in the treatment of
myeloid leukaemia.

Using a 213Bi anti-CD45 antibody in a mouse model, Nakamae et al. [11] detected a huge
peak of AST and ALT as early as three hours after antibody injection at 2.57 Gy delivered to
the liver, attesting an acute phase of cytolysis. AST and ALT then returned to baseline levels
one week after RIT and during the eight weeks of their follow-up period. We did not observe
this acute toxicity because, in our follow-up setting, the first measurement of AST and ALT
took place two weeks after injection. At this stage, ALT and AST were at the control level
regardless of the injected activity as in the Nakamae study. ALT and AST in the plasma
remained at the control level until weeks 7 and 11, respectively, when a significant increase was
observed in mice injected with 11.1 MBq of 213Bi-BSA corresponding to 4.22 Gy to the liver. At
this dose, liver functions were irreversibly impaired. We did not observe central vascular injury
with central congestion and venous fibrosis, referred to as veno-occlusive disease (VOD) and
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characteristic of X-ray late toxicity to the liver. However, sparse centrolobular fibrosis and peri-
portal inflammation observed at the highest injected activity are consistent with a limited inter-
stitial injury. Cellular atypias and progressive increases in plasma enzymes ALT and AST, at
the highest 213Bi-BSA doses, clearly demonstrated radiation-induced toxicity to the liver.

Our results are consistent with those observed for alpha RIT in conditioning regimens for
haematopoietic cell transplantation in dogs treated with 213Bi-anti-CD45 [26] or 213Bi-anti-
TCRαβ chain antibody [27] and in humans for anti-leukemic treatment with 213Bi-anti-CD33
[28]. In dogs, a transient increase in ALT and AST consistent with liver toxicity was observed
for injected activities of 213Bi-anti-CD45 between 133 and 170 MBq/g and one dog treated with
326 MBq/kg was euthanized because of liver failure [26]. In another assay, dogs treated with
213Bi-anti-CD45 exhibited more pronounced liver toxicity at injected activities comprised
between 122 and 180 MBq/kg. Lastly, Bethge et al. using 213Bi-anti-TCRαβ for conditioning for
allogeneic canine marrow transplantation reported a transient AST and ALT increase for
injected activities comprised between 137 and 207 MBq/kg and a sustained level of these
enzymes to the end of the study in one dog receiving 167 MBq/kg. Interestingly, like in mice,
these increases in liver enzymes appeared between days 40 and 100. Histological examination
of the liver of dogs receiving the highest doses of anti-CD45 or anti-TCRαβ revealed slight
signs of sinusoidal fibrosis and minimal bile duct abnormalities and, similar to mice, were not
consistent with radiation-induced VOD and liver fibrosis following high doses of X-rays. In
humans receiving 213Bi-anti-CD33 for RIT for myeloid leukaemia, although injected activities
were ten times lower than in dogs (ranging from 10.36 to 37 MBq/kg), the only adverse effect
reported, except for the haematological toxicity, was a transient liver function abnormality in
one third of patients between days 5 and 14 [28]. Another clinical trial combining Cytarabine
and RIT with 213Bi anti-CD33 treatments was performed on thirty-one patients receiving 37 to
46.25 MBq/kg. Twenty-one patients developed a transient increase in bilirubin alkaline phos-
phatase and transaminase between days 3 and 30 and five in this group developed grade 3 or 4
liver abnormalities [29]. This is consistent with an early increase in AST and ALT in mouse
soon after injection of 213Bi-radiolabelled antibody reported by Nakamae et al. at the dose of
2.57 Gy to the liver (1.85 MBq rat anti-mouse 213Bi anti-CD45 Mab). Given the scale differ-
ences between the different species and the specificity of the 213Bi-Mab used in these assays, it
is interesting to compare the doses to liver between species.

In this long-term toxicity study in mice, liver toxicity was observed in the group of mice
receiving 11.1 MBq (343 MBq/kg), corresponding to a 4.22 Gy dose to the liver, whereas only
some mice injected with 7.4 MBq (228 MBq/kg), corresponding to 2.81 Gy to the liver, experi-
enced a transient increase in transaminases. In assays of conditioning regimen for allogeneic
marrow graft with either 213Bi-anti-TCRαβ or 213Bi-anti-CD45 in dogs, the dose to liver was not
specifically calculated for the treated animals. However, in the assay of Bethge et al., a dose esti-
mate of between 1.8 and 4.2 Gy to liver can be extrapolated from the dosimetric analysis of the
dose to organ performed on one dog injected with 213Bi-anti-TCRαβ. In this assay, an increase
in transaminase and alkaline phosphatase occurred between day 30 and day 100 but the plasma
level of enzymes returned to the baseline for three dogs out of four. At autopsy, the dog with sus-
tained high transaminase had histological liver changes in the form of pericellular and periportal
fibrosis although no signs of frank cirrhosis were observed at the time of examination [27].

In human clinical trials, in an article dealing more specifically with the pharmacokinetics
and dosimetry [30] of 213Bi-labelled anti-CD33 antibody used in a leukaemia RIT clinical trial,
doses are calculated from images and are given in Sv rather than Gy because a multiplication
factor of 5, corresponding to the RBE of alpha particles, is included in the dose calculation. The
mean dose to the liver can be estimated as 5.21 ± 1.58 mSv/MBq, which corresponds to a mean
dose of 1.05 mGy/MBq without RBE. A patient of 65.9 kg (mean patient weight in this study)
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would thus have received 2.56 Gy to the liver for an injected activity of 37 MBq/kg, which cor-
responds to the threshold of liver damage observed with the 213Bi-labelled anti-CD33 antibody.
Thus, the doses to liver generating a risk of irreversible liver failure appear quite similar in mice
(this study), dogs and humans. In dogs and humans, no obvious signs of kidney failure were
observed during the follow-up.

Conclusion
This study emphasises the difference in toxicity patterns observed between small vectors like
peptides, with a size under the kidney filtration threshold, and larger macromolecules, with a
size over this threshold, like antibody, Fab’(2) Ig fragment or BSA, used in this study as an
example of a long-lasting plasmatic protein. The liver route of catabolism of these macromole-
cules together with the accumulation of free bismuth in this organ induces liver toxicity. Con-
versely, the fast elimination of smaller vectors by the renal route and the reabsorption of
radiopharmaceutical in proximal tubules deposit high doses to kidney while blood and liver
doses remain under the toxic limit.

In our long-term toxicity trial in mouse, we also observed kidney toxicity a long time after
injection at a relatively low dose to kidney, contrary to what has been observed in dogs and
humans treated with 213Bi-radiolabelled antibody. This discrepancy in toxicity between mice
and humans or dogs may be related to the length of the follow-up period compared to the life
span of each species. In mice, the natural decrease in glomerular filtration with aging during a
year of follow-up, corresponding to a third of their life expectancy, would sufficiently impair
kidney function for radiation-induced glomerular filtration to become limiting compared to
untreated animals. Conversely, given their longer life expectancy, the natural loss of glomerular
filtration during a year in humans and dogs would be limited, leaving enough functional neph-
rons to ensure kidney function after radiation-induced kidney damage.

Finally, a 3.7 MBq injected activity seems safe whereas the toxicity of 7.4 MBq needs to be
recognised with regard to the toxicity of current cancer treatments and a risk/benefit balance.
A clear toxicity to liver is observed at 11.1 MBq injected activity within 3–4 months after injec-
tion, indicating a clear toxicity at the corresponding dose to liver.
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