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Synergistic targeting of breast cancer stem-like cells
by human γδ T cells and CD8+ T cells

Hung-Chang Chen1,10, Noémie Joalland2,3, John S Bridgeman1,11, Fouad S Alchami4, Ulrich Jarry2,3,
Mohd Wajid A Khan1, Luke Piggott1,5, Yasmin Shanneik1, Jianqiang Li6, Marco J Herold6,7,
Thomas Herrmann6, David A Price1,8, Awen M Gallimore1,8, Richard W Clarkson5,9, Emmanuel Scotet2,3,
Bernhard Moser1,8 and Matthias Eberl1,8

The inherent resistance of cancer stem cells (CSCs) to existing therapies has largely hampered the development of effective

treatments for advanced malignancy. To help develop novel immunotherapy approaches that efficiently target CSCs,

an experimental model allowing reliable distinction of CSCs and non-CSCs was set up to study their interaction with

non-MHC-restricted γδ T cells and antigen-specific CD8+ T cells. Stable lines with characteristics of breast CSC-like cells were

generated from ras-transformed human mammary epithelial (HMLER) cells as confirmed by their CD44hi CD24lo GD2+

phenotype, their mesenchymal morphology in culture and their capacity to form mammospheres under non-adherent conditions,

as well as their potent tumorigenicity, self-renewal and differentiation in xenografted mice. The resistance of CSC-like cells to γδ
T cells could be overcome by inhibition of farnesyl pyrophosphate synthase (FPPS) through pretreatment with zoledronate or with

FPPS-targeting short hairpin RNA. γδ T cells induced upregulation of MHC class I and CD54/ICAM-1 on CSC-like cells and

thereby increased the susceptibility to antigen-specific killing by CD8+ T cells. Alternatively, γδ T-cell responses could be

specifically directed against CSC-like cells using the humanised anti-GD2 monoclonal antibody hu14.18K322A. Our findings

identify a powerful synergism between MHC-restricted and non-MHC-restricted T cells in the eradication of cancer cells

including breast CSCs. Our research suggests that novel immunotherapies may benefit from a two-pronged approach combining

γδ T-cell and CD8+ T-cell targeting strategies that triggers effective innate-like and tumour-specific adaptive responses.

Immunology and Cell Biology (2017) 95, 620–629; doi:10.1038/icb.2017.21

Cancer stem cells (CSCs) are the principal cause of disease recurrence,
distant metastasis, and eventually morbidity and mortality in patients
with different malignancies, including breast cancer.1 The inherent
resistance of CSCs to existing therapies has largely hampered the
development of effective treatments for patients with advanced disease,
and there is a paucity of studies aiming at directly targeting the CSC
pool.2 While CSCs are very rare cells and challenging to work with,
in particular in humans, progress has been made by linking the
cellular epithelial-to-mesenchymal transition (EMT) programme to
the generation of CSC-like cells, especially in breast cancer.3 In this
respect, immortalised human mammary epithelial cells undergoing
EMT acquire CSC properties, as judged by their CD44hi CD24lo

phenotype, their ability to form mammospheres and their tumour
initiation potential.3–5

Immunotherapy offers novel and potentially effective routes to
treating cancer, and progress has been made with regard to

adoptively transferring expanded or genetically engineered T cells
back into patients.6,7 However, the safety and efficacy of CD8+

T-cell-based therapies depend on whether the corresponding
target antigens are exclusively expressed by tumour cells and not
by healthy tissues, and whether they are recognised by the T-cell
receptor (TCR) with sufficient affinity. Most importantly, the
MHC restriction of tumour-specific epitopes limits the potential
benefit of cytotoxic CD8+ T cells to patients with appropriate
MHC haplotypes.8 Alternative immunotherapies are therefore
being sought that exploit non-MHC-restricted, ‘unconventional’
T cells that recognise stress-induced changes in transformed
cells.9–12 In this context, human Vγ9/Vδ2 T cells have been
shown to kill CSC-like tumour initiating cells derived from colon
cancer,13 ovarian cancer14 and neuroblastoma,15 especially upon
sensitisation of tumour cells by aminobisphosphonates such as
zoledronate.
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To establish novel immunotherapy approaches that efficiently target
CSCs, we here utilised transformed cell lines with CSC-like properties
as experimental model for primary breast CSCs, and well-
characterised T-cell epitopes as surrogates for yet-to-be-discovered
CSC-associated antigens. We demonstrate that the CSC-like cells
established in this study are relatively resistant to killing both by
antigen-specific CD8+ T cell and by Vγ9/Vδ2 T cells. However, the
resistance of CSC-like cells to γδ T cells could readily be overcome
by inhibition of farnesyl pyrophosphate synthase (FPPS) through
pretreatment with zoledronate or with FPPS-targeting short hairpin
RNA,16 or by opsonisation with the GD2-specific monoclonal
antibody hu14.18K322A.17 Most importantly, γδ T cells induced
upregulation of MHC class I and CD54 on CSC-like cells via secretion
of interferon gamma (IFN-γ), and thereby increased the susceptibility
to antigen-specific killing by CD8+ T cells.

RESULTS

Phenotypical characterisation of HMLER-derived CSC-like cells
We first sought to establish a well-defined cellular model that allows a
reliable distinction of CSC-like cells and non-CSCs based on
phenotypical, morphological and functional criteria. Immortalised
human mammary epithelial cells transformed by overexpression of
human telomerase reverse transcriptase, SV40 large T antigen and
oncogenic ras (referred to as HMLER cells)18 showed a predominant
CD44lo CD24hi phenotype under adherent culture conditions, yet
contained a distinct and stable population of CD44hi CD24lo cells that
comprised 0.4–2% of all cells (Figure 1a).3 This minor population of
putative CSC-like cells could be enriched to 420% of the total
population in primary mammosphere cultures, and to 470% in
secondary mammosphere cultures (Figures 1a and b), due to
drastically reduced survival of CD44lo CD24hi non-CSCs (Figure 1c).
At the same time, only CD44hi CD24lo CSC-like cells divided under
non-adherent conditions as evidenced by dilution of membrane dyes
(Figure 1d). As expected,4,19 antibodies against the ganglioside GD2
stained a proportion of CSC-like cells but not non-CSCs (Figure 1e).
Next, we sorted CD44hi CD24lo CSC-like cells and CD44lo CD24hi

non-CSCs from parental HMLER cells to purities 499.5%
(Supplementary Figure S1). In complete medium, both cell lines
maintained their characteristic phenotype over a period of up to
32 days in adherent culture (Figure 1f, Supplementary Figure S1).
Morphologically, non-CSCs displayed an epithelial growth pattern,
whereas CSC-like cells had a mesenchymal appearance (Figure 1f),
in accordance with the proposed acquisition of CSC properties by
cells undergoing EMT.3 CSC-like cells stained positively for the
mesenchymal markers vimentin and (albeit less prominently) fibro-
nectin extra domain A, whereas only a minor fraction of epithelial-like
non-CSCs expressed these markers (Figure 1g). Moreover, CSC-like
cells showed no expression of cytokeratin-14 (CK-14) as epithelial
marker for the basal/myoepithelial lineage and only intermediate levels
of the luminal lineage marker CK-18, as opposed to non-CSCs
(Figure 1g). In summary, the phenotype and morphology of CD44lo

CD24hi non-CSCs was consistent with epithelial characteristics, while
CD44hi CD24lo CSC-like cells showed signs of an incomplete EMT
with predominantly mesenchymal characteristics.

Functional characterisation of HMLER-derived CSC-like cells
In support of their CSC-like phenotype, CD44hi CD24lo cells had a far
greater potential to self-renew and form mammospheres than their
non-CSC counterparts that formed only very small aggregates
(Figure 2a). Moreover, only CSC-like cells but not non-CSCs
survived and proliferated under such anchorage-independent culture

conditions (Figure 2b). This functional difference was particularly
apparent in secondary mammosphere cultures, after dissociation
and re-seeding of primary aggregates (Figures 2a and b). The
distinct mammosphere-forming abilities of sorted CSC-like cells
and non-CSCs replicated both quantitatively and qualitatively
the characteristics of the CD44hi CD24lo and CD44lo CD24hi

subpopulations, respectively, within the parental HMLER line.
We next determined the tumour take and tumour growth rates of

sorted CSC-like cells and non-CSCs in a xenograft model using
immunodeficient NOD scid gamma (NSG) mice. To this end,
we transduced CSC-like cells and non-CSCs with lentiviral vectors
that conferred co-expression of the red fluorescent protein tdTomato
to allow non-invasive tumour imaging, and of influenza virus
matrix protein M1 (FluM1) as surrogate tumour-specific antigen
(Supplementary Figure S2). Lentivirally transduced CSC-like cells and
non-CSCs were indistinguishable from the corresponding parental cell
lines with respect to phenotype, morphology and long-term stability in
culture (data not shown). Upon injection into NSG mice, CD44hi

CD24lo CSC-like cells showed a striking potential to form tumours in
100% of treated animals, at numbers as low as 1 × 103 CSC-like cells
per mouse, as evidenced by in vivo imaging of tdTomato fluorescence
as well as caliper measurements of palpable tumours (Figure 2c,
Supplementary Figure S3). In contrast, CD44lo CD24hi non-CSCs
exhibited very poor tumorigenicity with only 1/6 mice developing a
sizeable tumour, with much slower growth rate, after receiving 2× 106

non-CSCs. Fluorescence imaging revealed tumour cells in the lung
and draining lymph nodes, but not in non-draining nodes, spleen or
liver, of several mice receiving CSC-like cells. No metastasis was
observed in mice injected with non-CSCs (Figure 2c).
Finally, we examined the plasticity and differentiation of CSC-like

and non-CSCs. In adherent cultures with mammosphere medium,
CD44hi CD24lo CSC-like cells expanded and gave rise to CD44lo

CD24hi cells with epithelial-like morphology, whereas CD44lo CD24hi

non-CSCs failed to survive under such culture conditions (Figure 1f).
Tumours derived from CSC-like cells exhibited a capacity to
differentiate (Figure 2d), especially after prolonged periods of tumour
development (Supplementary Tables S1 and S2). In contrast, tumours
derived from non-CSCs showed no signs of differentiation or
enrichment of contaminant CSC-like cells (Figure 2d). Histologically,
7/11 tumours arising from CSC-like cells were intimately associated
with native mouse mammary ducts, cuffing the vessels with areas of
necrosis distal to the vessels. The majority of such tumours showed at
least moderate levels of epithelioid differentiation as confirmed by
their expression of pan-cytokeratin (AE1/AE3) (Figure 2e); lung
metastases showed predominant epithelioid differentiation with no
residual features of CSC-like cells (data not shown). However,
tumours derived from CSC-like cells uniformly stained for vimentin
(Figure 2e), indicative of an only partial reverse EMT process during
tumour development in vivo. No adenocarcinoma differentiation was
identified morphologically, as judged by the absence of carcinoma
embryonic antigen expression (Supplementary Table S2).
In summary, HMLER-derived CD44hi CD24lo cells could be

maintained stably in culture and manipulated by lentiviral
transduction, while displaying phenotypical, morphological and
functional features in vitro and in vivo that are typically associated
with breast CSCs. We conclude that such CSC-like cells may represent
a powerful experimental model system for the targeting of CSCs,
especially CSC subpopulations with EMT-like characteristics, by
human immune cells.

Synergistic targeting of breast cancer stem cells
H-C Chen et al

621

Immunology and Cell Biology



MHC-restricted killing of CSC-like cells by antigen-specific CD8+

T cells
CSCs are intrinsically resistant to radiation and chemotherapy, and
exploit a number of immune evasion strategies.2,20 To address the
recognition of HMLER-derived CSC-like cells and non-CSCs by
human T cells, we utilised well-characterised peptides that served as
surrogate antigens, namely the immunodominant epitopes of FluM1,
p58-66 (GILGFVFTL), and of the human cytomegalovirus (CMV)
lower matrix phosphoprotein UL83/pp65, p495-503 (NLVPMVATV).
Tumour cells pulsed with FluM1 p58-66 peptides were readily targeted
by FluM1-specific CD8+ T cells, but not by pp65-specific CD8+ T cells
as control (Supplementary Figure S4). Similarly, tumour cells pulsed
with CMV pp65 p495-503 peptides were only lysed by pp65-specific
CD8+ T cells but not by FluM1-specific CD8+ T cells, demonstrating
the specificity of the experimental system. Of note, while epitope-
specific CD8+ T cells were able to kill both CSC-like cells and
non-CSCs when pulsed with the cognate peptides, CSC-like cells were
significantly more resistant to killing (Supplementary Figure S4).
Next, we translated these observations to lentivirally transduced

target cells that expressed endogenous FluM1. As expected,
FluM1+ CSC-like cells and FluM1+ non-CSCs were both killed by
FluM1-specific CD8+ T cells. However, CSC-like cells were killed less

efficiently than their non-CSC counterparts (Figure 3a). Many tumour
cells evade the immune system by downmodulating MHC molecules
and other proteins involved in antigen presentation and target cell
recognition.20 Indeed, HMLER-derived CSC-like cells expressed lower
levels of MHC class I and of CD54 (ICAM-1) on the cell surface than
non-CSCs (Figure 3b), thereby possibly explaining their relative
resistance to CD8+ T-cell-mediated killing. Recombinant IFN-γ readily
stimulated upregulation of MHC class I and CD54 expression on
CSC-like cells (Figure 3c), which in turn led to a significantly
improved susceptibility to CD8+ T-cell-mediated cytotoxicity
(Figure 3d). A similar sensitisation to CD8+ T-cell-mediated killing
by IFN-γ was observed for non-CSCs (data not shown). These
findings demonstrate that IFN-γ effectively sensitises CSC-like cells
to killing by tumour antigen-specific T cells.

Non-MHC-restricted killing of CSCs by innate-like Vγ9/Vδ2 T cells
The dependence of effective tumour cell killing on exogenously
provided IFN-γ prompted investigations into the role of γδ T cells,
which represent a major and early source of pro-inflammatory
cytokines upon activation in vitro and in vivo.21,22 Human γδ
T cells are increasingly appreciated as promising effectors for novel
immunotherapy strategies, not the least due to their ability to

Figure 1 Phenotypical characterisation of HMLER-derived non-CSC and CSC-like cells. (a, b) Enrichment of CSC-like HMLER cells under mammosphere-
forming conditions. HMLER cells from normal adherent cultures or from primary or secondary mammosphere cultures were examined for the proportion of
CD44hi CD24lo (CSC-like) cells and CD44lo CD24hi (non-CSC) cells. Gates were set sequentially on intact, single and live cells. Representative fluorescence-
activated cell sorting (FACS) plots are shown in (a), means± s.d. from three independent cultures in (b). (c) Differential viability of CSC-like cells and non-
CSCs depending on the culture conditions, as assessed by live/dead staining of HMLER cells and gating on intact and single cells. Data shown are
means± s.d. from four independent experiments. (d) Proliferation of CD44hi cells but not of CD44lo cells in mammosphere cultures of HMLER cells, as
assessed by dilution of CellVue labelling (representative of two independent experiments). (e) GD2 expression by HMLER cells in normal adherent cultures,
gated on CD44hi CD24lo CSC-like cells and CD44lo CD24hi non-CSCs within the parental cell line. FACS plots shown are representative of three independent
experiments. (f) Stability of CSC-like cells and non-CSCs depending on the culture conditions. FACS-sorted CD44hi CD24lo and CD44lo CD24hi cells were
cultured for 14 days in serum-free or complete medium, and examined by flow cytometry and light microscopy. Images shown are representative of two
independent experiments. (g) Expression of epithelial (cytokeratin-14, cytokeratin-18) and mesenchymal markers (EDA-fibronectin, vimentin) by sorted CSC-
like cells and non-CSCs seeded on cover-slip chamber slides and labelled with purified antibodies. AF488-conjugated secondary antibodies were used to
visualise stained cells by fluorescence microscopy. Representative images shown were collected from two independent experiments. FCS, foetal calf serum.
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recognise stress-induced changes in a wide range of transformed cells,
including breast cancer cells, in a non-MHC-restricted manner.11,12

Here, both HMLER-derived CSC-like cells and non-CSCs showed a
striking resistance to expanded Vγ9/Vδ2 T cells. However,

pretreatment of either population with zoledronate resulted in
effective activation of co-cultured Vγ9/Vδ2 T cells as judged by
targeted cytotoxicity (Figure 4a), as well as mobilisation of CD107a
and secretion of IFN-γ (Figure 4b). A similar sensitisation could be

Figure 2 Functional characterisation of HMLER-derived non-CSC and CSC-like cells. (a, b) Self-renewal under non-adherent conditions. Sorted CSC-like cells
and non-CSCs were seeded in ultralow-attachment 96-well plates at a density of 5000 cells per well and cultured in mammosphere medium for 7 days.
(a) Representative pictures of three independent experiments (×10 magnification). (b) Mammosphere counts and total cell numbers. Each data point
represents an independent culture well, error bars depict the median± interquartile range. Data were analysed using one-way ANOVA; asterisks indicate
significant differences. (c) Tumour take in NSG mice (n=6 per group). Mice receiving high doses of CSCs or non-CSCs (2×106 cells per animal)
were monitored for up to 98 days, and mice receiving low doses (1×103 cells per animal) for up to 180 days after injection. End points were determined as
no further increase in tdTomato signal over 2 weeks; disease was defined as presence of a palpable tumour with the longest diameter reaching 1 cm.
Disease-free survival curves were plotted using the Kaplan–Meier method. The table shows tumour take rate and occurrence of metastasis to lung and
draining lymph nodes (dLNs). (d) Phenotypical analysis of dissociated tumours derived from injection of FluM1-transduced non-CSCs and CSC-like cells at
high and low doses. Tumours were collected when their sizes reached 1000 mm3 at the time points indicated. CD44 and CD24 expression of each tumour is
shown as zebra plots, with parental HMLER cells as red dots serving as internal reference. FACS plots shown are representative of n=6 (left), n=6 (middle)
and n=1 (right) tumours, respectively. (e) Histological analysis of collected tumours, shown as H&E staining (top row), and expression of pan-cytokeratin
AE1/AE3 (middle row) and vimentin (bottom row). Images are representative sections of n=11 CSC-like and n=1 non-CSC derived tumours
(×400 magnification). ANOVA, analysis of variance.
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achieved via short hairpin RNA-induced knockdown of FPPS,
the enzyme inhibited by zoledronate (Supplementary Figure S5).16

Confirming the recognition via the TCR, degranulation of Vγ9/Vδ2
T cells and secretion of IFN-γ in response to zoledronate treated
CSC-like cells and non-CSCs could readily be blocked by neutralising
antibodies against TCR-Vγ9 and butyrophilin 3A (BTN3A/CD277),23

but not by antibodies against NKG2D (Figure 4c and data not shown).
Besides recognition via the TCR and NKG2D, Vγ9/Vδ2 T cells have

also been shown to target tumour cells including breast cancer cells
upon engagement of CD16 (FcγRIII).24–26 In line with the expression
of GD2 by CSC-like cells, we observed a relatively modest
but detectable enhancement of Vγ9/Vδ2 T-cell responses toward
CSC-like cells pretreated with the humanised anti-GD2 antibody
hu14.18K322A (Figure 4d). Taken together, these experiments
demonstrate that CSC-like cells can be sensitised to recognition by
human γδ T cells upon inhibition of FPPS via zoledronate treatment
or using short hairpin RNAs, and through the use of CSC-specific
opsonising antibodies.

Synergistic targeting of CSC-like cells by Vγ9/Vδ2 T cells and
cytotoxic CD8+ T cells
Having shown that CSC-like cells can be sensitised to killing by either
human αβ T cells and γδ T cells, we addressed the potential synergy of
combining the antigen-specific nature of cytotoxic CD8+ T cells and
the innate killer function of Vγ9/Vδ2 T cells. In line with the general
perception that IFN-γ increases tumour immunogenicity,27 and with
our own observation that recombinant IFN-γ had a striking effect on
CSC-like cells (Figure 3), we saw an upregulation of MHC class I and
CD54 expression on CSC-like cells upon exposure to supernatants of
activated γδ T cells (Figure 5a). By using blocking antibodies, we
identified IFN-γ as the main factor in these supernatants (Figure 5b),
demonstrating that activated γδ T cells readily boost the potential of
CSC-like cells to present antigens to CD8+ T cells. A similar γδ T-cell-
induced upregulation of MHC class I and CD54 expression was seen
with non-CSCs and parental HMLER cells, as well as with a panel of
luminal-like and basal-like breast cancer cell lines (MCF-7, SKBR3 and
MDA-MD-231) (data not shown), implying that γδ T-cell-derived

cytokines generally enhance the susceptibility of breast cancer cells of
different origins to be targeted by CD8+ T cells.
In support, overnight pretreatment of both FluM1-expressing

CSC-like cells and non-CSCs with γδ T-cell-conditioned medium
significantly enhanced their susceptibility to killing by FluM1-specific
CD8+ T cells as compared to untreated controls (Figure 5c). Similarly,
γδ T-cell supernatants enhanced the cytotoxic response of FluM1 or
CMV pp65-specific CD8+ T cells to CSC-like cells and non-CSCs
pulsed with the corresponding peptides (data not shown). Blocking
with anti-IFN-γ neutralising antibodies diminished the effect of γδ
T-cell supernatants on enhancing the cytotoxicity of CD8+ T cells
toward both CSC-like cells and non-CSCs (Figure 5d).
This γδ T-cell-mediated sensitisation of tumour cells to CD8+ T-cell

killing was particularly striking when observed in real time using video
microscopy, revealing an increased and more persistent calcium flux
in CD8+ T cells in response to sensitised CSC-like cells (Figure 5e)
that resulted in substantial target killing (Figure 5f; Supplementary
Movies S1–S3). These findings thus identified non-MHC-restricted γδ
T cells as potent adjuvant facilitating subsequent antigen-specific
CD8+ T-cell immunity against tumour cells, including breast
CSC-like cells, through their secretion of IFN-γ.

DISCUSSION

We identified a powerful synergism between γδ T cell and CD8+

T cells in the eradication of tumour cells, including CSC-like cells,
suggesting that novel immunotherapies may benefit from a combina-
tion of MHC-restricted and non-MHC-restricted approaches. To be
able to demonstrate this, we established a stable HMLER-derived
cell line with a mesenchymal appearance and a CD44hi CD24lo GD2+

phenotype with high expression levels of extra domain A-fibronectin
and vimentin. These CSC-like cells readily formed mammospheres
under non-adherent conditions, induced subcutaneous tumours in the
mammary fat pad of NSG mice at numbers as low as 1× 103 cells per
animal, and had the potential to metastasise to the lung and undergo
epithelioid differentiation in vivo. We conclude that the present study
provides a useful experimental model to study CSC-like cells and
non-CSCs derived from the same parental material under identical

Figure 3 IFN-γ-dependent sensitisation of CSC-like cells to antigen-specific CD8+ T cells. (a) FluM1-transduced CSC-like cells and non-CSCs were mixed in
equal numbers, and used as targets for killing by FluM1-specific CD8+ T cells at different effector:target (E:T) ratios. Specific killing of CellVue and PKH67-
labelled target cells was assessed by live/dead staining and analysed by flow cytometry. Data shown are from a triplicate experiment representative of two
independent experiments. Significance of differences was calculated by two-way ANOVA. (b) MHC class I (HLA-ABC) and CD54 expression levels on the cell
surface of non-CSCs and CSC-like cells as determined by flow cytometry. Bar diagrams show means+s.d. from three independent experiments. MFI, mean
fluorescence intensity. (c) MHC class I and CD54 expression levels on CSC-like cells after overnight sensitisation with 100 U ml−1 recombinant human IFN-γ
as determined by flow cytometry. Results shown are means+s.d. from three independent experiments. (d) Sensitisation of FluM1-transduced CSC-like cells to
CD8+ T-cell-mediated cytotoxicity after overnight sensitisation with 100 U ml−1 IFN-γ. Treated and untreated CSC-like cells were mixed in equal numbers,
and used as targets for killing by FluM1-specific CD8+ T cells at different E:T ratios. Specific killing of CellVue and PKH67-labelled target cells was assessed
by live/dead staining and analysed by flow cytometry. Data shown are representative of two experiments performed in triplicate.
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culture conditions, for a direct comparison of their susceptibility not
only to killing by immune cells, but also to chemotherapies and
radiation. The stability of HMLER-derived CSC-like and non-CSCs in
culture conveniently overcomes the limitations of approaches that
depend on long-term sphere cultures, which may change the nature of
both CSCs and non-CSCs with respect to differentiation and
dedifferentiation. These advantages notwithstanding, the fact that
HMLER cells are transformed mammary epithelial cells and not
derived from primary breast tumours poses certain limitations, and
future work will seek to provide further relevance by sensitising
primary CSCs.
Adoptive transfer studies have shown promising potential

in patients with different types of tumours, most notably in
melanoma.6–8 Currently, such studies are conducted with tumour-
infiltrating lymphocytes, chimeric antigen receptors or TCR-
engineered T cells. However, all three approaches have relatively
limited applicability.28,29 Most importantly, many tumours evade the
immune system by downmodulating surface expression of MHC
molecules and/or adhesion molecules, especially within the CSC
pool.30–33 In agreement, the breast CSC-like cells in the present study
expressed relatively low levels of MHC class I and CD54. The poor

susceptibility of CSC-like cells to killing by antigen-specific CD8+

T cells could be overcome by pretreatment with γδ T-cell conditioned
media, demonstrating that γδ T cells are capable of delivering
pro-inflammatory cytokines including IFN-γ and rendering poorly
immunogenic tumours visible for the immune system. These findings
are in accordance with earlier reports showing that IFN-γ rescues
MHC class I expression on CSCs of different origins,31,32 and offer
hope for efficient targeting of CSCs by adoptively transferred tumour-
infiltrating lymphocytes and engineered T cells. However, this study
was conducted using well-characterised viral epitopes as surrogate
antigens for which high affinity TCRs are available, thereby allowing
studies into efficient killing of transduced CSC-like cells by antigen-
specific CD8+ T cells.34 Follow-up experiments therefore need to
replicate these findings using relevant tumour-associated antigens,
such as aldehyde dehydrogenase 1A1 (ALDH1A1), which was
identified as a novel CSC-specific tumour antigen for cytotoxic
CD8+ T cells in squamous cell carcinoma of head and neck.35,36

The resistance of breast CSC-like cells to γδ T cells could be
overcome upon pretreatment with zoledronate, resulting in increased
cytotoxicity of γδ T cells. Zoledronate is widely used to prevent
excessive bone resorption and skeletal fractures in patients with

Figure 4 Sensitisation of CSC-like cells to γδ T cells using zoledronate or opsonising antibodies. (a) CSC-like cells (left) and non-CSCs (right) treated
overnight with 10 μM zoledronate were mixed in equal numbers with untreated CSC-like cells and non-CSCs, respectively, and used as targets for killing by
expanded Vγ9/Vδ2 T cells at different effector:target (E:T) ratios. Specific killing of CellVue and PKH26-labelled target cells was assessed by live/dead
staining and analysed by flow cytometry. Data shown are from two independent experiments with γδ T cells from three healthy individuals each; differences
were assessed by two-way ANOVA. (b) γδ T-cell degranulation (left) and IFN-γ secretion (right) in response to CSC-like cells and non-CSCs treated overnight
with zoledronate. CD107a mobilisation was measured by flow cytometry in γδ T cells after 5 h of co-culture with target cells in the presence of GolgiSTOP
and anti-CD107a; IFN-γ levels were determined after 24 h by ELISA (n=4). (c) Effect of neutralising antibodies on IFN-γ secretion by γδ T cells in response
to CSC-like cells and non-CSCs treated overnight with zoledronate. Data shown are relative inhibition by each blocking antibody as compared with the
corresponding isotype controls. Anti-Vγ9 and anti-NKG2D were added directly to target/γδ T-cell co-cultures. For the blocking of BTN3, target cells were
incubated with anti-BTN3 for 1 h and then washed before co-culture with γδ T cells. Data shown are means+s.d. from four independent experiments.
(d) Specific sensitisation of CSC-like cells to γδ T cells by opsonising antibodies. CSC-like cells were co-cultured with expanded γδ T cells in the presence of
10 μg ml−1 humanised anti-GD2 monoclonal antibodies or 10 μg ml−1 human intravenous immunoglobulin (IvIg) as control. Data show γδ T-cell
degranulation (left; n=6) and IFN-γ secretion (right; n=3) in response to opsonised and control CSC-like cells; differences were assessed by Wilcoxon
matched-pairs signed-rank tests.
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multiple myeloma, bone metastases and osteoporosis. In addition to
its direct effect on the bone, recent meta-analyses provided compelling
evidence for a clinical benefit of zoledronate on the development of
bone metastases and breast cancer mortality in post-menopausal
women or those receiving ovarian suppression therapy.37 The

underlying mechanisms are unclear, but may stem at least in part
from the activity of zoledronate on Vγ9/Vδ2 T cells.38,39 Studies
directly aimed at activating Vγ9/Vδ2 T cells in preclinical models and
in diverse cancer patient groups have in fact shown promising results,
showing that targeting Vγ9/Vδ2 T cells in vivo is feasible and

Figure 5 Sensitisation of CSC-like cells and non-CSCs to cytotoxic CD8+ T cells by Vγ9/Vδ2 T cells. (a) Upregulation of MHC class I (HLA-ABC) and CD54
expression on sorted CSC-like cells and non-CSCs by γδ T cells. Target cells were treated overnight with 1:10 (v/v) γδ T-cell conditioned medium or with
100 U ml−1 recombinant human IFN-γ, and analysed by flow cytometry. Histograms shown are representative for two independent experiments. (b) Sorted
CSC-like cells and non-CSCs were treated overnight with γδ T-cell conditioned medium in the absence of presence of IFN-γ neutralising antibodies or mouse
IgG1 isotype controls, and analysed for their expression of MHC class I (left) and CD54 (right) by flow cytometry. Data shown are representative of two
independent experiments using supernatants of expanded γδ T cells from three healthy individuals; differences were assessed by two-way ANOVA.
(c) Sensitisation of FluM1-transduced CSC-like cells and non-CSCs to CD8+ T-cell-mediated cytotoxicity after overnight treatment with 1:10 (v/v) γδ T-cell
conditioned medium. Treated and untreated target cells were mixed in equal numbers, and used as targets for killing by FluM1-specific CD8+ T cells at
different E:T ratios. Specific killing of CellVue and PKH67-labelled target cells was assessed by live/dead staining and analysed by flow cytometry. Data
shown are representative of two independent experiments using supernatants of expanded γδ T cells from three donors. (d) Sensitisation of FluM1-transduced
CSC-like cells and non-CSCs to CD8+ T-cell-mediated cytotoxicity after overnight sensitisation with 1:10 (v/v) γδ T-cell conditioned medium in the presence
of IFN-γ neutralising antibodies or matched isotype controls (IgG1). Treated and untreated target cells were mixed as before, and specific killing was
assessed by flow cytometry. Data shown are representative of two independent experiments using supernatants of expanded γδ T cells from three donors.
(e) Intracellular Ca2+ levels as monitored by video microscopy for the indicated acquisition time starting from the moment when Fura-2 AM loaded
FluM1-specific CD8+ T cells entered in the focal plan. Graphs represent the kinetics of intracellular Ca2+ levels, depicted as 340:380 nm ratio; values
correspond to the mean emission measured among all T cells present in the field of four independent experiments. Photos are representative pictures of the
kinetics of intracellular Ca2+ levels and tumour cell killing, using FluM1-transduced CSC-like cells pretreated with γδ T-cell conditioned medium as targets.
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safe.10–12,40,41 In addition to sensitisation with zoledronate, anti-GD2
antibodies selectively directed Vγ9/Vδ2 T-cell responses against CSC-
like cells but not non-CSCs, demonstrating that specific opsonisation
represents an alternative approach to sensitise resistant tumour cells to
targeted cytotoxicity. Similar strategies have been employed for
treating neuroblastoma by natural killer cells,17,42 and for facilitating
cross-presentation of tumour antigens by Vγ9/Vδ2 T cells to CD8+ T
cells.43 The relatively weak efficacy of anti-GD2 antibodies may have
been due to the variable and often low expression of CD16 on the
expanded Vγ9/Vδ2 T cells used in those assays. Besides GD2, further
markers with a potential to target Vγ9/Vδ2 T cells specifically against
breast CSCs include the human epidermal growth factor receptor
2 (HER2).44 Indeed, the HER2-specific monoclonal antibody trastu-
zumab was recently shown to opsonise human breast cancer xenografts
and enhance the ability of γδ T cells to control tumour progression.26

The availability of approved drugs and biologics to enhance the TCR-
mediated and antibody-dependent cytotoxicity of γδ T cells therefore
allows a rapid translation of the present findings in the clinic.
Taken together, we have identified a powerful synergism between

MHC-restricted and non-MHC-restricted T cells in the targeting of
breast CSC-like cells. Our research provides proof of principle that
novel immunotherapies may benefit significantly from combining
targeted strategies that trigger effective innate and adaptive
responses.45 In addition to their cytotoxic effector functions against
malignant cells and their ability to boost adaptive αβ T-cell responses
by modulating the immunogenicity of transformed cells, human
Vγ9/Vδ2 T cells also possess a unique ability to act as professional
antigen-presenting cells, including the capacity to cross-present
exogenous antigens to CD8+ T cells.43,46–48 These observations lend
further credence for the potential of a combined immunotherapy
approach where patients receiving autologous tumour-infiltrating
lymphocytes or engineered T cells may benefit from a
co-administration of ex vivo expanded γδ T cells or by concomitant
treatment with safe and effective γδ T-cell stimuli such as zoledronate.
Such therapy regimes that boost the efficacy of adoptive CD8+ T-cell
transfer can now be tested in preclinical models and in patients.

METHODS

Tumour cells
HMLER cells were kindly provided by Dr Robert Weinberg (Whitehead
Institute for Biomedical Research, Cambridge, MA, USA) and cultured in
DMEM:F12 (1:1) medium (Invitrogen, Paisley, UK) supplemented with 10%
foetal calf serum, 10 ng ml− 1 recombinant human epidermal growth factor
(Peprotech, London, UK), 10 μg ml− 1 insulin (Sigma-Aldrich, Dorset, UK),
0.5 μg ml− 1 hydrocortisone (Sigma-Aldrich), 1 μg ml− 1 puromycin (Sigma-
Aldrich) and 50 μg ml− 1 penicillin/streptomycin (Invitrogen).3,18 CD44hi

CD24lo CSC-like and CD44lo CD24hi non-CSC-like HMLER cells were sorted
to 499.5% purity using a BD FACSAria II and maintained in culture in
complete DMEM:F12 medium. The human breast cancer cell lines MDA-
MB-231, MCF-7, SKBR3 and BT-474 were cultured using RPMI-1640 medium
supplemented with 10% foetal calf serum, 2 mM L-glutamine, 50 μg ml− 1

penicillin/streptomycin and 100 μM non-essential amino acids (Invitrogen).
Mammospheres were grown in ultralow-attachment plates (Corning, Schiphol,
Netherlands), using serum-free MEBM medium (Lonza, Slough, UK) supple-
mented with B27 (Invitrogen), 20 ng ml− 1 epidermal growth factor (Pepro-
tech), 5 μg ml− 1 insulin, 0.1 μM β-mercaptoethanol and 1 μg ml− 1

hydrocortisone (all from Sigma-Aldrich).49

T cells
Human T cells were cultured in RPMI-1640 medium supplemented with 10%
foetal calf serum, 2 mM L-glutamine, 1% sodium pyruvate and 50 μg ml− 1

penicillin/streptomycin. Vγ9/Vδ2 T cells were expanded from peripheral blood

mononuclear cells of healthy donors with 1 μM zoledronate (Zometa; Novartis,
Basel, Switzerland) and 100 U ml− 1 IL-2 (Proleukin; Novartis) for 14 days, and
further enriched to purities 498% CD3+ Vγ9+ by negative selection using a
modified human γδ T-cell isolation kit that depletes B cells, αβ T cells, NK cells,
dendritic cells, stem cells, granulocytes and monocytes (Stem Cell Technologies,
Cambridge, UK). Resulting Vγ9/Vδ2 T-cell populations were predominantly
CD45RA− CD27− effector/memory cells, witho15% CD45RA− CD27+ central
memory cells and o5% CD45RA+ CD27− terminally differentiated cells; CD16
expression on expanded Vγ9/Vδ2 T cells varied from 6 to 74% CD16+ (data
not shown). γδ T-cell conditioned medium was generated by culturing purified
Vγ9/Vδ2 T cells overnight in the presence of 10 nM HMB-PP (kindly provided
by Dr Hassan Jomaa, Justus-Liebig University Giessen, Germany). FluM1-
specific and CMV pp65-specific CD8+ T cells were expanded from peripheral
blood mononuclear cells of HLA-A2+ donors to 499% tetramer positivity
using the immunodominant peptides of influenza matrix protein, FluM1 p58-
66 (GILGFVFTL) and of CMV lower matrix phosphoprotein, UL83/pp65
p495-503 (NLVPMVATV), respectively, at a concentration of 0.1 μM in the
presence of 100 U ml− 1 IL-2 and 20 ng ml− 1 IL-15 (Miltenyi, Bisley, UK).47,48

Generation of FluM1+ tdTomato+ target cells
The cDNA of FluM1 of influenza strain A/Puerto Rico/8/34 (H1N1) was cloned
from pMA_MPT_matrx_protein (kindly provided by Dr Mai Ping Tan,
Cardiff University) between the SalI and XmajI cloning sites of the lentiviral
transfer vector pELNSxv (kindly provided by Dr James Riley, University of
Pennsylvania, PA, USA). PCR reactions were carried out using the Phusion
High-Fidelity PCR kit (New England Biolabs, Hitchin, UK) and customised
primers; forward, 5′-GAATCCCGGCCCTAGGATGAGCCTGCTGACCGAG
GT-3′; reverse, 5′-GAGGTTGATTGTCGACTCACTTGAACCGCTGCATCT-3′
(Eurofins, Wolverhampton, UK). For the production of lentiviral particles
containing pELNSxv-tdTomato-T2A-FluM1 vectors, HEK 293 T cells were
transiently transfected with lentiviral packaging, envelop and transfer plasmids
by CaCl2 precipitation. Lentiviral particles were collected and purified for
transfection of CSC-like cells and non-CSCs in the presence of 4 μg ml− 1

polybrene (Sigma-Aldrich). Lentivirally transduced cells were identified based
on their expression of tdTomato, and sorted to 498% purity using a BD
FACSAria II.

Constitutive and inducible knockdown of FPPS
Constitutive FPPS knockdown cells were generated as described.16 The
inducible vector FUTG(INSR), which contains a knockdown construct for
rat insulin receptor,50 served as negative control for the inducible FPPS
knockdown vector SR22 for the target sequence V2HS_228248 (Thermo
Scientific, Open Biosystems, Huntsville, AL, USA).16 Specific oligos were
annealed and subsequently ligated into the BbsI and XhoI sites of pH1tet-flex;
5′-TCCCACCAGCAGTGTTCTTGCAATATTTCAAGAGAATATTGCAAGAA
CACTGCTGGTTTTTTC-3′ (forward) and 5′-TCGAGAAAAAACCAGCAGTG
TTCTTGCAATATTCTCTTGAAATATTGCAAGAACACTGCTGGT-3′ (reverse).
The H1tet-shRNA22 cassette was cloned into the PacI site of the lentiviral
vector FH1tUTG50 using specific primers; 5′-CGTGTATTAATTAACCATGGA
ATTCGAACGCTGAC-3′ (forward) and 5′-CGATCTTAATTAACAGGCTAGC
CTAGGACGCG-3′ (reverse). All retroviral or lentiviral constructs were
transduced into the respective target cells by transient transfection of HEK
293 T cells using CaCl2 precipitation. After 24 h, 10 nM sodium butyrate was
added, and virus containing supernatants were collected on the following day
and added to target cells in the presence of polybrene.

Flow cytometry
Cells were acquired on an eight-colour FACSCanto II (BD Biosciences, Oxford,
UK) and analysed with FlowJo (TreeStar, Ashland, OR, USA). Single cells of
interest were gated based on their appearance in side and forward scatter area/
height, exclusion of live/dead staining (fixable Aqua; Invitrogen) and surface
staining. The following monoclonal antibodies (mAbs) were used for surface
labelling: anti-CD3 (UCHT1), CD8 (HIT8a and SK1), CD16 (3G8), CD24
(ML5), CD44 (G44-26), GD2 (14.G2a) from BD Biosciences; anti-TCR-Vγ9
(Immu360) from Beckman Coulter, High Wycombe, UK; and anti-HLA-ABC
(w6/32) from Biolegend, London, UK; together with appropriate isotype
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controls. Intracellular cytokines were detected using anti-IFN-γ mAbs (B27, BD
Biosciences). Surface mobilisation of CD107a was detected by adding anti-
CD107a (H4A3; BD Biosciences) mAbs and GolgiStop (BD Biosciences) to
cultures for 5 h prior to flow cytometric analysis.

Functional T-cell assays
CD107a mobilisation, expression of activation markers and cytokine produc-
tion were assessed by flow cytometry-based assays as described previously for
the activation of γδ T cells and CD8+ T cells.48 γδ T cells and CD8+ T cells
treated with PMA and ionomycin were used as positive control in functional
assays. For the sensitisation, CSC-like cells and non-CSCs were treated
overnight with 10 μM zoledronate (Zometa; Novartis), washed and used as
targets in co-culture with effector T cells at specified effector:target (E:T) ratio.
Cytotoxicity assays were conducted in co-cultures of two distinct target cell
populations to assess preferential killing of specific targets.48,49 In brief, two
different target cell populations were labelled separately with different lipophilic
dyes (PKH26, PKH67 or CellVue; all from Sigma-Aldrich), and mixed at 1:1
ratio for subsequent co-culture with effector T cells at different E:T ratios. After
4 h at 37 °C, cultures were collected, stained using the Live/dead fixable Aqua
dead cell stain kit (Invitrogen) and acquired on a BD FACSCanto II. The
analysis was performed by serial gating on single cells (FSC-A/FSC-H) and
distinctively stained targets (for example, CellVue+ PKH67− or CellVue−

PKH67+), and the proportion of dead cells was determined for each target
population. In these functional assays, the neutralising antibodies anti-TCR-
Vγ9 (Immu360; Beckman Coulter), anti-BTN3A (103.2; Dr Daniel Olive,
Institut Paoli Calmettes, Marseille, France), anti-NKG2D (1D11; Biolegend)
and anti-IFN-γ (B27; Biolegend) were used at 10 μg ml− 1. To test the role of
opsonising antibodies, tumour cells were pretreated with anti-GD2
(hu14.18K322A; Dr Fariba Navid, St Jude Children’s Research Hospital,
Memphis, TN, USA) for 30 min at 10 μg ml− 1. Levels of secreted IFN-γ in
culture supernatants were determined by ELISA (Biolegend, eBioscience,
Cheshire, UK), using a Dynex MRX II reader.

Animal studies
All procedures were performed in accordance with the Animals (Scientific
Procedures) Act 1986 and approved by the UK Home Office under project
license 30/2891. Surgery was performed under isoflurane anaesthesia, and every
effort was made to minimise suffering. Female NSG mice were purchased from
Charles River Laboratories at 5–7 weeks of age and housed in specific pathogen‐
free conditions. For xenograft transplantations, the indicated numbers of
tumour cells (ranging from 1×103 to 2× 106 per mouse) were resuspended
in a mixture of DMEM/F12 medium with Matrigel (Corning) at 1:1 ratio and
injected s.c. in NSG mice near the mammary fat pad. Tumour growth was
monitored twice a week by external measurement of xenografts using a Vernier
caliper and by fluorescence imaging (Kodak FX-PRO, Rochester, NY, USA).
Mice were culled before tumours reached 1.5 cm in diameter. For flow
cytometric analyses or cell sorting, tumours were excised, chopped into pieces
using scalpel blades and mashed with a syringe plunger. The resulting cell
suspension was passed through 70 μm nylon cell strainers (BD Falcon) and
stained with indicated panel of mAbs. Tumours, tumour‐draining inguinal
lymph nodes and the contralateral non-draining lymph nodes as well as livers,
lungs, brains and spleens were collected for fluorescence imaging, and
subsequently fixed in neutral buffered formalin and embedded in paraffin.

Histology and immunohistochemistry
Four micrometre sections were cut from paraffin-embedded blocks of
tumours and organs, and mounted on slides. Dewaxed and hydrated
sections were stained in Harris haematoxylin solution (Thermo Scientific)
and blued with Scott’s tap water substitute (Sigma-Aldrich). Sections were then
stained in eosin solution (Sigma-Aldrich), dehydrated and mounted in DPX
(VWR International, Lutterworth, UK). For immunohistochemical analyses,
freshly cut tissue sections were stained by primary antibodies against carcinoma
embryonic antigen (II-7), vimentin (V9) and cytokeratin (AE1-AE3), using
Dako Autostainer Link 48 on an automated staining platform and the Dako
EnVision FLEX detection kit (Dako, Ely, UK). Slides were counterstained with
haematoxylin before dehydration and mounting in DPX (VWR International).

Digital microscopy
Photographs of live cultures were taken using a Leica DM IRBE inverted

microscope (Leica Microsystems, Milton Keynes, UK) with a Hamamatsu

ORCA-ER camera supported with OpenLab 3.1.7 (Improvision, Convetry,
UK), or using a LumaScope 500 inverted microscope (Etaluma, Labtech,

Uckfield, UK). For confocal immunofluorescence microscopy, CSC-like cells

and non-CSCs were grown in Nunc Lab-Tek cover-slip chamber slides to

subconfluency and fixed with acetone/methanol for staining with a series of
primary mAbs against α-SMA (1A4), N-cadherin (8C11), cytokeratin-14

(LL001), CK-18 (RGE53), extra domain A-fibronectin (IST-9) and vimentin

(V9) (all from Santa Cruz Biotechnology, Heidelberg, Germany), together with
appropriate isotype controls, followed by AF488-conjugated secondary anti-

bodies with counterstaining for cell nucleus by DAPI. Prepared slides were

imaged and analysed using a Zeiss AxioVert fluorescence microscope (Zeiss,

Cambridge, UK). Images were processed with Photoshop 6.0 (Adobe, San Jose,
CA, USA). For video microscopy, target cells were incubated overnight in Ibidi

chamber slides (Martinsried, Germany) coated with fibronectin (Millipore). For

intracellular Ca2+ measurements, CD8+ T cells were loaded with 1 μM Fura-2/
AM (Invitrogen) and analysed using a DMI 6000B microscope (Leica

Microsystems). Cells were illuminated every 10 s with a 300 W xenon lamp

by using 340/10 nm and 380/10 nm excitation filters. Emission at 510 nm was

captured using a Cool Snap HQ2 camera (Roper, Tucson, AZ, USA) with
Metafluor software (Molecular Devices, Sunnyvale, CA, USA). Ratio measure-

ments were performed with Imaris 8.1 imaging software (Oxford Instruments,

Abingdon, UK).

Statistics
Data were analysed using two-tailed Student’s t-tests for normally distributed

data and Mann–Whitney tests for non-parametric data (GraphPad Prism 6.0,

La Jolla, CA, USA). Paired data were analysed using Wilcoxon matched-pairs

signed-rank tests. Differences between groups were analysed using one-way
analysis of variance with Bonferroni’s post tests; two-way analysis of variance

was used when comparing groups with independent variables. Differences were

considered significant as indicated in the figures: *Po0.05; **Po0.01;
***Po0.001.
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