

PD-L1 expression by tumor cell-lines: a predictive marker in melanoma

Anne C Knol, Jean-Michel Nguyen, Marie-Christine Pandolfino, Marc G.

Denis, Amir Khammari, Brigitte Dréno

► To cite this version:

Anne C Knol, Jean-Michel Nguyen, Marie-Christine Pandolfino, Marc G. Denis, Amir Khammari, et al.. PD-L1 expression by tumor cell-lines: a predictive marker in melanoma. Experimental Dermatology, 2018, 27 (6), pp.647-655. 10.1111/exd.13526 . inserm-01805109

HAL Id: inserm-01805109 https://inserm.hal.science/inserm-01805109

Submitted on 1 Jun2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PD-L1 expression by tumor cell-lines: a predictive marker in melanoma

Anne C Knol², Jean-Michel Nguyen^{2,4}, Marie-Christine Pandolfino^{2,3}, Marc G Denis^{2,5}, Amir Khammari^{1,2}, Brigitte Dréno^{1,2,3}

¹Service de dermato-cancérologie, CHU Nantes, Nantes, France

² Centre de recherche en Cancérologie et Immunologie Nantes-Angers [CRCINA], Institut National de

la Santé et de la Recherche Médicale [INSERM] INSERM1232, Université de Nantes, Université

d'Angers, CHU Nantes, Nantes, France

³Unité de Thérapie Cellulaire et Génique [UTCG], <u>CHU Nantes</u>, Nantes, France

⁴ Saint Jacques University Hospital, Service d'évaluation médicale et économique [SEME] Pôle Hospitalo-Universitaire 11 [PHU11], CHU Nantes, Nantes, France

⁵ Laboratoire de Biochimie et Plateforme de Génétique des Cancers, <u>CHU Nantes</u>, Nantes, France

(⊠) **Corresponding author:** Brigitte Dréno, <u>Service de dermato-cancérologie, CHU</u> Nantes, 1 place Alexis Ricordeau, 44035 Nantes, France

Phone: 00 33 240083118

Fax: 00 33 240083117

e-mail : brigitte.dreno@wanadoo.fr

Co-authors email addresses:

aknol@nantes.inserm.fr

jeanmichel.nguyen@chu-nantes.fr

mcpandolfino@chu-nantes.fr

Marc.DENIS@chu-nantes.fr

amir.khammari@chu-nantes.fr

Word count for text only (from the beginning of the Introduction to the end of the conclusions,

without references): 2804 words (4000 words max)

Word count for abstract only: 164 words (200 words max)

Number of items: 2 figures + 3 tables + 7 supplementary tables + 2 supplementary figures

Number of references: 41

Abstract

<u>Prognostic biomarkers for melanoma patients</u> after lymph node resection are of clinical relevance and could thus enable the identification of patients who therefore would most benefit from adjuvant treatment. The aim of this work was to <u>determine</u>, using an in vitro model, whether immune-related biomarkers such as MHC-class I and II, melanoma associated antigens, IDO1 and PD-L1, could also be relevant to predict the risk of relapse of stage III melanoma patients after lymph node resection.

We established tumor cell lines from metastatic lymph nodes of 50 melanoma patients. The expression of investigated biomarkers was determined on untreated and IFN- γ treated melanoma cell lines using flow cytometry. Among the selected biomarkers, the IFN- γ induced expression of PD-L1 and IDO1 was associated with an increased risk of relapse (p=0.0001 and p=0.013, respectively) and was also associated with death for IDO1 (p=0.0005). In the future, this immunologic signature could permit the identification of patients at higher risk of relapse, and justifying an adjuvant treatment using immunotherapy.

Key words: metastatic melanoma, prognostic markers, survival, melanoma cell-line, flow cytometry

-
Э.
э
-

Abbreviations:

- AJCC: American Joint Committee on Cancer
- CTA: cancer testis antigens
- DNA: desoxyribonucleic acid
- GS: gene signature
- H&E: hematoxylin & eosin
- HMW-MAA: high molecular weight-melanoma associated antigen
- IDO1: indoleamine 2,3 dioxygenase
- LN: lymph node
- MAA: melanoma associated antigens
- mAb: monoclonal antibody
- MAGE-A: melanoma-associated antigen-A
- MCSP: melanoma chondroitin sulfate proteoglycan
- MHC: major histocompatibility complex
- NSCLC: non-small cell lung cancer
- NY-ESO-1: New York esophageal squamous cell cancer-1
- OS: overall survival
- P: progression
- PCR: polymerase chain reaction
- PD-L1: programmed death ligand 1
- RC: complete response
- RECIST: response evaluation criteria in solid tumor
- RFS: relapse free survival
- **RP**: partial response
- SSM: superficial spreading melanoma
- St: stabilization
- TRP2: tyrosinase related protein 2

Malignant melanoma is the most aggressive cutaneous malignancy with 132,000 <u>new</u> cases occurring <u>worldwide</u> each year (World Health Organization, Skin Cancers) <u>and an annual 3-7% increase in the</u> incidence rate for Caucasians [1].

Despite the therapeutic revolution brought by innovative treatments such as targeted therapies (BRAF inhibitors), or immune checkpoint inhibitors (*i.e.* PD-1/PD-L1 or CTLA-4/B7 antibodies), the identification of biomarkers capable of predicting patient prognosis after lymph node resection are still of clinical relevance. Furthermore, new treatments are arriving in the adjuvant setting for stage III melanoma, increasing the interest to select patients with higher risk of relapse [2].

Consequently, attention has been focused on finding biomarkers to identify patients most likely to respond to a specific cancer therapy. Thus, tumor gene expression profiling is a powerful technique for identifying prognostic gene signatures (GSs) [3,4]. Predictive GSs have also been reported in colorectal [5] and gastric cancers [6]. Moreover, both prognostic and predictive GSs have been identified in non-small cell lung cancer (NSCLC) and breast cancer [7,8].

Recently, a 84-gene GS associated with clinical response to MAGE-protein immunizations has been identified in metastatic melanoma [9]. These results were confirmed in resected NSCLC [10]. It was the evidence that clinical response resulting from a cancer immunotherapeutic treatment may be associated with an immune biomarker signature in two different settings (metastatic and adjuvant) and in two tumor types (melanoma and NSCLC). The genes differentially expressed were genes involved in antigen processing, MHC-class I and II, T-cell markers such as CD3 and CD8 and chemokines such as CCL5, CXCL9 and CXCL10.

Meanwhile, a 46-gene GS with strong overrepresentation of immune response genes was identified in 79 stage III melanoma patients, suggesting that BRAF mutation, NRAS mutation, and the absence of an immune-related expressed gene profile predicted poor outcome in stage III melanoma patients [11]. The genes differentially expressed were CCL5, CXCL9, CXCL10, MHC-class II, MAGE-C2, CD2, CD3 and CD8.

The aim of this work was to assess whether modulation of some biomarkers expressed by melanoma cell-lines, obtained from metastatic regional lymph nodes (LN) and <u>exposed to</u> IFN- γ , could be an in vitro prognostic tool useful to identify stage III melanoma patients with a higher risk of relapse and a shorter overall survival. For this purpose we analyzed expression of some immune-related biomarkers (MHC-class I and II) and melanoma associated antigens. We also tested expression of PD-L1 and IDO1, two biomarkers known to be modulated by IFN- γ and recently identified as enabling melanoma cells to escape immune destruction despite antitumor responses [12-15].

to Review Only

Materials and methods

Melanoma patients

<u>A total of 50 stage IIIb (AJCC 2007) melanoma patients were included in this study (table 1). For each</u> patient, a melanoma cell-line was obtained from a fragment of a metastatic lymph node (LN). Written informed consent was provided by all patients and the study was approved by the Ethics Committee of Pays de La Loire and Health Authorities (France). The 1964 Declaration of Helsinki protocols and its later amendments or comparable ethical standards were applied in the present study.

Establishment of melanoma cell-lines

<u>Melanoma cell-lines were established for the 50 tumor samples as previously described by us</u> [16] [17] and <u>by</u> others [18]. <u>Briefly, fresh tumor samples were minced into small tumor pieces in wells of 24-</u> well plates (NUNC) with RPMI medium supplemented with 10% fetal calf serum (FCS). Plates were placed at 37°C in a humidified incubator with 5% CO₂ and observed under a light microscope every week and sub-cultured when necessary.

Experiments on melanoma cell lines

For each cell-line, a total of 500 000 cells per well of a 6-well plate were seeded in 3 ml of culture medium with or without 500U/ml recombinant IFN- γ (Tebu, Le Perray en Yvelines, France), in duplicate. After 48 hours of incubation, cells were washed, detached from the wells using PBS-EDTA (Lonza, Levallois, France) and processed for flow cytometry.

Antibodies and flow cytometry

For membranous staining, 0.2 x 10⁶ cells were stained for 30 minutes at 4°C protected from light according to manufacturer's instructions with mouse anti-human MCSP (melanoma chondroitin sulfate proteoglycan) (Miltenyi Biotec, #130-091-252, dilution 1/40, Bergisch Gladbach, Germany), mouse anti-human B7H1 (PD-L1) (ebioscience, #12-5983-73, dilution 1/10), HLA-I primary antibody recognizing HLA-A, -B, -C or HLA-II primary antibody recognizing HLA-DP, -DQ, -DR (BD

Biosciences, respectively #555551 and #555557, dilution 1/100, Le Pont de Claix, France) as previously described [19].

For intracellular staining, 0.2 x 10⁶ cells were rinsed twice in DPBS, permeabilized using fixation/permeabilization buffer set (eBioscience, #00-8333-56, Paris, France) according to the manufacturer's instructions and stained with mouse anti-MAGE-A (melanoma-associated antigen-A) (Tebu, #sc-20034, dilution 1/40, recommended for detection of MAGE-A1, 2,3, 4, 6, 10 and 12), mouse anti-NY-ESO-1 (New York esophageal squamous cell cancer-1) (Tebu, #sc-53869, 1/40), mouse anti-tyrosinase (Tebu, #sc-20035, 1/40), mouse anti-Melan-A (Tebu, #sc-20032, 1/40) or mouse anti-gp100 (Tebu, #sc-59305, 1/40) Abs for 30 minutes at 4°C, or with mouse anti-human IDO1 mAb (Bio-Rad AbD Serotec, #OBT2037G, dilution 1/200) as previously described [19]. Melanoma cell-lines were gated according to their forward and size scatter characteristics. A minimum of 10⁴ viable cell gated events were acquired on a FACScalibur flow cytometer and data were analyzed using the Cell Quest Pro software (Becton Dickinson, Grenoble, France) A 10% increase of the

using the Cell Quest Pro software (Becton Dickinson, Grenoble, France). A 10% increase of the proportion of tumor cells stained with a given antibody after IFN- γ treatment compared to the proportion of tumor cells before IFN- γ treatment was considered as a significant increase, a 10% decrease in this proportion as a significant decrease. A difference comprised between -5% and -10% in the expression of a given biomarker after IFN- γ treatment compared to before IFN- γ treatment was considered as a moderate decrease.

Statistical analysis

Each biomarker was assessed on melanoma cell-lines with and without IFN- γ stimulation.

Cox models were developed for both situations: biomarkers only from treated melanoma cell-lines and biomarkers only from untreated melanoma cell-lines. All models were adjusted on clinico-pathological informations such as the Breslow index, capsular breaking, and number of invaded nodes, BRAF and NRAS mutations. For these 2 situations, the outcome was the impact of biomarkers on patient relapse-free survival (RFS) and overall survival (OS). RFS was calculated as the time interval between lymphadenectomy and the relapse or death and OS was calculated as the time interval between

lymphadenectomy and the death whatever the cause. Regarding RFS, if death was caused by melanoma, relapse has occurred earlier and if death is not from melanoma, it is considered as a censoring event. Regarding OS, both deaths from melanoma and from another cause were considered. Multivariate Cox model was developed including all biomarkers and clinic-pathological informations such as the Breslow index, capsular breaking, and number of invaded nodes, BRAF and NRAS mutations. The variable selection method of the multivariate model was based on the Akaike Information Criterion [Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr 1974; 19: 716-723] (AIC). The threshold of significance was set at 5% in bilateral .tistical son situation. The R 3.11 statistical software was used for all analyses. All quantitative data were scaled.

Results

<u>A total of 50 stage IIIb (AJCC 2007) melanoma patients were included in this study. The main clinical</u> features of these patients are summarized in table 1 and detailed clinical characteristics of the 50 patients are summarized in table 2. Mean age was 51.9 ± 11.6 years (median: 53; min.-max.:27-72), with 35 men and 15 women. Median event-free survival was 8 months and median survival was 19.5 months.

Expression levels of selected biomarkers by untreated and IFN-y treated melanoma cell-lines

No untreated melanoma cells expressed PD-L1 (median 0.36% positive cells) and most untreated melanoma cells did not express IDO1 (median 37% positive cells); this expression was greatly induced in vitro by IFN- γ (median 76.1% positive cells for PD-L1 and 56% for IDO1) (figure 1 and 2, table 3 and supplementary table 1).

Most untreated melanoma cells expressed MCSP, gp100, Melan-A and tyrosinase and also MHC-class I and MHC-class II antigens (table 3 and supplementary table 1). Upon IFN-γ treatment, MHC-class II expression was increased, whereas MCSP and MHC-class I expression was not modified and gp100, Melan-A and tyrosinase expression was moderately decreased (table 3 and supplementary table 1). Half of untreated melanoma cells expressed NY-ESO-1 and MAGE-A antigens and their expression was decreased upon IFN-γ in vitro stimulation (table 3 and supplementary table 1).

Significant associations between selected biomarkers and RFS

Univariate analysis

None of the clinical features was significantly <u>associated with</u> RFS (for Kaplan Meier curves, see supplementary figure 1). <u>No relationship was observed between the 10 selected biomarkers in</u> <u>untreated melanoma cell-lines and RFS except for MAGE-A expression (p=0.021) and also no</u> <u>relationship between biomarkers in IFN- γ treated melanoma cell-lines and RFS except for tyrosinase</u> (p=0.012) (supplementary table 2 and supplementary figure 1 for Kaplan Meier curves).

Multivariate analysis

Biomarkers *in* untreated melanoma cell-lines

The expression of MCSP in untreated melanoma cell-lines was <u>associated with</u> an improved RFS (p=0.026) (supplementary table 3). The other biomarkers were not significantly <u>associated with</u> RFS. Biomarkers in IFN- γ treated melanoma cell-lines

The induction of PD-L1 and IDO1 expression <u>in</u> IFN- γ treated cell-lines was significantly <u>associated</u> <u>with</u> a decreased RFS (respectively p=0.0001 and p=0.013) (supplementary table 4). Regarding melanoma associated antigens (MAA), the decreased expression of tyrosinase <u>in</u> IFN- γ treated cell-lines was <u>associated with</u> an improved RFS (p=0.0013), whereas the decreased expression of NY-ESO-1 <u>in</u> IFN- γ treated cell-lines, was significantly <u>associated with</u> a decreased RFS (p=0.0005). The unmodified expression of MCSP upon IFN- γ stimulation was <u>associated with</u> an improved RFS (p=0.01). The other biomarkers were not significantly <u>associated with</u> RFS.

Other clinico-biological markers

NRAS mutation status was <u>associated with</u> an improved RFS (p=0.0015) (supplementary table 4). The number of invaded LNs was significantly <u>associated with</u> a poor RFS (p=0.0175). The other clinical markers were not significantly associated with RFS.

Significant associations between selected biomarkers and OS

Univariate analysis

We observed that none of the clinical features was significantly <u>associated with</u> OS (for Kaplan Meier curves, see supplementary figure 2). <u>No relationship was observed between the 10 selected biomarkers</u> in untreated melanoma cell-lines and OS except for MAGE-A and NY-ESO-1 (respectively p=0.0073 and p=0.044). In addition, no relationship was identified between these biomarkers in IFN- γ treated melanoma cell-lines and OS (supplementary table 5 and supplementary figure 2 for Kaplan Meier curves).

Multivariate analysis

Biomarkers in untreated melanoma cell-lines

The expression of tyrosinase was <u>associated with</u> an improved OS (p=0.003) (supplementary table 6). The other biomarkers were not significantly associated with OS.

Biomarkers in IFN-γ treated melanoma cell-lines

The induction of IDO1 expression by IFN- γ was significantly <u>associated with</u> a decreased OS (p=0.0005) (supplementary table 7). The decreased expression of gp100 and MAGE-A by IFN- γ was <u>associated with</u> an improved OS (respectively p=0.007 and p=0.023) whereas the decreased expression of Melan-A by IFN- γ was significantly <u>associated with</u> a decreased OS (p=0.028). The unmodified expression of MCSP upon IFN- γ stimulation was <u>associated with</u> an improved OS (p=0.02). The other biomarkers were not significantly <u>associated with</u> OS.

Other clinico-biological markers

High Breslow index and capsular breaking were significantly <u>associated with</u> a poor OS (respectively p=0.03 and p=0.0026) (supplementary table 7). The other clinical markers were not significantly <u>associated with</u> OS.

Discussion

In the present work, we conducted a multivariate analysis of clinical and pathological determinants of outcome and several immune-related biomarkers, melanoma associated antigens, and two important biomarkers of immune relevance in melanoma: IDO1 and PD-L1.

<u>First, we</u> observed that most untreated melanoma cell-lines did not express IDO1. Moreover, the induction of IDO1 expression by IFN-γ <u>treatment</u> was significantly <u>associated with</u> both decreased RFS and OS, making IDO1 the only biomarker associated with both RFS and OS in this study. IDO1 is an intra-cellular enzyme that degrades tryptophan to kynurenine, inducing a local immunosuppression through deficiency in this essential amino acid, which is needed <u>for the activity of T-cells</u> [20]. There is evidence that IFN-γ stimulates IDO1 gene transcription in many cell types [21,22]. In melanoma, IDO1 has been shown to be increased in both primary and metastatic lesions and its expression correlated with increased invasiveness and disease relapse rate [12,13]. We recently reported an induction of PD-L1 expression by melanoma cells when co-cultivated with IDO1 expressing fetal fibroblasts [23]. <u>We</u> assumed that this induction of PD-L1 by IDO1 may contribute to inhibit the efficacy of adoptive cell therapy using TILs, by inducing inactivation of lymphocytes, decreasing both their survival and proliferation. <u>This way</u>, IDO1 appears <u>as</u> a molecule that may play a major role in immune tolerance induction, in melanoma microenvironment.

We also observed that untreated melanoma cells did not express PD-L1. Interestingly, the induced expression of PD-L1 in IFN- γ treated cell-lines was significantly associated with a decreased RFS. It is well known that many malignant cells express PD-L1, either constitutively or after IFN- γ induction [24,25]. PD-L1 expression has been described as having multiple prognostic significances, depending on the <u>tumor type</u>. It has been correlated with decreased survival in ovarian, pancreatic, and renal cell carcinomas [26-28], and has been <u>associated with</u> an improved survival in patients with Merkel cell [29], breast [30], and cervical carcinomas [31]. Conflicting reports also exist regarding its significance in melanoma [14,15]. However, all these studies were conducted on tumor tissue samples and not on in vitro tumor cell-lines.

Page 16 of 32

Regarding melanoma associated antigens (MAA), gp100/PMEL, Melan-A/MART-1 and tyrosinase, we observed that their expression was moderately decreased upon IFN-γ treatment of melanoma celllines. Variable responses after IFN stimulation on MAA expression had already been reported in the literature, ranging from moderate induction to suppression [32]. Moreover, upon IFN-γ stimulation, we observed that the decreased expression of tyrosinase was associated with an improved RFS and the decreased expression of gp100 to an improved OS whereas the decreased expression of Melan-A was associated with a decreased OS. Our conflicting results regarding the predictive value of MAA perfectly illustrates the fact that data on this subject are controversial [33-35]. Finally, we report that the unmodified MCSP expression in IFN-γ treated melanoma cell-lines was related to both increased RFS and OS. MCSP/HMW-MAA is highly expressed in more than 85% of melanomas [36] and is thought to contribute to the malignant phenotype of melanoma cells via enhancement of their spreading, invasion, and migration [37]. To our knowledge, no data exist to date regarding the predictive or prognostic value of MCSP expression level in melanoma.

Regarding cancer testis antigens (CTA), we observed here that the decreased expression of MAGE-A was associated with an improved OS, whereas the decreased expression of NY-ESO-1 was associated with a diminished RFS. This result is consistent with our previous study reporting that the expression of MAGE-A1 and MAGE-A3 but in contradiction for NY-ESO-1 which was significantly associated with a higher RFS in stage III melanoma patients [38]. However in the present work we used flow cytometry to determine the expression level of tumor associated antigens on melanoma cell-lines, whereas in our work published in 2009, we used a semi-quantitative RT-PCR analysis on melanoma tissue specimens. In primary cutaneous melanoma, Svobodova et al reported that the median RFS of patients with the three CTA (MAGE-A1, MAGE-A4 and NY-ESO-1) positive tumors was significantly reduced compared to those of patients with CTA-negative tumors [39].

We finally observed that NRAS mutation status was associated with an improved RFS. However, controversial data exist in the literature on this subject. For instance, Ekedahl et al observed a trend showing a better prognosis for patients with NRAS-mutant tumors compared with BRAF V600E-

mutant tumors [40], although other studies reported an association between NRAS mutation and worse
prognosis in stage IV melanoma [41] but also in stage III melanoma [11].
One of the limitations of our work is that it is not always possible to obtain melanoma cell-lines and
the delay for obtaining it. In our experience, we managed to obtain cell-lines for 80% of our patients.
The median time necessary to obtain the cell-lines was 2 months after complete lymph node resection.
This is not so long as compared to inclusion in a clinical trial. Furthermore, the adjuvant treatment
could be initiated before obtaining the cell line, and changed when the data become available.
In conclusion, our results suggest that it is possible to identify a dynamic prognostic immunological
profile of melanoma cells, for stage III melanoma patients with lymph node involvement. Melanoma
cell-lines treated with IFN-y could be an interesting tool to identify stage III melanoma patients with a
higher risk of relapse. Thus, we propose that the modulation of PD-L1 and IDO1 expression in
melanoma cell-lines incubated with IFN-y could help screening patients most at risk of relapse and
shorter overall survival. These biomarkers have a prognostic value on RFS and OS. In the future, this
immunological profile of melanoma cells could help to identify stage III melanoma patients with a
higher risk of relapse and thus justifying an adjuvant treatment. Today, this last point is highly relevant
because of new treatments costs, but also adverse events occurrence, that can persist despite stopping
treatment.

Acknowledgements

We gratefully acknowledge GlaxoSmithKline Biologicals SA for their financial support.

We thank Emilie Varey (RIC-Mel network) for her helpful assistance in collecting clinical data.

We also thank the cytometry facility Cytocell for their expert technical assistance.

Funding Support

This study was funded by GlaxoSmithKline Biologicals SA.

Conflict of interest

The authors declare that they have no conflict of interest.

Author contributions

AC Knol and MC Pandolfino performed experiments

AC Knol, A.Khammari and B.Dréno conceived and designed the research study

A.Khammari and MG Denis contributed essential reagents/materials/analysis tools

AC Knol, MC Pandolfino P and JM Nguyen analysed the data

AC Knol and B.Dréno wrote the paper

All authors reviewed and commented critically drafts of the manuscript for important intellectual

content and gave final approval to submit for publication.

References

- 1. Parkin DM, Bray F, Ferlay J, Pisani P: Estimating the world cancer burden: Globocan 2000. Int J Cancer 2001;94:153-156.
- Eggermont AM, Chiarion-Sileni V, Grob JJ, Dummer R, Wolchok JD, Schmidt H, Hamid O, Robert C, Ascierto PA, Richards JM, Lebbe C, Ferraresi V, Smylie M, Weber JS, Maio M, Bastholt L, Mortier L, Thomas L, Tahir S, Hauschild A, Hassel JC, Hodi FS, Taitt C, de Pril V, de Schaetzen G, Suciu S, Testori A: Prolonged Survival in Stage III Melanoma with Ipilimumab Adjuvant Therapy. N Engl J Med 2016;375:1845-1855.
- Kratz JR, He J, Van Den Eeden SK, Zhu ZH, Gao W, Pham PT, Mulvihill MS, Ziaei F, Zhang H, Su B, Zhi X, Quesenberry CP, Habel LA, Deng Q, Wang Z, Zhou J, Li H, Huang MC, Yeh CC, Segal MR, Ray MR, Jones KD, Raz DJ, Xu Z, Jahan TM, Berryman D, He B, Mann MJ, Jablons DM: A practical molecular assay to predict survival in resected non-squamous, non-small-cell lung cancer: development and international validation studies. Lancet 2012;379:823-832.
- van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH: Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002;415:530-536.
- Baker JB, Dutta D, Watson D, Maddala T, Munneke BM, Shak S, Rowinsky EK, Xu LA, Harbison CT, Clark EA, Mauro DJ, Khambata-Ford S: Tumour gene expression predicts response to cetuximab in patients with KRAS wild-type metastatic colorectal cancer. Br J Cancer 2011;104:488-495.
- 6. Kim HK, Choi IJ, Kim CG, Kim HS, Oshima A, Yamada Y, Arao T, Nishio K, Michalowski A, Green JE: Three-gene predictor of clinical outcome for gastric cancer patients treated with chemotherapy. Pharmacogenomics J 2012;12:119-127.
- 7. Albain KS, Barlow WE, Shak S, Hortobagyi GN, Livingston RB, Yeh IT, Ravdin P, Bugarini R, Baehner FL, Davidson NE, Sledge GW, Winer EP, Hudis C, Ingle JN, Perez EA, Pritchard KI, Shepherd L, Gralow JR, Yoshizawa C, Allred DC, Osborne CK, Hayes DF: Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol 2010;11:55-65.
- 8. Zhu CQ, Ding K, Strumpf D, Weir BA, Meyerson M, Pennell N, Thomas RK, Naoki K, Ladd-Acosta C, Liu N, Pintilie M, Der S, Seymour L, Jurisica I, Shepherd FA, Tsao MS: Prognostic and predictive gene signature for adjuvant chemotherapy in resected non-small-cell lung cancer. J Clin Oncol 2010;28:4417-4424.
- Kruit WH, Suciu S, Dreno B, Mortier L, Robert C, Chiarion-Sileni V, Maio M, Testori A, Dorval T, Grob JJ, Becker JC, Spatz A, Eggermont AM, Louahed J, Lehmann FF, Brichard VG, Keilholz U: Selection of immunostimulant AS15 for active immunization with MAGE-A3 protein: results of a randomized phase II study of the European Organisation for Research and Treatment of Cancer Melanoma Group in Metastatic Melanoma. J Clin Oncol 2013;31:2413-2420.
- 10. Ulloa-Montoya F, Louahed J, Dizier B, Gruselle O, Spiessens B, Lehmann FF, Suciu S, Kruit WH, Eggermont AM, Vansteenkiste J, Brichard VG: Predictive gene signature in MAGE-A3 antigenspecific cancer immunotherapy. J Clin Oncol 2013;31:2388-2395.
- 11. Mann GJ, Pupo GM, Campain AE, Carter CD, Schramm SJ, Pianova S, Gerega SK, De Silva C, Lai K, Wilmott JS, Synnott M, Hersey P, Kefford RF, Thompson JF, Yang YH, Scolyer RA: BRAF mutation, NRAS mutation, and the absence of an immune-related expressed gene profile predict poor outcome in patients with stage III melanoma. J Invest Dermatol 2013;133:509-517.

- 12. Brody JR, Costantino CL, Berger AC, Sato T, Lisanti MP, Yeo CJ, Emmons RV, Witkiewicz AK: Expression of indoleamine 2,3-dioxygenase in metastatic malignant melanoma recruits regulatory T cells to avoid immune detection and affects survival. Cell Cycle 2009;8:1930-1934.
- Chevolet I, Speeckaert R, Haspeslagh M, Neyns B, Kruse V, Schreuer M, Van Gele M, Van Geel N, Brochez L: Peritumoral indoleamine 2,3-dioxygenase expression in melanoma: an early marker of resistance to immune control? Br J Dermatol 2014;171:987-995.
- 14. Hino R, Kabashima K, Kato Y, Yagi H, Nakamura M, Honjo T, Okazaki T, Tokura Y: Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma. Cancer 2010;116:1757-1766.
- 15. Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, Chen S, Klein AP, Pardoll DM, Topalian SL, Chen L: Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 2012;4:127ra137.
- 16. Pandolfino MC, Saiagh S, Knol AC, Dreno B: Comparison of three culture media for the establishment of melanoma cell lines. Cytotechnology 2010;62:403-412.
- 17. Gervois N, Heuze F, Diez E, Jotereau F: Selective expansion of a specific anti-tumor CD8+ cytotoxic T lymphocyte clone in the bulk culture of tumor-infiltrating lymphocytes from a melanoma patient: cytotoxic activity and T cell receptor gene rearrangements. Eur J Immunol 1990;20:825-831.
- 18. Halaban R, Ghosh S, Duray P, Kirkwood JM, Lerner AB: Human melanocytes cultured from nevi and melanomas. J Invest Dermatol 1986;87:95-101.
- 19. Zuliani T, Saiagh S, Knol AC, Esbelin J, Dreno B: Fetal fibroblasts and keratinocytes with immunosuppressive properties for allogeneic cell-based wound therapy. PLoS One 2013;8:e70408.
- 20. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL: Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 1999;189:1363-1372.
- 21. Mancuso R, Hernis A, Agostini S, Rovaris M, Caputo D, Fuchs D, Clerici M: Indoleamine 2,3 Dioxygenase (IDO) Expression and Activity in Relapsing-Remitting Multiple Sclerosis. PLoS One 2015;10:e0130715.
- 22. Taylor MW, Feng GS: Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. Faseb J 1991;5:2516-2522.
- 23. Frenard C, Knol AC, Lemoigne M, Khammari A, Dreno B: Effect of indoleamine 2,3dioxygenase expressed by foetal fibroblasts on melanoma cells. Exp Dermatol 2016;25:822-824.
- 24. Chen L: Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol 2004;4:336-347.
- 25. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L: Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002;8:793-800.
- 26. Giraldo NA, Becht E, Pages F, Skliris G, Verkarre V, Vano Y, Mejean A, Saint-Aubert N, Lacroix L, Natario I, Lupo A, Alifano M, Damotte D, Cazes A, Triebel F, Freeman GJ, Dieu-Nosjean MC, Oudard S, Fridman WH, Sautes-Fridman C: Orchestration and Prognostic Significance of Immune Checkpoints in the Microenvironment of Primary and Metastatic Renal Cell Cancer. Clin Cancer Res 2015;21:3031-3040.
- 27. Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Takakura K, Minato N, Honjo T, Fujii S: Programmed cell death 1 ligand 1 and tumorinfiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A 2007;104:3360-3365.

- 28. Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H, Nakamura S, Enomoto K, Yagita H, Azuma M, Nakajima Y: Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res 2007;13:2151-2157.
- 29. Lipson EJ, Vincent JG, Loyo M, Kagohara LT, Luber BS, Wang H, Xu H, Nayar SK, Wang TS, Sidransky D, Anders RA, Topalian SL, Taube JM: PD-L1 expression in the Merkel cell carcinoma microenvironment: association with inflammation, Merkel cell polyomavirus and overall survival. Cancer Immunol Res 2013;1:54-63.
- 30. Wimberly H, Brown JR, Schalper K, Haack H, Silver MR, Nixon C, Bossuyt V, Pusztai L, Lannin DR, Rimm DL: PD-L1 Expression Correlates with Tumor-Infiltrating Lymphocytes and Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancer Immunol Res 2015;3:326-332.
- 31. Karim R, Jordanova ES, Piersma SJ, Kenter GG, Chen L, Boer JM, Melief CJ, van der Burg SH: Tumor-expressed B7-H1 and B7-DC in relation to PD-1+ T-cell infiltration and survival of patients with cervical carcinoma. Clin Cancer Res 2009;15:6341-6347.
- 32. Hofbauer GF, Geertsen R, Laine E, Burg G, Dummer R: Impact of interferons on the expression of melanoma-associated antigens in melanoma short-term cell cultures. Melanoma Res 2001;11:213-218.
- 33. de Vries TJ, Smeets M, de Graaf R, Hou-Jensen K, Brocker EB, Renard N, Eggermont AM, van Muijen GN, Ruiter DJ: Expression of gp100, MART-1, tyrosinase, and S100 in paraffinembedded primary melanomas and locoregional, lymph node, and visceral metastases: implications for diagnosis and immunotherapy. A study conducted by the EORTC Melanoma Cooperative Group. J Pathol 2001;193:13-20.
- 34. Takeuchi H, Kuo C, Morton DL, Wang HJ, Hoon DS: Expression of differentiation melanomaassociated antigen genes is associated with favorable disease outcome in advanced-stage melanomas. Cancer Res 2003;63:441-448.
- 35. Welinder C, Pawlowski K, Szasz AM, Yakovleva M, Sugihara Y, Malm J, Jonsson G, Ingvar C, Lundgren L, Baldetorp B, Olsson H, Rezeli M, Laurell T, Wieslander E, Marko-Varga G: Correlation of histopathologic characteristics to protein expression and function in malignant melanoma. PLoS One 2017;12:e0176167.
- 36. Kitago M, Koyanagi K, Nakamura T, Goto Y, Faries M, O'Day SJ, Morton DL, Ferrone S, Hoon DS: mRNA expression and BRAF mutation in circulating melanoma cells isolated from peripheral blood with high molecular weight melanoma-associated antigen-specific monoclonal antibody beads. Clin Chem 2009;55:757-764.
- 37. Campoli MR, Chang CC, Kageshita T, Wang X, McCarthy JB, Ferrone S: Human high molecular weight-melanoma-associated antigen (HMW-MAA): a melanoma cell surface chondroitin sulfate proteoglycan (MSCP) with biological and clinical significance. Crit Rev Immunol 2004;24:267-296.
- 38. Vourc'h-Jourdain M, Volteau C, Nguyen JM, Khammari A, Dreno B: Melanoma gene expression and clinical course. Arch Dermatol Res 2009;301:673-679.
- 39. Svobodova S, Browning J, MacGregor D, Pollara G, Scolyer RA, Murali R, Thompson JF, Deb S, Azad A, Davis ID, Cebon JS: Cancer-testis antigen expression in primary cutaneous melanoma has independent prognostic value comparable to that of Breslow thickness, ulceration and mitotic rate. Eur J Cancer 2010;47:460-469.
- 40. Ekedahl H, Cirenajwis H, Harbst K, Carneiro A, Nielsen K, Olsson H, Lundgren L, Ingvar C, Jonsson G: The clinical significance of BRAF and NRAS mutations in a clinic-based metastatic melanoma cohort. Br J Dermatol 2013;169:1049-1055.
- 41. Jakob JA, Bassett RL, Jr., Ng CS, Curry JL, Joseph RW, Alvarado GC, Rohlfs ML, Richard J, Gershenwald JE, Kim KB, Lazar AJ, Hwu P, Davies MA: NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer 2012;118:4014-4023.

to Review Only

Va	ariable	Overall population (50)
Age (years)		51,9 years (+/-11,6)
\geq 5	0 years	30
<5	0 years	20
Gender		
	Male	35
]	Female	15
Stage of melanoma	IIIb	50
Death		
	Yes	38
	No	12
Adiuvant treatment		
TILs	+ IL-2	23
IFN	V-alpha	12
	IL-2	10
	None	5
Breslow		2,74 (mean) 2 (median)
<	1,5mm	21
>	1,5mm	29
MISSI	ng data	0
Ulceration		
	Yes	14
Missi	N0 ng data	17
Number of metastatic lymph	nodes	2 (mean and median)
	>1	28
	1	22
Capsular breaking		
L B	Yes	31
	No	19
Missi	ng data	0
Mean progression free surviv	val	8 months
Mean overall survival		19,5 months
Mutations		40
	BRAF	25
	NRAS	15
	KIT	0

Table 1: Main clinico-pathological features of the 50 melanoma patients

Table 3:	Median	expression	of	selected	biomarkers	by	untreated	melanoma	cell-lines	and	IFN-γ
stimulate	d melano	ma cell-line	<u>s</u>			-					

	untreated melanoma cells	IFN-γ treated melanoma cells
PD-L1	0,4%	76,1%
IDO1	37,0%	56,1%
MHC-I	90,2%	84,3%
MHC-II	67,7%	79,8%
gp100	68,5%	63,3%
Melan-A	74,5%	65,8%
tyrosinase	74,5%	58,2%
NY-ESO-1	52,5%	37,9%
MAGE-A	43,0%	26,8%
MCSP	91,3%	88,6%

Figure 1: Median expression of PD-L1 and IDO1 in untreated melanoma cell-lines and IFN- γ stimulated melanoma cell-lines

Figure 2: Representative pictures of flow cytometric analyses for PD-L1 (2A) and IDO1 (2B) Blue line: untreated melanoma cells, red line: IFN-γ treated melanoma cells, black line: isotypic control

Figure legends

 timulated melanoma cell-lines Figure 2: Representative pictures of flow cytometric analyses for PD-L1 (2A) and IDO1 (2B) Blue line: untreated melanoma cells, red line: IFN-γ treated melanoma cells, black isotypic control Supplementary figure 1: Kaplan Meier curves for RFS Supplementary figure 2: Kaplan Meier curves for 0S Table 1: Main clinico-pathological features of the 50 melanoma patients Table 2: Detailed clinico-biological characteristics of the 50 melanoma patients Table 3: Median expression of selected biomarkers in untreated melanoma cell-lines and atimulated melanoma cell-lines Supplementary table 1: Cytometric analysis of the 50 melanoma cell-lines (data are expressed a bositive cells) Supplementary table 2: Univariate model for RFS including biomarkers from both untreated melanom ines Supplementary table 4: Cox model for RFS including only biomarkers from IFN-γ treated melanom ines Supplementary table 5: Univariate model for OS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 6: Cox model for OS including only biomarkers from untreated melanom ines Supplementary table 6: Cox model for OS including only biomarkers from Untreated melanom ines Supplementary table 7: Cox model for OS including only biomarkers from Untreated melanom ines 	Figure 1: Med	dian expression of PD-L1 and IDO1 in untreated melanoma cell-lines and IFN
 Figure 2: Representative pictures of flow cytometric analyses for PD-L1 (2A) and IDO1 (2B) Blue line: untreated melanoma cells, red line: IFN-γ treated melanoma cells, black isotypic control Supplementary figure 1: Kaplan Meier curves for RFS Supplementary figure 2: Kaplan Meier curves for OS Fable 1: Main clinico-pathological features of the 50 melanoma patients Fable 2: Detailed clinico-biological characteristics of the 50 melanoma patients Fable 3: Median expression of selected biomarkers in untreated melanoma cell-lines and timulated melanoma cell-lines Supplementary table 1: Cytometric analysis of the 50 melanoma cell-lines (data are expressed a bositive cells) Supplementary table 2: Univariate model for RFS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 3: Cox model for RFS including only biomarkers from untreated melanom ines Supplementary table 5: Univariate model for OS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 5: Univariate model for OS including biomarkers from untreated melanom ines Supplementary table 6: Cox model for OS including only biomarkers from untreated melanom ines Supplementary table 6: Cox model for OS including only biomarkers from untreated melanom ines Supplementary table 7: Cox model for OS including only biomarkers from Untreated melanom ines 	stimulated mela	anoma cell-lines
Blue line: untreated melanoma cells, red line: IFN-γ treated melanoma cells, black isotypic control Supplementary figure 1: Kaplan Meier curves for RFS Supplementary figure 2: Kaplan Meier curves for OS Fable 1: Main clinico-pathological features of the 50 melanoma patients Fable 2: Detailed clinico-biological characteristics of the 50 melanoma patients Fable 3: Median expression of selected biomarkers in untreated melanoma cell-lines and stimulated melanoma cell-lines Supplementary table 1: Cytometric analysis of the 50 melanoma cell-lines (data are expressed a positive cells) Supplementary table 2: Univariate model for RFS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 3: Cox model for RFS including only biomarkers from untreated melanom ines Supplementary table 4: Cox model for RFS including only biomarkers from IFN-γ treated melanom ines Supplementary table 5: Univariate model for OS including biomarkers from untreated and reated melanoma cell-lines Supplementary table 6: Cox model for OS including only biomarkers from untreated melanom ines Supplementary table 5: Univariate model for OS including only biomarkers from Untreated melanom ines Supplementary table 6: Cox model for OS including only biomarkers from Untreated melanom ines	Figure 2: Repre	esentative pictures of flow cytometric analyses for PD-L1 (2A) and IDO1 (2B)
isotypic control Supplementary figure 1: Kaplan Meier curves for RFS Supplementary figure 2: Kaplan Meier curves for OS Table 1: Main clinico-pathological features of the 50 melanoma patients Table 2: Detailed clinico-biological characteristics of the 50 melanoma patients Table 3: Median expression of selected biomarkers in untreated melanoma cell-lines and attimulated melanoma cell-lines Supplementary table 1: Cytometric analysis of the 50 melanoma cell-lines (data are expressed a bositive cells) Supplementary table 2: Univariate model for RFS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 3: Cox model for RFS including only biomarkers from IFN-γ treated melanom ines Supplementary table 5: Univariate model for OS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 5: Univariate model for OS including biomarkers from untreated melanom ines Supplementary table 6: Cox model for OS including only biomarkers from untreated melanom ines Supplementary table 6: Cox model for OS including only biomarkers from Untreated melanom ines Supplementary table 7: Cox model for OS including only biomarkers from IFN-γ treated melanom ines	Blue li	ine: untreated melanoma cells, red line: IFN-y treated melanoma cells, black lin
Supplementary figure 1: Kaplan Meier curves for RFS Supplementary figure 2: Kaplan Meier curves for OS Fable 1: Main clinico-pathological features of the 50 melanoma patients Fable 2: Detailed clinico-biological characteristics of the 50 melanoma patients Fable 3: Median expression of selected biomarkers in untreated melanoma cell-lines and stimulated melanoma cell-lines Supplementary table 1: Cytometric analysis of the 50 melanoma cell-lines (data are expressed a bositive cells) Supplementary table 2: Univariate model for RFS including biomarkers from both untreated melanom reated melanoma cell-lines Supplementary table 3: Cox model for RFS including only biomarkers from untreated melanom ines Supplementary table 4: Cox model for RFS including only biomarkers from IFN-γ treated melanom reated melanoma cell-lines Supplementary table 5: Univariate model for OS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 6: Cox model for OS including only biomarkers from untreated melanom ines Supplementary table 5: Univariate model for OS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 5: Univariate model for OS including biomarkers from the untreated melanom reated melanoma cell-lines Supplementary table 5: Cox model for OS including only biomarkers from Untreated melanom ines	isotypi	<u>c control</u>
Supplementary figure 2: Kaplan Meier curves for OS Fable 1: Main clinico-pathological features of the 50 melanoma patients Fable 2: Detailed clinico-biological characteristics of the 50 melanoma patients Fable 3: Median expression of selected biomarkers in untreated melanoma cell-lines and stimulated melanoma cell-lines Supplementary table 1: Cytometric analysis of the 50 melanoma cell-lines (data are expressed a positive cells) Supplementary table 2: Univariate model for RFS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 3: Cox model for RFS including only biomarkers from untreated melanom ines Supplementary table 4: Cox model for RFS including only biomarkers from IFN- γ treated melanom reated melanoma cell-lines Supplementary table 5: Univariate model for OS including biomarkers from untreated and reated melanoma cell-lines Supplementary table 6: Cox model for OS including only biomarkers from untreated melanom ines Supplementary table 6: Cox model for OS including only biomarkers from UFN- γ treated melanom ines Supplementary table 6: Cox model for OS including only biomarkers from UTPN- γ treated melanom ines Supplementary table 7: Cox model for OS including only biomarkers from IFN- γ treated melanom	Supplementary	r figure 1: Kaplan Meier curves for RFS
Fable 1: Main clinico-pathological features of the 50 melanoma patients Fable 2: Detailed clinico-biological characteristics of the 50 melanoma patients Fable 3: Median expression of selected biomarkers in untreated melanoma cell-lines and stimulated melanoma cell-lines Supplementary table 1: Cytometric analysis of the 50 melanoma cell-lines (data are expressed a bositive cells) Supplementary table 2: Univariate model for RFS including biomarkers from both untreated melanom cell-lines Supplementary table 3: Cox model for RFS including only biomarkers from untreated melanom ines Supplementary table 4: Cox model for RFS including only biomarkers from IFN-γ treated melanom cell-lines Supplementary table 5: Univariate model for OS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 5: Univariate model for OS including only biomarkers from untreated melanom ines Supplementary table 5: Univariate model for OS including biomarkers from untreated melanom ines Supplementary table 6: Cox model for OS including only biomarkers from untreated melanom ines Supplementary table 6: Cox model for OS including only biomarkers from Untreated melanom ines Supplementary table 7: Cox model for OS including only biomarkers from Untreated melanom	Supplementary	r figure 2: Kaplan Meier curves for OS
Table 2: Detailed clinico-biological characteristics of the 50 melanoma patients Table 3: Median expression of selected biomarkers in untreated melanoma cell-lines and stimulated melanoma cell-lines Supplementary table 1: Cytometric analysis of the 50 melanoma cell-lines (data are expressed a bositive cells) Supplementary table 2: Univariate model for RFS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 3: Cox model for RFS including only biomarkers from untreated melanom ines Supplementary table 4: Cox model for RFS including only biomarkers from IFN-γ treated melanom ines Supplementary table 5: Univariate model for OS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 5: Cox model for OS including biomarkers from untreated melanom ines Supplementary table 5: Cox model for OS including only biomarkers from untreated melanom ines Supplementary table 6: Cox model for OS including only biomarkers from Untreated melanom ines Supplementary table 6: Cox model for OS including only biomarkers from Untreated melanom ines	Table 1: Main	clinico-pathological features of the 50 melanoma patients
Table 3: Median expression of selected biomarkers in untreated melanoma cell-lines and stimulated melanoma cell-lines Supplementary table 1: Cytometric analysis of the 50 melanoma cell-lines (data are expressed a positive cells) Supplementary table 2: Univariate model for RFS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 3: Cox model for RFS including only biomarkers from untreated melanom ines Supplementary table 4: Cox model for RFS including only biomarkers from IFN-γ treated melanom ines Supplementary table 5: Univariate model for OS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 5: Univariate model for OS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 6: Cox model for OS including only biomarkers from untreated melanom ines	Table 2: Detail	ed clinico-biological characteristics of the 50 melanoma patients
stimulated melanoma cell-lines Supplementary table 1: Cytometric analysis of the 50 melanoma cell-lines (data are expressed a positive cells) Supplementary table 2: Univariate model for RFS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 3: Cox model for RFS including only biomarkers from untreated melanom ines Supplementary table 4: Cox model for RFS including only biomarkers from IFN-γ treated melanom ines Supplementary table 5: Univariate model for OS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 5: Univariate model for OS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 6: Cox model for OS including only biomarkers from untreated melanom ines	Table 3: Med	ian expression of selected biomarkers in untreated melanoma cell-lines and IFN
Supplementary table 1: Cytometric analysis of the 50 melanoma cell-lines (data are expressed a bositive cells) Supplementary table 2: Univariate model for RFS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 3: Cox model for RFS including only biomarkers from untreated melanom ines Supplementary table 4: Cox model for RFS including only biomarkers from IFN-γ treated melanom cell-lines Supplementary table 5: Univariate model for OS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 5: Univariate model for OS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 6: Cox model for OS including only biomarkers from untreated melanom ines Supplementary table 7: Cox model for OS including only biomarkers from IFN-γ treated melanom	stimulated mela	anoma cell-lines
Supplementary table 2: Univariate model for RFS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 3: Cox model for RFS including only biomarkers from untreated melanom ines Supplementary table 4: Cox model for RFS including only biomarkers from IFN-γ treated melanom cell-lines Supplementary table 5: Univariate model for OS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 6: Cox model for OS including only biomarkers from untreated melanom ines Supplementary table 6: Cox model for OS including only biomarkers from untreated melanom ines Supplementary table 7: Cox model for OS including only biomarkers from IFN-γ treated melanom	Supplementary	table 1: Cytometric analysis of the 50 melanoma cell-lines (data are expressed as %
supplementary table 2: Univariate model for RFS including biomarkers from both universed and reated melanoma cell-lines Supplementary table 3: Cox model for RFS including only biomarkers from untreated melanom ines Supplementary table 4: Cox model for RFS including only biomarkers from IFN-γ treated melanom cell-lines Supplementary table 5: Univariate model for OS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 6: Cox model for OS including only biomarkers from untreated melanom ines Supplementary table 7: Cox model for OS including only biomarkers from IFN-γ treated melanom	Sumplementers)	table 2. University model for DES including biomericans from both suffracted and IES
Supplementary table 3: Cox model for RFS including only biomarkers from untreated melanom ines Supplementary table 4: Cox model for RFS including only biomarkers from IFN-γ treated mela cell-lines Supplementary table 5: Univariate model for OS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 6: Cox model for OS including only biomarkers from untreated melanom ines Supplementary table 7: Cox model for OS including only biomarkers from IFN-γ treated melanom	supplementary	value 2. Univariate model for KFS including biomarkers from both uniteated and IFF
supplementary table 3. Cox model for RFS including only biomarkers from untreated metanom ines Supplementary table 4: Cox model for RFS including only biomarkers from IFN-γ treated meta- cell-lines Supplementary table 5: Univariate model for OS including biomarkers from both untreated and reated metanoma cell-lines Supplementary table 6: Cox model for OS including only biomarkers from untreated metanom ines Supplementary table 7: Cox model for OS including only biomarkers from IFN-γ treated metanom	Sumlamentam	ma cell-lines
Supplementary table 4: Cox model for RFS including only biomarkers from IFN-γ treated mela cell-lines Supplementary table 5: Univariate model for OS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 6: Cox model for OS including only biomarkers from untreated melanom ines Supplementary table 7: Cox model for OS including only biomarkers from IFN-γ treated mela	Supplementary	table 5. Cox model for KFS including only biomarkers from untreated metanoma ce
Supplementary table 5: Univariate model for OS including only biomarkers from IFN-γ treated meta sell-lines Supplementary table 5: Univariate model for OS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 6: Cox model for OS including only biomarkers from untreated melanom ines Supplementary table 7: Cox model for OS including only biomarkers from IFN-γ treated mela	Committee and a market market and a	table 4. Commended for DEC in dedice and his mendeum form IEN starsted meder
Supplementary table 5: Univariate model for OS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 6: Cox model for OS including only biomarkers from untreated melanom ines Supplementary table 7: Cox model for OS including only biomarkers from IFN-γ treated mela	Supplementary	table 4: Cox model for RFS including only biomarkers from IFN-γ treated melanor
supplementary table 5: Univariate model for OS including biomarkers from both untreated and reated melanoma cell-lines Supplementary table 6: Cox model for OS including only biomarkers from untreated melanom ines Supplementary table 7: Cox model for OS including only biomarkers from IFN-γ treated mela		
reated melanoma cell-lines Supplementary table 6: Cox model for OS including only biomarkers from untreated melanom ines Supplementary table 7: Cox model for OS including only biomarkers from IFN-γ treated mela	Supplementary	table 5: Univariate model for US including biomarkers from both untreated and IFF
ines Supplementary table 7: Cox model for OS including only biomarkers from IFN- γ treated melanom	Grand Length and	ma cell-lines
Supplementary table 7: Cox model for OS including only biomarkers from IFN- γ treated mela	Supplementary	table 6: Cox model for OS including only biomarkers from untreated melanoma ce
supplementary table 7. Cox model for OS metuding only biomarkers from FFN-7 treated meta	Supplementary	y table 7: Cay model for OS including only biomericars from IEN y treated malane
all lines	supplementary	table 7. Cox model for OS meliuting only biomarkers from https://ueated melanoi
en-mes	cen-mes	

Page	27	of	32

Гζ	iye z <i>i</i>	01.	2																				
1	Patients code	Stage	BRAF/NRAS mutation testing FFPE tumor sample	% tumor cells in FFPE block	BRAF/NRAS mutation testing autologous tumor cell-line	Cell-line passage	Date of birth	Gender	Date of primitive tumor exision	Breslow	Breslow >1.5mm	Ulceration	Capsular breaking	Date of LN exision	Adjuvant treatment	Age at LN exision	Number of invaded LNs	Date of progression	Age at progression	Type of progression	Date of death	Age at death	Date of last news
2	1	ш	p.Q61R	65	p.Q61R	ND	30/06/1941	м	28/11/1990	0,5	0	NA	1	21/12/1994	TIL + IL-2	53,00	5	10/07/1995	54,03	metastasis	07/01/1996	54,52	NA
2	2	ш	p.Q61H	85	p.Q61H	P33	01/12/1952	м	01/12/1994	7,5	1	1	1	01/02/1995	TIL + IL-2	42,00	3	no	NA	NA	no	NA	10/05/2016
3	3	ш	p.V600E	90	p.V600E	P5	20/02/1946	м	NK/NK/1994	3,4	1	1	1	16/02/1995	IL-2	48,00	1	22/01/1996	49,92	metastasis	02/05/1997	51,20	NA
4	4	ш	p.V600K	50	p.V600K	P6	23/12/1939	м	02/07/1994	0,98	0	NA	1	16/03/1995	IL-2	55,00	2	13/06/1995	55,47	regional	29/08/1996	56,68	NA
F	5	ш	wt	85	wt	P7	03/03/1939	м	23/02/1995	2,36	1	NA	0	30/03/1995	IL-2	56,00	5	06/06/1995	56,26	metastasis	24/06/1995	56,31	NA
С	6	ш	wt	60	wt	P6	11/08/1944	м	13/07/1994	3,68	1	1	0	22/06/1995	TIL + IL-2	50,00	6	25/09/1995	51,12	metastasis	09/01/1996	51,41	NA
6	7	ш	p.Q61R	90	p.Q61R	P4	23/02/1941	F	15/11/1993	1	0	NA	0	20/07/1995	IL-2	54,00	3	25/01/1996	54,92	metastasis	25/01/1996	54,92	NA
7	8	ш	wt	70	wt	P15	24/03/1946	м	22/03/1995	0,8	0	NA	0	05/10/1995	TIL + IL-2	49,00	2	no	NA	NA	no	NA	10/05/2016
/	9	ш	p.V600E	80	p.V600E	P10	19/07/1945	М	12/12/1995	3,4	1	NA	1	12/12/1995	IL-2	50,00	1	22/02/1996	50,60	regional	05/01/1997	51,47	NA
8	10	ш	p.V600E	75	p.V600E	P10	02/04/1947	м	12/12/1995	3,9	1	1	0	25/04/1996	IL-2	49,00	2	10/06/1996	49,19	local	30/12/2000	53,75	NA
a	11		p.V600E	80	p.V600E	P6	08/10/1930	м	15/04/1997	9	1	NA	1	17/10/1996	TIL + IL-2	66.00	2	23/03/1997	66.46	metastasis	15/04/1997	66.52	NA
	12		p.V600E	60	p.V600E	P4	07/11/1945	м	15/05/1996	2	1	0	0	23/07/1997	TIL + IL-2	51,00	1	no	NA	NA	no	NA	10/05/2016
1() 13		wt	60	wt	P14	29/04/1937	F	19/03/1996	1.04	0	NA	1	11/09/1997	TIL + IL-2	60.00	2	no	NA	NA	no	NA	10/05/2016
11	14		p.V600E	50	p.V600E	P7	22/03/1978	F	03/03/1997	1.44	0	1	1	17/10/1997	II -2	19.00	1	00	NA	NA	no	NA	10/05/2016
	15		p.V600R	>90	p.V600R	P6	24/04/1925	M	14/01/1997	3.9	- 1	1	0	13/11/1997	 TII + II -2	72.00	3	n0	NA	NA	27/06/2000	75.18	NA
12	16		p.V600F	80	p.V600F	P8	01/11/1963	м	NK/01/1996	3.2	1	NA NA	1	19/02/1998	TIL + II -2	34.00	1	07/08/1998	34.77	metastasis	17/06/1999	35.62	NA
13	17		p. V600E	80	p.v600E	. 0 P12	07/06/1974	M	17/04/1998	12	0	NA	. 1	17/04/1998	11.2	23.00		13/10/1999	24.35	metastasie	15/12/1999	24.52	NA
1	1 19		p.061	60	p.060L	P12	03/04/1940	M	25/18/1997	1,2	1	1	1	30/04/1998	TIL + II - 2	58.00	7	27/07/1008	59.31	locale	06/10/1998	59.51	NA
14	10		p	45	platic	D7	00/11/1056	N1	20/01/1009	1,05	0	1	0	22/07/1009	110 + 10-2	41.00	,	2/10/11330	50,51	NA	00/10/1330	50,51	10/05/2016
15	. 19		wi	40	wi	F7	14/02/1040	F	20/01/1998	1,35	1	1	1	23/07/1990	11.2	41,00	2	21/01/2000	E0.02	INA	07/01/2002	52.00	10/03/2016
14	20		p.v000E	00	p.v600E	F3	14/02/1949	F	31/07/1997	0		1	-	40/09/1998	TH	49,00	2	21/01/2000	30,93	IUCal	07/01/2002	52,90	NA
10) 21		p.vouue	80	p.v600E	P9	13/08/1952	F	29/06/1998	8	1	0	1	16/09/1998	TIL + IL-2	46,00	2	11/05/1999	46,74	metastasis	20/01/2000	47,44	NA
17	, 22		p.Qotk	80	p.Q61R	P13	03/03/1931	M	12/07/2001	1,9	1	NA	0	30/01/2003	TIL + IL-2	71,00	1	24/06/2005	74,31	regional	20/03/2006	75,05	NA
10	23		p.V600E	50	p.V600E	P40	14/11/1954	M	01/03/2003	0,88	0	0	1	19/06/2003	TIL + IL-2	48,00	1	23/07/2004	49,69	metastasis	30/12/2004	50,13	NA
IC) 24		wt	>90	wt	P5	12/06/1944	F	17/05/2004	2,45	1	1	0	15/05/2004	1 IL + IL-2	59,00	1	21/07/2004	60,11	regional	09/04/2005	60,82	NA
19	25		p.Q61K	60	p.Q61K	P6	24/05/1959	F	15/07/1996	1	0	0	1	05/08/2004	TIL + IL-2	45,00	1	no	NA	NA	no	NA	10/05/2016
20	26		p.V600E	50	p.V600E	P7	07/03/1933	F	04/11/2003	0,331	0	0	0	22/11/2004	TIL + IL-2	71,00	1	25/01/2006	72,89	regional	04/03/2006	72,99	NA
20	27		p.V600E	85	p.V600E	P9	23/09/1932	F	22/09/1989	1,2	0	NA	1	18/02/2005	TIL + IL-2	72,00	1	18/11/2005	73,15	local	no	NA	10/05/2016
21	28		p.Q61R	60	p.Q61R	P11	22/02/1942	F	04/12/2001	1,04	0	0	0	03/06/2005	TIL + IL-2	63,00	1	no	NA	NA	07/07/2009	67,37	NA
22	29		p.Q61R	80	p.Q61R	P7	31/08/1952	м	23/06/2005	6	1	1	0	23/09/2005	IFN-alpha	53,00	2	23/04/2008	55,64	metastasis	06/04/2009	56,60	NA
~ ~	- 30	ш	wt	90	wt	P4	27/08/1946	м	03/06/2005	>3	1	1	0	07/10/2005	TIL + IL-2	59,00	1	07/04/2006	59,61	metastasis	10/10/2006	60,12	NA
2:	31	ш	p.V600E	95	p.V600E	P9	02/10/1960	м	29/09/1998	1,2	0	0	0	21/11/2005	TIL + IL-2	45,00	1	no	NA	NA	no	NA	10/05/2016
24	32		wt	90	wt	P8	10/10/1950	М	05/07/2005	0,8	0	0	1	10/03/2006	TIL + IL-2	55,00	1	23/06/2006	55,70	regional	03/03/2007	56,39	NA
- 	33	ш	p.Q61R	90	p.Q61R	P10	02/03/1942	F	NK/12/1997	1,8	1	NA	1	10/03/2006	None	64,00	2	no	NA	NA	no	NA	10/05/2016
25	34		p.Q61L	75	p.Q61L	P6	30/03/1955	М	22/08/2005	2	1	NA	1	05/05/2006	None	51,00	1	24/11/2006	51,66	reg	16/07/2008	53,30	NA
26	35		wt	<5	wt	P5	05/06/1950	М	27/06/2005	4	1	0	1	21/06/2006	IFN-alpha	56,00	6	11/09/2006	56,27	metastasis	20/08/2007	57,21	NA
27	36	ш	p.V600E	35	p.V600E	P10	11/02/1943	м	30/12/2004	1,45	0	0	1	17/11/2006	IFN-alpha	63,00	3	04/05/2007	64,22	local	05/10/2008	65,65	NA
21	37		p.V600E	90	p.V600E	P7	14/12/1970	F	05/12/2005	2	1	0	1	15/12/2006	None	36,00	1	29/01/2007	36,13	metastasis	28/04/2007	36,37	NA
28	38	ш	p.V600E	85	p.V600E	P7	13/01/1954	М	24/03/1995	4	1	NA	1	26/01/2007	IFN-alpha	53,00	4	11/09/2007	53,66	regional	04/07/2008	54,47	NA
20	39	ш	p.V600E	60	p.V600E	P7	07/12/1957	F	28/09/2006	4,8	1	1	1	30/03/2007	IFN-alpha	49,00	4	28/12/2007	50,06	metastasis	03/06/2008	50,49	NA
~ ~	40	ш	p.Q61K	80	p.Q61K	P6	13/01/1948	F	30/04/2007	9	1	NA	1	19/07/2007	IFN-alpha	59,00	2	18/03/2010	62,18	locale	25/05/2011	63,36	NA
30	41	ш	p.V600E	80	p.V600E	P7	12/12/1970	м	17/03/2006	0,6	0	NA	1	30/08/2007	IFN-alpha	36,00	3	19/11/2007	36,94	regional	27/03/2008	37,29	NA
31	42	ш	p.V600K	95	p.V600K	P7	22/08/1944	М	09/10/2006	2,4	1	0	0	13/12/2007	IFN-alpha	63,00	2	23/09/2008	64,09	regional	no	NA	10/05/2016
2	43	ш	p.V600E	50	p.V600E	P7	16/10/1951	М	19/02/2007	0,36	0	NA	1	13/12/2007	IFN-alpha	56,00	>1	07/04/2008	56,48	metastasis	20/07/2008	56,76	NA
32	44	ш	p.Q61K	85	p.Q61K	P6	04/08/1959	М	23/10/2007	5,51	1	0	0	08/02/2008	None	48,00	1	11/08/2008	49,02	locale	10/06/2011	51,85	NA
33	45	ш	p.V600E	85	p.V600E	P8	10/03/1959	М	19/02/2007	2,7	1	0	0	15/02/2008	TIL + IL-2	48,00	1	19/06/2008	49,28	regional	03/08/2008	49,40	NA
2	46	ш	p.Q61R	10	p.Q61R	P7	25/09/1947	М	26/06/2007	2,9	1	0	1	25/02/2008	IFN-alpha	60,00	3	31/12/2008	61,27	metastasis	11/01/2010	62,30	NA
54	t 47	ш	wt	85	wt	P4	25/05/1980	М	02/03/2006	1,3	0	0	1	12/03/2008	IFN-alpha	27,00	8	29/04/2008	27,93	regional	no	NA	10/05/2016
35	48	ш	p.Q61K	40	p.Q61K	P6	31/01/1948	М	04/08/2003	1,39	0	NA	1	19/05/2008	None	60,00	2	21/08/2008	60,56	reg + meta	06/02/2009	61,02	NA
24	49	ш	p.V600E	60	p.V600E	P8	20/11/1962	F	02/05/2008	4,83	1	1	0	11/07/2008	IFN-alpha	45,00	2	17/07/2009	46,66	local	16/07/2010	47,65	NA
50	50	ш	p.Q61R	90	p.Q61R	P5	21/06/1954	М	05/06/2007	0,34	0	0	1	02/12/2009	TIL + IL-2	55,00	1	26/08/2010	56,18	metastasis	03/11/2010	56,37	NA

Table 2 : Detailed clinico-biological characteristics of the 50 melanoma patients

Page 28 of 32

Pa	atients code	СМ	ні	СМ	ни	мс	SP	gp1	.00	NYE	SO1	Mela	an-A	tyrosi	inase	МА	GEs	PD-	L1	ID	01
_		untreated	+ IFN	untreated	+ IFN	untreated	+ IFN	untreated	+ IFN	untreated	+ IFN	untreated	+ IFN	untreated	+ IFN	untreated	+ IFN	untreated	+ IFN	untreated	+ IFN
1	1	91,26%	86,05%	68,65%	85,83%	88,98%	87,83%	93,63%	85,81%	61,66%	0,33%	86,12%	78,36%	76,57%	58,02%	39,20%	0,38%	71,46%	79,42%	53,72%	81,94%
Ľ	2	83,11%	96,71%	19,88%	88,15%	62,90%	78,36%	89,12%	89,36%	77,16%	72,92%	78,02%	75,84%	77,07%	79,88%	62,17%	54,58%	0,00%	84,87%	0,00%	0,00%
2	3	93,74%	88,99%	92,21%	92,65%	96,87%	90,59%	80,20%	62,77%	38,82%	1,98%	89,76%	58,20%	88,18%	52,72%	78,17%	0,00%	0,00%	77,71%	80,22%	67,38%
3	4	79,96%	77,55%	16,40%	19,85%	89,59%	87,45%	80,39%	83,34%	75,35%	65,79%	73,55%	81,11%	80,68%	81,41%	18,39%	31,02%	82,16%	78,83%	74,01%	64,31%
Δ	5	81,57%	86,50%	59,29%	73,84%	96,57%	92,50%	74,23%	75,06%	62,81%	55,69%	86,16%	75,48%	51,45%	36,52%	0,40%	1,01%	86,72%	80,59%	53,45%	51,43%
_	6	100,00%	100,00%	0,00%	91,10%	95,48%	95,90%	0,00%	100,00%	80,38%	57,39%	94,77%	96,13%	0,00%	63,38%	42,65%	49,14%	100,00%	100,00%	0,00%	0,00%
5	7	92,78%	83,97%	85,18%	79,79%	0,00%	0,00%	61,16%	71,34%	0,00%	0,00%	57,54%	51,62%	66,55%	48,21%	28,79%	14,22%	0,00%	72,64%	0,00%	16,27%
6	8	66,39%	37,34%	88,88%	84,86%	94,12%	95,46%	54,97%	78,65%	33,61%	4,71%	81,61%	84,86%	43,95%	31,08%	25,70%	11,99%	2,39%	2,44%	40,58%	24,72%
7	9	82,47%	76,40%	70,49%	63,54%	1,18%	0,57%	0,57%	0,35%	0,29%	0,28%	0,43%	0,30%	0,35%	0,11%	0,40%	0,26%	76,72%	82,74%	1,22%	3,42%
ίL	10	78,11%	77,04%	39,26%	80,43%	94,61%	92,26%	53,44%	35,76%	72,25%	0,24%	66,43%	49,03%	51,04%	11,09%	36,51%	0,90%	0,14%	71,95%	0,84%	64,88%
8	11	85,54%	83,02%	59,99%	70,43%	59,89%	53,37%	0,15%	0,03%	0,81%	0,20%	0,20%	0,45%	0,27%	0,54%	1,03%	1,06%	0,14%	57,10%	7,22%	56,37%
9	12	95,93%	93,62%	78,56%	94,46%	97,35%	93,24%	87,75%	80,99%	70,51%	24,28%	79,65%	55,21%	77,08%	68,60%	53,81%	27,76%	0,00%	29,97%	41,70%	70,14%
10	13	76,99%	71,73%	0,99%	61,94%	86,65%	86,14%	60,05%	66,21%	55,75%	44,88%	65,42%	69,56%	74,80%	75,09%	53,25%	17,12%	18,26%	62,41%	52,26%	44,35%
1	14	72,22%	61,31%	61,93%	75,97%	81,88%	71,41%	3,52%	1,79%	0,31%	0,69%	2,42%	0,48%	0,19%	1,48%	0,20%	0,37%	80,57%	78,98%	56,30%	7,56%
П	15	92,68%	85,90%	83,57%	72,04%	50,04%	36,15%	58,45%	62,23%	1,24%	2,21%	60,57%	58,81%	1,89%	60,20%	1,60%	1,88%	66,86%	66,68%	15,09%	64,88%
12	16	100,00%	100,00%	45,37%	73,21%	95,37%	95,39%	100,00%	100,00%	97,93%	69,07%	99,75%	97,62%	97,15%	100,00%	100,00%	52,45%	100,00%	46,36%	0,00%	49,04%
1B	17	96,48%	92,16%	76,92%	94,29%	98,93%	98,28%	47,60%	72,19%	0,23%	0,23%	59,95%	65,52%	0,17%	64,95%	0,20%	70,58%	0,34%	88,14%	77,75%	39,82%
16	18	84,10%	67,12%	69,85%	76,55%	90,46%	86,80%	83,82%	58,42%	91,97%	51,92%	91,20%	69,97%	78,70%	47,96%	28,39%	27,28%	39,66%	83,26%	0,62%	3,49%
14	19	93,64%	93,45%	91,50%	86,32%	94,54%	92,31%	38,51%	42,99%	69,63%	60,88%	71,26%	59,90%	83,08%	87,01%	94,06%	91,43%	15,88%	4,63%	37,75%	55,75%
15	20	89,09%	81,74%	23,72%	66,01%	92,54%	91,42%	62,07%	63,06%	50,14%	46,13%	70,60%	55,75%	74,82%	62,25%	60,95%	37,28%	0,08%	57,71%	37,74%	43,83%
16	21	89,52%	88,26%	70,76%	68,07%	86,35%	84,92%	82,51%	70,72%	87,11%	26,03%	87,87%	53,02%	89,11%	70,21%	80,48%	8,34%	0,00%	77,66%	77,68%	25,11%
12	22	98,50%	95,53%	99,20%	97,84%	98,43%	97,36%	64,49%	86,74%	84,90%	84,33%	75,08%	82,08%	84,33%	77,52%	51,11%	73,43%	0,00%	80,59%	89,74%	82,58%
17	23	85,95%	96,18%	60,46%	85,06%	97,15%	97,38%	90,43%	89,81%	51,81%	41,50%	91,82%	89,35%	81,25%	82,73%	43,30%	55,05%	49,22%	75,30%	89,38%	80,33%
18	24	83,43%	84,58%	84,20%	85,14%	1,60%	2,82%	0,20%	0,19%	0,13%	0,04%	0,19%	0,05%	0,49%	0,22%	0,23%	0,07%	0,06%	76,71%	80,25%	84,30%
19	25	94,27%	95,88%	96,36%	97,84%	79,16%	83,78%	93,39%	93,68%	54,59%	47,99%	90,48%	90,58%	90,08%	84,05%	54,15%	47,94%	0,76%	86,21%	91,95%	94,18%
26	26	0,00%	100,00%	1,59%	84,84%	83,83%	80,16%	0,00%	0,00%	92,91%	86,89%	85,21%	58,13%	100,00%	100,00%	60,24%	25,16%	0,00%	0,00%	100,00%	100,00%
20	27	96,52%	90,15%	93,90%	88,89%	98,81%	97,49%	66,58%	58,02%	88,01%	82,79%	90,03%	83,62%	78,68%	71,13%	83,67%	76,32%	0,00%	91,45%	0,00%	0,00%
21	28	92,85%	95,14%	73,73%	89,43%	91,92%	89,85%	17,89%	34,46%	78,57%	69,10%	74,53%	69,47%	7,07%	13,47%	30,06%	31,72%	87,76%	92,85%	76,00%	75,04%
22	29	86,01%	87,31%	54,80%	54,93%	63,03%	46,43%	80,54%	79,88%	52,12%	52,51%	73,09%	70,13%	48,82%	34,15%	38,38%	21,17%	0,84%	1,12%	11,32%	24,83%
22	30	96,04%	69,27%	88,11%	79,83%	59,52%	42,58%	0,00%	0,00%	6,35%	0,26%	0,00%	0,00%	0,22%	0,07%	0,25%	0,26%	0,05%	83,39%	22,34%	58,27%
20	31	72,15%	64,23%	73,70%	70,44%	82,13%	69,32%	77,96%	74,46%	72,04%	70,33%	77,29%	66,00%	65,99%	67,84%	78,29%	61,39%	0,65%	0,89%	0,60%	28,70%
24	32	71,17%	74,60%	56,74%	47,23%	54,77%	57,33%	75,40%	72,04%	50,67%	48,81%	61,21%	65,08%	56,58%	57,42%	0,21%	53,31%	0,50%	52,77%	1,39%	43,08%
25	33	87,71%	83,58%	92,10%	90,21%	94,59%	88,32%	74,94%	72,66%	52,87%	33,08%	73,43%	51,69%	88,09%	58,42%	59,00%	29,64%	0,13%	87,99%	56,22%	71,59%
24	34	91,24%	83,25%	66,77%	92,38%	94,69%	91,37%	90,71%	88,16%	52,91%	36,19%	89,66%	69,69%	86,05%	52,83%	100,00%	100,00%	0,00%	58,78%	0,00%	100,00%
24	35	96,67%	88,89%	84,90%	94,18%	99,42%	99,07%	69,45%	44,35%	64,80%	62,17%	82,36%	77,51%	72,61%	57,11%	55,41%	57,69%	0,10%	92,18%	66,58%	86,93%
21	36	75,92%	69,91%	66,59%	79,77%	94,43%	95,90%	71,01%	39,98%	19,09%	8,93%	72,73%	70,61%	83,13%	61,75%	48,36%	36,21%	0,11%	0,15%	26,94%	51,19%
28	37	100,00%	100,00%	85,29%	98,09%	99,35%	98,01%	0,00%	100,00%	97,00%	86,88%	94,41%	91,51%	100,00%	100,00%	100,00%	0,00%	100,00%	100,00%	100,00%	100,00%
20	38	93,33%	83,90%	70,50%	58,99%	95,60%	94,78%	80,17%	77,95%	40,31%	68,62%	71,69%	74,36%	74,21%	70,80%	47,04%	63,92%	69,05%	65,95%	1,05%	71,48%
26	39	91,87%	80,98%	44,58%	75,00%	90,65%	88,84%	0,33%	0,37%	0,22%	0,52%	0,21%	0,58%	0,19%	0,19%	0,33%	0,59%	0,38%	90,84%	88,20%	78,88%
30	40	100,00%	83,37%	1,46%	18,02%	90,64%	85,22%	96,56%	94,75%	90,14%	100,00%	90,67%	83,84%	95,19%	89,44%	82,09%	78,33%	0,00%	100,00%	0,00%	0,00%
31	41	87,55%	63,13%	70,68%	52,19%	94,49%	93,40%	52,41%	54,94%	0,35%	0,28%	73,77%	64,41%	0,28%	0,26%	0,39%	0,38%	0,09%	75,48%	14,24%	37,28%
32	42	100,00%	100,00%	0,00%	70,85%	97,54%	98,21%	0,00%	100,00%	99,26%	95,39%	99,64%	97,80%	100,00%	0,00%	100,00%	49,97%	0,00%	0,00%	0,00%	0,00%
26	43	80,52%	73,36%	90,07%	86,10%	69,52%	45,03%	37,22%	0,27%	14,12%	0,42%	35,09%	21,68%	50,25%	1,13%	0,88%	0,41%	2,45%	60,42%	70,98%	66,42%
Ъþ	44	90,78%	88,30%	87,65%	86,36%	95,64%	89,10%	69,73%	63,29%	47,98%	39,66%	74,42%	51,70%	91,09%	74,22%	79,22%	53,59%	0,40%	80,62%	93,53%	87,60%
34	45	81,90%	76,21%	23,68%	54,15%	90,48%	84,34%	7,12%	60,06%	9,11%	2,04%	29,08%	51,46%	8,89%	5,10%	1,98%	2,17%	0,12%	68,14%	0,28%	65,56%
35	46	100,00%	100,00%	58,65%	98,88%	99,78%	97,96%	0,00%	53,09%	0,68%	0,00%	100,00%	0,00%	84,47%	58,51%	100,00%	0,00%	100,00%	100,00%	0,00%	100,00%
	47	91,59%	91,44%	31,44%	25,62%	93,51%	93,44%	48,20%	50,97%	24,48%	18,01%	85,77%	85,47%	23,36%	28,58%	41,55%	11,49%	82,99%	74,84%	36,23%	23,45%
30	48	76,48%	55,87%	0,71%	1,28%	0,46%	0,18%	70,58%	78,56%	23,22%	42,88%	63,26%	61,89%	22,78%	10,58%	18,58%	26,25%	0,06%	42,56%	0,20%	36,65%
37	49	47,43%	39,34%	48,12%	46,07%	38,78%	34,46%	52,07%	49,00%	0,17%	0,27%	44,57%	41,36%	1,76%	2,13%	0,31%	0,25%	0,15%	39,81%	0,26%	0,35%
38	50	90,95%	81,93%	31,19%	67,12%	63,16%	57,52%	79,85%	81,49%	81,01%	10,50%	88,97%	74,74%	81,95%	85,84%	75,08%	68,61%	0,03%	79,85%	69,28%	87,99%

Supplementary table 1 : Cytometric analysis of the 50 melanoma cell-lines (data are expressed as % of positive cells) 41

Page 29	of 32	Untreated cell-lines	IFN-γ treated cell-lines
	CMH I	0,886	0,514
1	CMH II	0,313	0,324
2	MCSP	0,703	0,363
3	gp100	0,837	0,48
4	Melan-A	0,378	0,613
6	tyrosinase	0,136	0,0121
7	NY-ESO-1	0,115	0,4
8	MAGE-A	0,021	0,15
9	IDO1	0,0653	0,769
11	PD-L1	0,334	0,673

Supplementary table 2 : univariate model for RFS including biomarkers from both untreated and IFN-y treated melanoma celllines (data are expressed as p-values)

	HR	lower .95	upper .95	p-value
MCSP	0.985	0.971	0.998	0.0259
NRAS mutation	0.506	0.245	1.045	0.0655
Number of invaded nodes	1.365	1.083	1.720	0.0083
Capsular breaking	1.824	0.875	3.804	0.1088

²Supplementary table 3: Cox model for RFS including only biomarkers from untreated melanoma cell-lines

	HR	lower .95	upper .95	p-value
MHC class II	0.986	0.968	1.004	0.1329
MCSP	0.970	0.948	0.993	0.0099
NY-ESO-1	1.035	1.015	1.056	0.0005
tyrosinase	0.978	0.965	0.991	0.0013
PD-L1	1.032	1.015	1.049	0.0001
IDO1	1.017	1.004	1.031	0.0130
NRAS	0.216	0.084	0.554	0.0015
Number of invaded nodes	1.337	1.052	0.554	0.0175

Supplementary table 4: Cox model for RFS including only biomarkers from IFN- γ -treated melanoma cell-lines

	Untreated cell-lines	IFN-γ treated cell-lines
CMH I	0,73	0,372
CMH II	0,78	0,435
MCSP	0,212	0,543
gp100	0,694	0,768
Melan-A	0,201	0,147
tyrosinase	0,0645	0,0797
NY-ESO-1	0,0439	0,331
MAGE-A	0,00727	0,0679
IDO1	0,533	0,137
PD-L1	0,618	0,428

Supplementary table 5 : univariate model for OS including biomarkers from both untreated and IFN- γ treated melanoma cell-lines (data are expressed as p-values)

	HR	lower .95	upper .95	p-value
tyrosinase	0.985	0.975	0.995	0.0031
Capsular breaking	2.476	1.126	5.444	0.0242

Supplementary table 6: Cox model for OS including only biomarkers from untreated melanoma cell-lines

	HR	lower .95	upper .95	p-value
MCSP	0.981	0.964	0.997	0.0201
gp100	0.975	0.958	0.993	0.0070
Melan-A	1.025	1.003	1.048	0.0282
MAGE-A	0.984	0.971	0.998	0.0230
IDO1	1.025	1.011	1.039	0.0005
Breslow	1.218	1.020	1.456	0.0298
Capsular breaking	3.656	1.575	8.491	0.0026

Supplementary table 7: Cox model for OS including only biomarkers from IFN- γ -treated melanoma cell-lines

Supplementary figure 1 : Kaplan Meier curves for RFS

Supplementary figure 2: Kaplan Meier curves for OS