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Abstract

Background: The integration of gene expression profiles (GEPs) and large-scale biological networks derived from
pathways databases is a subject which is being widely explored. Existing methods are based on network distance
measures among significantly measured species. Only a small number of them include the directionality and
underlying logic existing in biological networks. In this study we approach the GEP-networks integration problem by
considering the network logic, however our approach does not require a prior species selection according to their
gene expression level.

Results: We start by modeling the biological network representing its underlying logic using Logic Programming.
This model points to reachable network discrete states that maximize a notion of harmony between the molecular
species active or inactive possible states and the directionality of the pathways reactions according to their activator or
inhibitor control role. Only then, we confront these network states with the GEP. From this confrontation independent
graph components are derived, each of them related to a fixed and optimal assignment of active or inactive states.
These components allow us to decompose a large-scale network into subgraphs and their molecular species state
assignments have different degrees of similarity when compared to the same GEP.
We apply our method to study the set of possible states derived from a subgraph from the NCI-PID Pathway
Interaction Database. This graph links Multiple Myeloma (MM) genes to known receptors for this blood cancer.

Conclusion: We discover that the NCI-PID MM graph had 15 independent components, and when confronted to
611 MM GEPs, we find 1 component as being more specific to represent the difference between cancer and healthy
profiles.

Keywords: Answer set programming, Regulatory network modeling, Omic data integration

Background
The exponential increase of biological data (genomic,
transcriptomic, proteomic) [1] and of biological inter-
action knowledge in Pathway Databases allows model-
ing cellular regulatory mechanisms. Modeling biological
mechanisms is done, most of the time, using boolean
or ordinary differential equation representations. Those
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approaches have shown their efficiency in cellular phe-
nomena study [2], disease research [3, 4], and bio-
production optimization [5]. However, those modeling
approaches cannot take into account the large amount of
OMIC data. This limitation requires that the researcher
preselects the OMIC data and network, adding bias to the
analysis [6]. A classical way to perform OMIC data pre-
selection is to use differentially expressed genes [7], this
leads to select genes by imposing common fixed thresh-
olds while their activation threshold may be specific for
each gene. As a consequence the selected pathways may
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not be specific for the biological problematic. A com-
mon way to perform network preselection consists on
choosing specific pathways according to the type of data
and the biological problematic. Moreover, several reg-
ulatory databases such as KEGG, CBN, and Reactome
[8–10] allow to select specific (e.g. apoptosis) pathways
directly. Nevertheless, this network preselection approach
can hide unsuspected pathways, reducing the possibility
to discover new ones.

Some of the methods that identify subnetworks or net-
work components, recognize specific pathways based on
differentially expressed genes [11]. However, this kind of
approaches considers pathways independently, and does
not take into account the interactions between biologi-
cal compounds. Other methods were developed to find
involved pathways by identifying subgraphs or network
clusters [12] from a regulatory network using topologi-
cal informations and then use the gene expression profiles
(GEPs) to identify a specific cluster. The majority of such
methods uses protein-protein interaction (PPI) networks
and GEPs to identify subgraphs [13, 14]. Those meth-
ods consider the interactions between biological com-
pounds but infer protein states based on the associated
GEP. That is, the built subgraph contains expressed pro-
teins (obtained from associated genes expression) and
their interactions [14]. These methods assume that a cor-
releation between gene expression and protein activity
exists, which is not necessarily true since an increase on
gene expression can account of an increase of protein
quantity, however in order to increase the activity of a pro-
tein another (e.g. phosphorylation) mechanism may need
to be included. Methods using PPI networks are limited
since they do not consider causality logic and different
interaction roles. While the notion of causality is used
by methods such as [15] to find a subgraph which maxi-
mizes the genes expression variation information; to our
knowledge few subgraph identification methods based on
GEPs consider direct interactions in regulatory networks,
and much less include the different kind of interaction
role (activation or inhibition) [16]. Moreover, the major-
ity of those methods study protein interactions based
on GEPs and without taking into account the difference
between transcriptional and post-translational regulation.
Finally, approaches that include the interaction role in
their integrative analysis to link regulatory networks with
GEPs [16, 17] use a local strategy, that is, they analyze
sequentially each node in the graph with respect to its
predecessors.

In this study we propose a method based on exhaus-
tive and global graph coloring approaches [18]. These
approaches are able to predict the graph coloring configu-
rations, in terms of discrete states (e.g. active or inactive)
of the molecular species of a biological network with
respect to a set of experimental observations. In this

work we extend those approaches by looking for har-
monious or perfect colorations. The intuition behind the
harmonious or perfectness notion is to point to reach-
able network discrete states that maximize the agreement
between the molecular species active or inactive states
and the directionality of the pathways reactions accord-
ing to their activator or inhibitor control role. This can
be expressed in natural language as follows: “for a given
node in the graph we impose that its discrete active or
inactive state is explained by a maximal number of reg-
ulators”. This statement is inspired from a hypothesis of
redundancy in biological networks control, and we use
Logic Programming to express this statement and search
for coloring models where it holds for every node in the
graph. Afterwards, we correlate the graph coloring mod-
els that maximize the perfectness notion and in this way
build correlated graph components. After adding experi-
mental data, our method is able to identify components
of interest. We present an application of this method
with transcriptomic data from myeloma cells (MC) of
602 MM patients and from normal plasma cells (NPC)
of 9 healthy donors. Multiple myeloma is a hematologic
malignancy representing 1% of all cancer [19] with a
survival rate of 49.6% after 5 years. Our method of per-
fect graph colorings identification allowed us to identify
15 components. One of these components was statisti-
cally specific to MC in comparison to NPC. Using gene
ontology enrichment analysis with the PANTHER tool
we were able to associate this component to oncogenic
phenomena.

Methods
We propose in this paper a perfect colorations model-
ing framework which confronts a regulatory network with
transcriptomic data (see Fig. 1). We detail in the follow-
ing sections the main modeling steps of this framework.
Note that the order of subsections does not follow the
workflow due to the fact that some steps, in particularly
the space solution reduction, require concepts which need
to be introduced before. In Fig. 1 we illustrate the input
(regulatory network and transcriptomic data) and output
(maximal similarity and components) of our method. In
“Toy example” section we present a toy example following
step by step the workflow of Fig. 1.

Answer Set Programming (ASP)
The perfect colorations identification is implemented in
Answer Set Programming (ASP) [20]. This declarative
programming approach allows us to express a problem in
the form of a logic program (LP). The syntax of ASP is
close to Prolog syntax because the grammatical structure
of both LPs rules expresses a logical implication from the
right terms of the rule towards the left terms of the rule.
However, ASP semantics, which stands for the meaning of
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Fig. 1 Overview of the perfect colorations modeling framework. Blue boxes refer to processing steps that are detailed in the Methods section and
yellow boxes refer to input/ouput data

the vocabulary symbols used in each rule, allows a differ-
ent type of solving mechanism. While in Prolog there is
an inference process to search for an answer to a query,
ASP programs allow to find all (Herbrand stable) models
satisfying all the LP rules.

An ASP program consists of a set of predicates and first
order logic rules of the form :

1 A0 ← A1, ..., An, not An+1,..., not An+k.

where Ai are atoms, i.e elements of the Herbrand base,
which is composed of all the possible relations or predi-
cates in first order logic of the LP. The Herbrand base is
built by instantiating the LP predicates with the LP terms
(constants or elements of the Herbrand universe). Basi-
cally, the line 1 explicits that A0 will be true if A1,..., An
are true and An+1,..., An+k cannot be proven to be true
(not in the Herbrand base). In ASP, a solution or answer
set is a stable Herbrand model, that is, a minimal set of
true atoms without variables (grounded atoms) where all
the logical rules are satisfied. We give now a brief descrip-
tion of the ASP rules used in this study; for deeper ASP
understanding, please refer to [20, 21]. Variables in ASP
start with uppercase letter whereas variables starting with
lowercase letters denote constants. We use the following
rule to generate candidate solutions:

2 n {a(X,Z) : b(X)} n ← c(Z).

This rule is satisfied when n predicatesa(X,Z) are true,
where X ranges over the domain of true predicates b(X)
and Z is fixed by predicate c(Z). Another rule we use is
expressed as:

3 sum(X) ← X =#count{ a(Z) : b(Z) }.

This rule generates a predicate sum(X) where X is the
number of predicates a(Z) which are true and ranged by
the domain of true predicates b(Z). Finally, we used the
following rule for optimization:

4 #minimize {X@1 : sum(X)}.

This rule expresses the selection of the answer sets with
the minimal value of X, where predicate sum(X) is true.

The “@p” indicates the optimization priority. The higher
the value of p, the higher the priority.

Modeling perfect coloring with ASP
Instantiation
Graph: a graph G(V , E) is composed of a set of nodes V
and edges E. Edge: an edge is a tuple with 2 nodes (source
and target), a sign (1 for activation, -1 for inhibition) and
a weight.

5 % Edge from node1 activating node2, with a weight
of 1

6 edge(node1,node2,1,1).
7 % Edge from node2 inhibiting node3, with a weight

of 1
8 edge(node2,node3,-1,1).

Node: nodes are identified by the union of all sources and
targets in the edges.

9 % Nodes definition
10 node(X) ← edge(X,_,_,_).
11 node(X) ← edge(_,X,_,_).

Target: a target is a node with at least one predecessor.
We can identify those targets by looking for the union of
all targets in the edges (line 12)

12 target(X) ← edge(_,X,_,_).

Candidate solutions generation
A colored graph is a graph in which all nodes are associ-
ated to a sign: up standing for “+” and down for “-”. These
signs refer to the qualitative variation that one may exper-
imentally measure in a molecular species (component of
the graph) when comparing 2 cellular states, for exam-
ple after v.s. before a stress condition. In this work we are
interested on modeling sets of possible state variations of
the components of the graph (line 16).

13 % Signs definition
14 sign(down;up).
15 % Graph coloring
16 1{coloring(I,S):sign(S)}1 ← node(I).
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Definitions
Local consistent node coloring. A node colored in a
consistent way will be a node where its color is explained
by at least one of its direct predecessor in the graph [18].
There are two possibilities for the coloring of a node n so
that it will be explained by one of its predecessors p. This
will depend on the sign of the edge from p to n. If the edge
is an activation (line 17), p has to be associated with the
same sign, otherwise if it is an inhibition (line 18), p has
to be associated with the opposite sign. Because a node
needs a predecessor to have a consistent color, this rule is
only relevant for graph targets.
17 consistentTarget(X) ← target(X), coloring(X,S1),

coloring(Z,S2), edge(Z,X,1,_), S1=S2.
18 consistentTarget(X) ← target(X), coloring(X,S1),

coloring(Z,S2), edge(Z,X,-1,_), S1!=S2.

Imperfect target coloring. An imperfect node coloring
happens when a node is colored with a sign not explained
by at least one of its direct predecessors in the graph.
19 imperfectColoring(X) ← coloring(X,S1), coloring(Z,

S2), edge(Z,X,1,_), S1!=S2.
20 imperfectColoring(X) ← coloring(X,S1), coloring(Z,

S1), edge(Z,X,-1,_).

Imperfect weighted regulator. An imperfect weighted
regulator p is a direct predecessor of a node n that does
not explain consistently the color of n. The weight of this
rule will be the weight of the edge from p to n.
21 imperfectWeightedRegulator(X, Y, 1..W) ← edge(X,Y

,1,W), coloring(X,S1), coloring(Y,S2), S1!=S2.
22 imperfectWeightedRegulator(X, Y, 1..W) ← edge(X,Y

,-1,W), coloring(X,S1), coloring(Y,S2), S1=S2.

Optimization constraints
Our method identifies graph colorings which minimize
conflicts between target and predecessors, that is, it finds
perfect graph colorings with minimal conflicts. In order to
do this we apply 3 minimizations.

Inconsistency minimization The first optimization will
select the colored graphs with the minimal number of
inconsistent targets. For this, we will first identify the
inconsistent targets (line 23), then count the sum of those
inconsistent targets (line 24). Finally, we will minimize this
sum (line 25).
23 inconsistentTarget(X) ← not consistentTarget(X),

target(X).
24 sumInconsistencyTargets(X) ← X =#count{ node(Z) :

inconsistent(Z) }.
25 #minimize {X@3 : sumInconsistencyTargets(X)}.

Imperfect target coloring minimization The second
optimization aims to reduce the solutions space to the
graph with the minimal number of imperfect targets. In

the same way as previously, the sum of imperfect tar-
get colorings is computed for each solution (line 26),
then the solutions with the minimal number of imperfect
colorations will be selected (line 27).
26 sumImperfectColoring(X) ← X =#count{ node(Z) :

imperfectColoring(Z) }.
27 #minimize {X@2 : sumImperfectColoring(X)}.

Imperfect weighted regulator minimization The last
optimization will minimize the sum of imperfect weighted
regulators. First, for each target we compute the sum
of the weights from the imperfect weighted regulators
(line 28). Then we can compute the sum of weights for a
colored graph (line 30). Finally, we can select the colored
graph with the minimal sum of the weights associated to
imperfect regulators (line 31).
28 sumImperfectWeightedRegulatorPerTarget(X,Y) ← Y=#

count{ x(A, B) : imperfectWeightedRegulator(A,
X,B)}, imperfectColoration(X).

29 imperfectWeightedRegulatorPerTarget(X,1..W) ←
sumImperfectWeightedRegulatorPerTarget(X,W).

30 sumImperfectWeightedRegulator(X) ← X=#count{ x(Y,Z
) : imperfectWeightedRegulatorPerTarget(Y,Z),
imperfectColoration(Y)}.

31 #minimize {X@1 : sumImperfectWeightedRegulator(X)}.

Component identification
Graphs or networks built from pathway databases, such
as NCI-PID [22] are composed of nodes that can repre-
sent proteins, complexes, genes, transcription or proteins
modification events. A component is defined as a set
of molecular-species nodes which are color-dependent
or color-correlated. That is, by fixing the color of one
molecular-species node in this component, the colors of
the other molecular-species nodes can be established so
that the perfect coloring constraints hold. Given a graph,
it is possible to identify its entire set of components by
building a correlation matrix from the perfect coloring
models obtained in “Modeling perfect coloring with ASP”
section for each couple of nodes. Given a couple of nodes,
3 types of correlations are possible (Table 1). Positive
correlation, b = 0; negative correlation, a = 0; and
independent correlation ab �= 0. Two nodes which are
positively or negatively correlated will be incorporated in
the same component.

Maximal similarity
This step computes the similarity between the compo-
nents’ coloring and the dataset with the experimental

Table 1 Correlation matrix informing about the dependence
between two nodes colorations among perfect colorations. a
and b inform for each coloring combination occurrence

Coloring up down

up a b

down b a
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observations present in one expression profile. Due to the
perfect coloring framework and the fact that our model
is based on a two-signs coloring, the nodes of a compo-
nent Ci will have exactly two coloring configurations, we
denote them by C1

i and C2
i . C1

i will be the exact reverse of
C2

i (the reverse of up is down and vice versa). We represent
a dataset of experimental observations by a set of nodes
in the graph with a fixed coloration obtained via a prior
discretization of the experimental measurements. The
maximal similarity (MS) computes the maximum, with
respect to the size, of the intersection between the dataset
of observations and each coloring configuration divided
by the number of nodes observed in the component:

MSi = max
(|obsi ∩ C1

i |, |obsi ∩ C2
i |)

|obsi|
where i stands for the analyzed component and obsi the
experimental observations of nodes in the component Ci.

Space solution reduction
Due to our candidate solution generation, the space of
solutions for a graph of n nodes will have a size of 2n.
Because our graph coloring method is based on 2 signs
with symmetric rules, we can observe that a coloring
model and its reverse represents the same coloring per-
fectness. Therefore, it is possible to instantiate a node with
a fixed color to reduce to half the solution space size. For
example with line 32, we fixed the node node0 in the
graph to down.

32 coloring(node0,down).

To furthermore reduce the complexity of the can-
didate solution space, we propose 3 graph reduction

methods (Fig. 2) which can be applied successively over
the graph prior to the perfect coloring ASP solving. These
methods identify molecular-species nodes that will be
in the same component, these nodes will be merged
in a subcomponent-node. Subcomponents are derived
through the topological reductions applied. Molecular-
species nodes that belong to a subcomponent will be
correlated to each other, and can also be correlated
to molecular-species nodes belonging to other subcom-
ponents. Therefore, a component, such as defined in
“Component identification” section, can be composed by
different (topological) subcomponents.

The first and second reduction methods identify sub-
components. Aggregating molecular-species nodes within
subcomponent nodes reduces the number of nodes in the
graph. The third method reduces the number of edges and
detects components which are isolated of the rest of the
graph.

Reduction based on the consistency (Fig. 2a)
This reduction method first identifies nodes which are
candidates to have a sign correlation in consistent solu-
tions, then it merges those nodes into a subcomponent-
node. For that purpose we look for a specific pattern: a
node with only one predecessor and a single incoming
edge. This pattern will be merged into a component that
will be composed of both elements and the sign of their
correlation in a consistent solution (“+” if positive correla-
tion, “-” for negative correlation). This process of pattern
identification and merging of nodes into a subcompo-
nent will be repeated until no new pattern is detected.
Notice that the assembling of a subcomponent-node with
a new molecular-species or subcomponent node gener-
ates a new subcomponent-node.

Fig. 2 Patterns searched by the 3 reduction methods used in this study. a: nodes with correlated colors present in consistent solutions. b: nodes
with correlated colors that share the same target. c: edges with the same weight, source, target and opposite signs
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Reduction based on the co-regulators (Fig. 2b)
The second reduction identifies nodes candidates to
have a sign correlation in candidate coloring solutions
with minimized imperfect coloring. For this, we look for
another pattern: two nodes without predecessors which
share the same and unique successor (Fig. 2b). Those
nodes can be merged into a subcomponent-node. In the
same way as previously, the process of pattern recognition
and then merging of nodes into a subcomponent will be
repeated until no new pattern is detected.

Reduction based on the edges balance (Fig. 2c)
From both previous reduction methods we obtain a new
graph composed of subcomponents. We consider here
a non-merged molecular-species node as a subcompo-
nent composed of one node. Then, we compute the
edges weight between nodes of the graph by adding the
weight of all the edges of the same sign that go from the
molecular-species nodes of the source subcomponent to
the molecular-species nodes of the target subcomponent.
By merging together the edges of the same sign between
two subcomponents, we may obtain subcomponents shar-
ing at most 2 edges, e1 and e2, which are opposite signed
and weighted respectively w1 and w2. In this case, we
will compute new weights: w1′ = w1 − min(w1, w2)
and w2′ = w2 − min(w1, w2). In case a new weight is
equal to zero (Fig. 2c), we can delete the associated edge.
After this edge reduction we may obtain disconnected
subcomponents that are isolated from the graph. These
subcomponents are color-independent of the rest of the
graph and constitute a component as defined in “Compo-
nent identification” section However, our method stores
the information that targets of these components will be
always consistent since they receive positive and negative
interactions coming from the component. Also, on these
targets, the perfectness constraint will not be verified.

Implementation
To identify perfect graph colorings we used Answer
Set Programming (ASP), namely clingo 4.5.4. The graph
extraction from PID and the reduction algorithms were
implemented with python 2.7 using the package Net-
workX [23]. The components identification from perfect
graph colorings were implemented in R [24] and python
2.7. All the computation (graph extraction, perfect col-
oration identification, components identification and MS
computing) were made on a standard machine.

Toy example
To illustrate our method we propose a toy example with
a graph composed of 9 molecular-species nodes and 11
edges (Fig. 3). To visually represent a subcomponent-node
in our graphs we label it with the names of the molecular-
species nodes it contains and their correlation signs in the

Fig. 3 Toy example. Labels on the edges indicate the weight. Nodes
are of molecular-species type; in this graph there are no
subcomponent-nodes. Arrows head shaped as “− >” (respectively
“−|”) mean activation (respectively inhibition)

subcomponent. For example, a subcomponent labeled “A
+, B -” indicates that if A is associated to up (respectively
down), B will be associated to down (respectively up).

Graph reduction
To reduce the solution space, we start by fixing the color
of “A” to “+”, creating in this way a graph composed of sub-
components with only one molecular-species node and
their respective correlation. Then, we apply the 3 methods
previously described to reduce the graph size. The reduc-
tion based on the consistency merges the nodes D, E and
F (Fig. 4) due to the fact that E and F have the same sign as
D in consistent solutions.

The second reduction, based on the co-regulators,
identifies “B +” and “C +” as co-regulators of the

Fig. 4 Result of the first reduction based on the consistency applied
to graph in Fig. 3. All nodes of this graph are subcomponent-nodes
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component-node “D +, E +, F +”. Because these co-
regulators do not have any predecessors and share the
same unique successor, they can be merged into one
component “B +, C +” (Fig. 5).

The last reduction, concerning balanced edge weights,
identifies the edges from “I +” to “G +” which have
the same weight and opposite sign. Those edges can be
deleted, thus “I +” will be isolated of the rest of the graph
and identified as a subcomponent independent of the rest
of the graph. We consider “I +” as a component (Fig. 6).
Moreover, we will store that “G +” will be consistent and
imperfect independently of remaining predecessors due to
the interactions with “I +”.

Perfect coloring and components identification
With the reduced graph we can look for perfect color-
ings of the graph minimizing inconsistent patterns, then
identifying the imperfect nodes colorations, and finally
the imperfect weighted regulators. The results in Table 2
show the 2 perfect colorations for this example. With the
instantiation of “A +” colored “down”, our method only
proposes the coloration 1. However, we can notice that the
coloration 2 is the reverse of coloration 1.

We observe the subcomponents “A +”, “B +, C +” and
“D +, E +, F +” have always the same coloration. Thus, we
can merge those subcomponents. In the same way “H +”
and “G +” have always the opposite coloration. They can
be merged to a final component. This step will be done
using matrix correlation methods for larger sets of nodes
colorings. Finally, we identify the 2 components shown in
Fig. 7.

Maximal similarity computing
For a component, there are two possible colorings
(component configurations) due to the symmetric

Fig. 5 Result of the second reduction based on the co-regulators
applied to the graph in Fig. 3

Fig. 6 Result of the third reduction based on the balance of the
weight of the edges

property. For example, the component “A +,B +, C+, D +,
E +, F +, G -, H -” (Fig. 7) has two possible configurations:
C1 = { ( A, up ), ( B, up ), (C, up), (D, up), (E, up), (F , up),
( G, down ), ( H , down )} and C2 = {( A, down), (B, down),
(C, down),(D, down), (E, down),(F , down), (G,up), (H , up)}.
Let us suppose a gene expression profile
{D = up, E = up, G = up}. We can compute the similar-
ity, Sim, between the expression profile and each coloring
configuration as SimC1 = 2 and SimC2 = 1. The maximal
similarity (MS) will be the maximal value between these
two values divided by the number of observations in the
profile, that is, MS = max(SimC1 , SimC2)/3 = 2/3.

Application
In this study we worked with gene expression profiles
(GEP) issued from myeloma cells (MC) of 602 MM
patients and from normal plasma cells (NPC) of 9 healthy
donors used in a previous study [25]. For each GEP,
we identified the over/under-expressed genes by com-
parison to NPC mean expression with a 1.2-fold. We
choose this discretization threshold since it gives the
best precision accuracy (lower than 2.2e-16) when mak-
ing cross-validation tests with the MM GEPs (data not
shown) using the sign-consistency approach described in
[18]. Then, we use the PID-NCI database [22] to generate
a graph by extracting the downstream events from three

Table 2 Perfect colorations for the toy example graph and the
space solution reduction

A + B +, C + D +, E +, F + G + H +

Coloration 1 down down down up up

Coloration 2 up up up down down
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Fig. 7 Result of components identification and their interactions.
Edges represent constraints among the system variables to satisfy the
perfect coloring constraints

signaling pathways (IL6/IL6-R, IGF1/IGF1-R and CD40)
[26] to the differentially expressed genes. The obtained
subgraph from NCI-PID 2012, contained 2269 nodes,
2683 edges and connected 529 differentially expressed
genes (Fig. 8a). The rest of the graph nodes were proteins,
complexes, or proteins modification events.

Results and discussions
Perfect colorations
The graph reduction based on the consistency then co-
regulators allowed to reduce the graph to 194 subcom-
ponents and 408 edges. The edge weight computing and
balance reduced the graph to 194 subcomponents and 389

edges. That is a reduction to 8% and 14% of the original
number of nodes (2269) and edges (2683) respectively.

The perfect colorations method identified 16,384 col-
oring models (Table 3) for both graphs: the original and
reduced. These models minimized inconsistency, imper-
fect nodes coloration, and imperfect weighted regulators.
We can notice that the optimization results are the same
for the initial and reduced graphs. However, the computa-
tion time of the original graph is larger than the reduced
graph in 2 magnitude orders. In the perfect colorations
identified by our modeling there were no inconsistent col-
orings. Only 1.5% of the targets of the original graph were
imperfect (not explained by all predecessors). Finally, of
the 35 imperfect targets, there was only one case where
the number of imperfect regulators was of 2, the rest of 34
targets were found with only 1 imperfect regulator.

Components identification
From those 16834 perfect colorations we identified 15
components (Fig. 8-b). 11 components were composed of
1 node (1 gene for each component), 2 were composed of
2 nodes (1 gene for each component), one was composed
of 422 nodes (with 167 genes) and the last component was
composed of 1832 nodes (with 349 genes).

Components validation
Due to the fact that only two components are composed of
more than one gene, we will focus mainly on those com-
ponents (Table 4). For each gene expression profile n and
each selected component c, we computed the maximal

Fig. 8 Overview of the application case. a: Subgraph obtained from the PID-NCI database, 2269 nodes and 2683 edges. CD40, IL6 and IGF1 are the 3
queried pathways connecting 529 differentially expressed genes. b: Components and their interactions. Simple components are labeled with the
Uniprot identifiers of genes. The two most significant and larger components are colored in red. c: Graph representing the component 2, 422 nodes
(167 genes) and 450 edges. Labeled nodes refer to Uniprot identifiers of genes. Unlabeled nodes refer to other biological compounds: proteins,
complexes, transcription or proteins modification events
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Table 3 Perfect coloration results for initial and reduced graph

Graph # Nodes #Targets # Edges Solution space Number of inconsistent
targets

Number of imperfect
colorations

Number of imperfect
weighted regulator

Computation
time

Original 2269 2267 2683 22269 0 35 36 4332 sec

Reduced 193 183 389 2193 0 35 36 14 sec

similarity: MSn
c . Therefore, we obtained 611 vectors of 15

values.
In order to validate the similarity computing, we gen-

erated for each dataset, 5 randomized datasets by scram-
bling observed signs. As previously, for each randomized
dataset, we computed the MS with the components con-
figuration. Then, for each component, we compared the
MS between real data and randomized data with a Welch’s
t-test (Table 4, Validation p-value). Both components have
a p-value lower than 0.05, allowing us to conclude to a
statistical significance.

Components specification
The next step of the analysis was to identify specific
component between MC and NPC. For this purpose, we
compared the MS between the MC and NPC for each vali-
dated component with a Welch’s t-test (Table 4, Specificity
p-value). C2 (Fig. 8c) was the only validated component
with a p-value lower than 0.05. We can conclude that the
MS for C2 is statistically different between MC and NPC
(Fig. 9). For the component C6, the p-value was 0.5725747
(Fig. 10).

Biological results
In order to link those analytic results to biology we used a
Gene Ontology Enrichment Analysis [27] with the PAN-
THER Overrepresentation Test [28]. From a set of genes,
this analysis can evaluate the biological processes over
and under-represented in comparison to a random genes
sample. We analyzed the genes set included in the compo-
nents C2 and C6 (Tables 5 and 6).

The genes included in C2 (Table 5) seem strongly asso-
ciated with cell death pathways: the three first biological
processes are linked to cell death. Nonetheless, those
pathways are strongly implicated in cancer disease [29].
On the other side, the component C6 (Table 6) does not
look associated to redundant pathways since we cannot

Table 4 Results for the components analysis. The “Validation
p-value” refers to the comparison between real and randomized
data. The “Specificity p-value” refers to the comparison between
MC and NPC data

Component # Nodes # Genes Validation p-value Specificity p-value

C2 422 167 8,904e-03 0.019

C6 1832 349 7.91e-05 0.573

associate genes in the component C6 with a specific
pathway. We notice however that C6 will describe cellular
events linked with cell proliferation.

Comparison with other clustering methods
In order to validate the components identification with
our method, we compared it to two graph clustering
algorithms: ClusterONE [12] and the Cytoscape plug-in
ClusterMaker [30], which is a fuzzy c-means clustering
algorithm. Both methods are similar to the one we pro-
pose since they do not include the GEPs for the clustering.
We applied both methods with different parameters to
the same regulatory network from the PID-NCI database
used in our study. To estimate the quality of a clus-
tering method, we consider a good cluster as one that
is enriched with specific GO-terms based on the level
of the GO-terms in the GO hierarchy. The higher the
annotation level of the GO-term, the more specific its
annotation will be. For each GO-term present in the
ontology we computed its minimal depth from the root
term (biological_process : GO:0008150); we found that
the mean depth of all GO-terms was 7.07. We consider
a GO-term to be specific when its minimal depth is
higher than 7.07 Thus, for each cluster i we computed

Fig. 9 Boxplot of the MS computed with NPC and MM dataset for the
component 2
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Fig. 10 Boxplot of the MS computed with NPC and MM dataset for
the component 6

the Specific Enrichment (SE) index using the following
formula:

SEi = |SpecificEnrichedTermsi|
|EnrichedTermsi|

Where |EnrichedTermsi| is the sum of all enriched
GO-terms (P.val ≤ 0.05) associated to the genes of
the cluster i and |SpecificEnrichedTermsi| is the num-
ber of specific GO-terms enriched from the same list of
genes. Based on this metric, we consider a good clustering
method as one that produces larger and specific enriched
clusters. Thus, we estimate for each clustering algorithm c
the Clustering Quality (CQ) with the formula:

CQc =
n∑

i=1
SEi ∗ Ni

Where Ni stands for the number of genes in the cluster
i. We compute the CQ with 5 clusterings: 2 obtained using

Table 5 Five first results of the Gene Ontology Enrichment
Analysis for the component C2

GO biological process found expected Fold
enrichment

P-value

regulation of cell death 75 11.98 6.26 6.46E-37

regulation of programmed
cell death

73 11.21 6.51 8.33E-37

regulation of apoptotic
process

72 11.11 6.48 4.90E-36

single-organism cellular
process

149 77.70 1.92 9.90E-28

positive regulation
of metabolic process

87 24.50 3.55 7.81E-26

Table 6 Five first results of the Gene Ontology Enrichment
Analysis for the component C6

GO biological process found expected Fold
Enrichment

P-value

response to organic
substance

182 42.74 4.26 1.02E-68

response to chemical 203 64.12 3.17 2.13E-57

response to oxygen-
containing compound

129 23.26 5.55 1.32E-56

positive regulation of
biological process

233 88.29 2.64 1.39E-55

regulation of cell proliferation 132 25.67 5.14 1.98E-54

ClusterONE (CO1 and CO2), 2 obtained using the fuzzy c-
means algorithm (FA1 and FA2), and the last based on our
component identification algorithm (CI). The parameters
used to obtain the clusters and GO enrichment analysis
were set as follows. For CO1 we used the basic parame-
ters while we imposed to identify 2 clusters for CO2. For
FA1 and FA2 we imposed the cluster search fixing 2 cen-
ters. In the case of FA1 we used overlapping genes for the
GO enrichment analysis. We removed those overlapping
genes for FA2. For our method, due to the fact that only the
components 2 and 6 had more than one gene we consider
the other components as outliers.

In Table 7 we show the results of this comparison. We
observe that our clustering method seems more efficient
to identify larger clusters enriched with more specific GO-
terms (CQ = 46.17). The specific enrichment score (SE)
is shown low (< 0.08) in all the clusters obtained. This
illustrates that only a low proportion of the GO-terms
are specific in the PID-NCI graph. By comparison, when
using no clustering method the SE of the full database
is of 0.11. The Loss information ratio column in Table 7
shows a comparison with respect to the case where the full
database was used to find specific terms. We compute this
number for each clustering method c as 1 − CQc/CQPID.
This shows that our method is the one that obtains a
higher proportion of quality score when compared to the
full PID-NCI knowledge, and therefore a lower loss infor-
mation ratio when compared to the 4 other clusterings.
Finally, the closest clustering method (FA1) is based on
overlapping genes which can lead to an overestimation of
the CQ due to the fact that a gene associated with both
clusters will be counted two times.

Conclusion
In this study, we proposed a method that imposes con-
straints to model graph coloration on biological signal-
ing and regulatory networks. This method is able to
reduce a regulatory network to subparts called compo-
nents. These components describe network variables that
are independent from others in the context of the perfect
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Table 7 Results of the comparison with other clustering methods

Clustering method #clusters #enriched clusters #genes μSE σ SE CQ Loss information ratio

C01 105 24 344 0.10 0.155 37.82 35.8%

C02 2 2 101 0.069 < 0.001 6.96 88.2%

FA1 2 2 688 0.065 0.02 44.94 23.8%

FA2 2 2 380 0.089 0.008 33.66 42.9%

CI 15 2 511 0.089 0.006 46.17 21.6%

PID-NCI graph 1 1 524 0.11 ∅ 58.93. 0%

The column #clusters stands for the sum of clusters. The column #enriched clusters stands for the sum of clusters which can be associated to enriched GO-terms. The column
#genes stands for the number of genes in all the enriched clusters. The columns μSE and σ SE stand for the mean and standard deviation for the SE value of the enriched
clusters. The Loss information ratio column is computed for each clustering method c as 1 − CQc/CQPID . The bold values refer to the results obtained with the component
identification algorithm

coloring constraints. Moreover, by using observations, we
can select some of those components based on the max-
imal similarity between components configurations and
those observations. The main points where our method
is different from other subgraph identification methods
are: (i) our method extracts network subcomponents by
considering only the network logic (causality and inhibi-
tion/activation roles), while other methods consider topo-
logical features without logic; (2) the order of the analysis,
our method first extracts logic network subcomponents
states (harmonious colorings) and then confront these
states to gene expression profiles (GEPs), adding less bias
to the network v.s. data confrontation; and (3) when in a
later step we integrate GEPs, we do it by locating GEPs
measurements in the transcriptional layer, without over-
lapping transcriptional regulation with post-translational
regulation. Using our method we were able to represent
the species state variations (colorings) of a subgraph of the
PID-NCI signaling and regulatory network (2269 nodes
and 2683 edges) with 15 components. Each component
will aggregate molecular-species having the same state-
shift behavior given the PID-NCI graph topology. Only
two (C2 and C6) of these 15 components include more
than two molecular species nodes. From GO enrichment
analyses, C2 is strongly associated to cell death pathways,
this biological process is robustly associated to cancer.
The C6 component cannot be associated to any specific
pathway of cancer. Interestingly, this component speci-
fication was done independently of the GEP up-/down-
regulation states. We have compared the identification
of these 2 components by our method with respect to 4
other clustering results obtained with two different clus-
tering methods on the same data. Our results show that
our method retrieves larger and meaningful information,
in the context of GO annotations associated to the genes
within these components or clusters, than these other
approaches.

When comparing the 611 gene expression profiles from
myeloma cells, and healthy donors and shuffled data with
the the genes present in the 15 components, we observed

that C2 and C6 were the components which were signifi-
cantly more specific to real data. Also, C2 was having a sig-
nificant statistical specificity when compared unhealthy
and healthy expression profiles.

Our method seems efficient to identify and select func-
tional components specific to the gene expression profiles
used in our study taking into account the computa-
tional complexity that represents analyzing large-scale
networks. However in this case study the reduction to
15 components, with two validated ones with respect
to shuffled data, does not allow us to provide a deeper
understanding, especially with respect to the subtypes
of patients based on the overall survival. As a perspec-
tive of this work, we wish to improve the subcomponent
identification in order to be able to compute larger reg-
ulatory networks, and potentially full databases. For this
purpose, we would like to implement the components
identification in ASP. Another research line will be to
apply this method to other data (regulatory network and
observations data) as well as to model with other more
refined modeling frameworks the subcomponent C2 to
investigate the patient subtypes overall survival. One last
perspective of this study could be to explore those targets
wich are perfectly colored in all GEPs. This identification
could be another strategy to improve the space solution
reduction.
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