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Abstract 14 

 15 

Peroxisome proliferator-activated receptors (PPARs) regulate energy metabolism and are, as such, 16 

therapeutic targets in metabolic diseases such as type 2 diabetes and non-alcoholic fatty liver 17 

disease. While they share anti-inflammatory activities, the PPAR isotypes distinguish themselves by 18 

differential actions on lipid and glucose homeostasis. In this review, we discuss the complementary 19 

and distinct metabolic effects of the PPAR isotypes together with the underlying cellular and 20 

molecular mechanisms, as well as the synthetic PPAR ligands used in the clinic or under 21 

development. We will highlight the potential of new PPAR ligands with improved efficacy and safety 22 

profiles in the treatment of complex metabolic disorders. 23 

24 
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Introduction 25 

 26 

Metabolic syndrome (MetS) is a pathophysiological condition characterized by increased visceral 27 

adiposity, dyslipidemia, prediabetes and hypertension. This cluster of risk factors predisposes to type 28 

2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD) and increases the risk of microvascular 29 

complications and cardiovascular (CV) events. With the global increase in obesity, the prevalence of 30 

MetS has reached epidemic proportions. The pathophysiology of MetS and its co-morbidities is 31 

complex due to multiple alterations in lipid and glucose metabolism accompanied by inflammation 32 

occurring simultaneously in several tissues; therefore, current treatments address the individual 33 

components (1). 34 

Over the last decades, the peroxisome proliferator-activated receptors (PPARs), which are members 35 

of the nuclear receptor superfamily of transcription factors (TFs), have been targeted to fight MetS 36 

and its complications. PPARs regulate many metabolic pathways upon activation by natural ligands, 37 

such as fatty acids (FA) and derivatives, or synthetic agonists, which bind to the ligand-binding 38 

domain of the receptor triggering a conformational change. Subsequent recruitment of coactivators 39 

to the PPAR/retinoid-X-receptor (RXR) heterodimer assembled at specific DNA response elements – 40 

PPAR response elements or PPREs – ultimately results in transactivation of target genes. In addition, 41 

PPAR activation attenuates the expression of pro-inflammatory genes, mostly through a 42 

transrepressive mechanism (2). 43 

Three PPAR isotypes with different tissue distribution, ligand specificity and metabolic regulatory 44 

activities exist in mammals: PPARα (NR1C1), PPARβ/δ (NR1C2), and PPARγ (NR1C3). Fibrates are 45 

synthetic PPARα ligands used to treat dyslipidemia. Thiazolidinediones (TZDs) or glitazones, synthetic 46 

PPARγ ligands, are anti-diabetic drugs with potent insulin-sensitizing effects. There are currently no 47 

synthetic PPARβ/δ ligands in use clinically. Potency and safety issues have undermined the use of 48 

certain PPAR ligands, underscoring the need for new, safer, and more selective ways to target PPARs 49 

for combating metabolic diseases (2). 50 
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Natural PPAR ligands 51 

PPARs are activated by FA and their derivatives, and the level of physiological receptor activation 52 

depends on the balance between ligand production and inactivation. Natural PPAR ligands originate 53 

from three main sources: diet, de novo lipogenesis (DNL) and lipolysis, alternating processes which 54 

depend on the integration of nutritional status and circadian rhythms (3). PPARs control these 55 

metabolic processes to maintain metabolic flexibility, a prerequisite for the preservation of health. 56 

Dietary lipids are important regulators of PPAR activity, as evidenced by the increased target gene 57 

expression of PPARα in liver (4) and PPARβ/δ in skeletal muscle (SKM) (5) upon high-fat diet (HFD) 58 

feeding in mice. Tissue-specific deficiency of fatty acid synthase (FAS) – a key enzyme in FA synthesis 59 

– impairs PPARα activity, identifying DNL as another source of PPAR ligands (6)(7). PPARα ligands 60 

originating from DNL are not only simple FA but include more complex molecules, such as 61 

phosphatidylcholines (8). A third source of natural PPAR activators is through lipolysis. Angiopoietin-62 

like proteins are secreted glycoproteins which inhibit lipoprotein lipase (LPL), hence controlling the 63 

plasma lipid pool according to lipid availability and cellular fuel demand. Angptl4 expression is 64 

induced in several tissues including adipose tissue, liver and SKM by circulating FA via PPARs, leading 65 

to inhibition of LPL and decreasing plasma TG-derived FA uptake, thus forming a negative feedback 66 

loop (9). Intracellular lipolysis also provides PPAR ligands. Indeed, deficiency of adipose triglyceride 67 

lipase (ATGL), which lipolyses TG in lipid droplets, decreases PPAR target gene expression in various 68 

tissues (10)(11)(12)(13). Ligand availability is also modulated by FA degradation in peroxisomes, 69 

whose genes are regulated by PPARs as part of a feedback mechanism (14). PPAR activity hence 70 

relies on a careful balance between ligand production and degradation in order to meet the 71 

fluctuating energy demand. 72 

 73 

Contrasting metabolic effects of ligand-activated PPARα and PPARγ 74 

 75 
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Although they share some similarities in function and mechanism of action, it has become 76 

increasingly clear that both PPAR isotypes display important physiological and pharmacological 77 

differences. This section discusses the clinical and genetic evidence of contrasting PPARα and PPARγ 78 

effects, and sheds light on the cellular and molecular mechanisms underlying these differences. 79 

 80 

Clinical effects of PPARα and PPARγ activation 81 

 82 

Except for the weak pan-agonist bezafibrate, all clinically used fibrates are specific activators of 83 

PPARα. Fibrate outcome trials such as the Helsinki Heart Study (HHS) (15), Veterans Affairs-High 84 

density lipoprotein cholesterol Intervention Trial (VA-HIT) (16), Bezafibrate Infarction Prevention 85 

(BIP) (17), Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) (18), and Action to 86 

Control Cardiovascular Risk in Diabetes (ACCORD) (19) consistently show beneficial effects on plasma 87 

lipids, particularly in normalizing the typical dyslipidemia of MetS characterized by the so-called 88 

‘atherogenic lipid triad’ (high low density lipoprotein-cholesterol (LDL-C) and triglycerides (TG), low 89 

high density lipoprotein-cholesterol (HDL-C)). Fibrate therapy significanty decreases TG and increases 90 

HDL-C, whereas LDL-C generally decreases except in patients with severe hypertriglyceridemia and 91 

low baseline LDL-C. Fibrate therapy, however, does not change circulating FA concentrations (20). 92 

Although both the FIELD and ACCORD trials showed a trend towards decreased CV risk (primary 93 

endpoint) in T2D, post-hoc and meta-analysis revealed that dyslipidemic patients (high TG and low 94 

HDL-C) show the highest CV reduction (21)(22). Fibrates do not improve glucose homeostasis in T2D 95 

patients (23)(18)(19); however, PPARα activation improves glucose homeostasis in prediabetic 96 

patients (24), and may thus prevent conversion of prediabetes to overt T2D. Fibrates exert few 97 

adverse effects. Most compounds induce mild hypercreatininemia and hyperhomocysteinemia, but 98 

these effects appear to be pharmacodynamic markers of PPARα activation rather than indicators of 99 

renal dysfunction (25). Hepatic carcinogenesis has been observed in rodents treated with fibrates but 100 
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not in humans and non-human primates likely due to lower levels of peroxisomes and peroxisomal β-101 

oxidation in human liver (26). 102 

TZDs are PPARγ ligands that exert strong insulin-sensitizing effects, resulting in long-term glycemic 103 

control in T2D patients (27). However, their clinical use has been challenged due to side effects 104 

including body weight gain, edema, and bone fractures (2). The increase in body weight upon TZD 105 

administration is due to PPARγ-dependent adipocyte expansion in WAT (28) as well as fluid retention 106 

caused by PPARγ activation in the collecting ducts of the kidney (29). The increased fracture risk in 107 

TZD-treated patients results from a PPARγ-driven rebalancing of bone remodelling in favour of net 108 

bone loss. Indeed, PPARγ activation in bone marrow stimulates mesenchymal progenitor 109 

differentiation into the adipocyte lineage, thereby reducing osteoblast production thus suppressing 110 

bone formation (30). In this context, protein phosphatase PP5 controls mesenchymal differentiation 111 

towards adipocytes and osteoblasts through reciprocal regulation of PPARγ and RUNX2, respectively 112 

(31). Conversely, pharmacological PPARγ activation promotes osteoclast formation thereby 113 

increasing bone resorption (32), although this effect may not occur in physiological conditions (33). 114 

Rosiglitazone and pioglitazone increase plasma levels of the insulin-sensitizing adipokine adiponectin 115 

(2). They also increase HDL-C and reduce circulating FA levels (34), but have differential effects on TG 116 

and LDL-C as well as on CV risk. Pioglitazone, a full PPARγ agonist with moderate PPARα activating 117 

properties (35), lowers TG, increases HDL-C and reduces CV outcomes in T2D (36) as well as insulin-118 

resistant patients (37). In contrast, the pure PPARγ agonist rosiglitazone does not decrease CV risk in 119 

T2D, while increasing both HDL-C and LDL-C (38). Hence, the beneficial effects of pioglitazone on TG 120 

levels and CV events are likely due to combined PPARα and PPARγ activation. A recent Mendelian 121 

randomization study refuted a causal role for adiponectin in CV disease (39), providing a plausible 122 

explanation for the neutral effect of rosiglitazone on CV outcome despite the rise in adiponectin. 123 

In summary, activation of PPARα improves the lipid profile, whereas activation of PPARγ rather 124 

improves glycemic control and insulin sensitivity. 125 

 126 
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Genetic evidence of contrasting PPARα and PPARγ functions 127 

 128 

The different phenotypes observed in patients carrying single nucleotide polymorphisms (SNPs) and 129 

mutations in PPARα or PPARγ coding sequences further highlight the contrasting functions of the two 130 

isotypes. PPARA variants are associated with perturbations of lipid metabolism (40) and CV risk (41). 131 

The STOP-NIDDM trial revealed an association of PPARA SNPs with conversion from impaired glucose 132 

tolerance to T2D (42). These findings corroborate data showing that PPARA gene variation influences 133 

age of onset and progression of T2D (43). On the other hand, dominant-negative mutations in the 134 

ligand-binding domain of PPARγ result in severe insulin resistance (44). Accordingly, rare variants in 135 

PPARG with decreased adipogenic properties are associated with increased risk of T2D (45). 136 

Genome-wide association studies also revealed an association between PPARG SNPs and T2D, 137 

although not all studies concur (46)(47). A recently developed functional assay has permitted to 138 

identify new PPARG variants with altered PPARγ function (48). Moreover, SNPs found within DNA 139 

recognition motifs for PPARγ or cooperating factors and which alter PPARγ recruitment to chromatin 140 

modulate the response to anti-diabetic drugs (49). In addition, these SNPs in PPARγ binding sites are 141 

highly enriched among SNPs associated with TG and HDL-C levels in genome-wide association studies 142 

(49). 143 

Altogether, these genetic data confirm the functional dichotomy between PPARα and PPARγ in 144 

humans, underscoring PPARα’s effects on lipid metabolism and conversion from impaired glucose 145 

tolerance to T2D, as opposed to the role of PPARγ in T2D and the regulation of glucose homeostasis. 146 

 147 

Cellular and molecular mechanisms underlying PPARα and PPARγ functions 148 

 149 

PPARα’s function (Figure 1) is best characterized in the liver, where it regulates genes involved in 150 

lipid and plasma lipoprotein metabolism during the nutritional transition phases (50)(51). During 151 

fasting, PPARα increases hepatic uptake and transport to mitochondria of FA originating from 152 
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adipose tissue lipolysis through transcriptional upregulation of FA transport proteins and carnitine 153 

palmitoyltransferases. In the mitochondria, enhanced expression of acyl-CoA dehydrogenases by 154 

PPARα stimulates hepatic FA oxidation (FAO), resulting in increased acetyl-CoA production which 155 

upon prolonged fasting is preferentially converted into ketone bodies to provide energy for extra-156 

hepatic tissues. Mitochondrial HMGCS, a rate-limiting enzyme of ketogenesis, is also upregulated by 157 

PPARα (52)(53). Moreover, glucagon receptor and PPARα-signaling cooperate to control metabolic 158 

pathways during fasting (54). The hepatic IRE1α/XBP1 pathway also participates in the adaptation to 159 

fasting by promoting FAO and ketogenesis through upregulation of PPARα (55). In the fed state, on 160 

the other hand, PPARα coordinates different pathways of DNL to supply FA which will be stored as 161 

hepatic TG for periods of starvation. A crucial step in DNL is the citrate-malate shuttle which controls 162 

the efflux of acetyl-CoA from the mitochondria to the cytosol, where it serves as a precursor for FA 163 

synthesis. Citrate carrier (CIC), an essential component of this shuttle system, is a direct PPARα target 164 

gene in hepatocytes (56). In addition, PPARα increases protein levels of the lipogenic factor SREBP1c 165 

by promoting proteolytic cleavage of its precursor (57), and stimulates transcription of SREBP1c 166 

target genes including Fas, Scd1 and Acc1 (58). In these postprandial conditions, mTORC1 is activated 167 

through the insulin-dependent PI3K pathway, resulting in NCoR1-dependent inhibition of PPARα-168 

mediated hepatic ketogenesis (59). Adjustment of PPARα activity to nutritional status also involves 169 

phosphorylation of the receptor by several kinases (see next section). PPARα thus contributes to the 170 

maintenance of metabolic flexibility by adapting fuel utilization to fuel availability, and its expression 171 

decreases in conditions of metabolic ‘inflexibility’, such as during NAFLD progression (60). 172 

Mechanisms contributing to dysregulated PPARα signaling in NAFLD may include microRNA-10b (61), 173 

microRNA-21. (62) and JNK (63). Indeed, these pathways repress hepatic PPARα signalling and are 174 

upregulated in NAFLD. 175 

Reduction of plasma TG-rich lipoproteins upon PPARα activation is linked to enhanced FA uptake and 176 

oxidation as well as increased activity of LPL which hydrolyses lipoprotein TG. PPARα stimulation of 177 

LPL enzymatic activity is both direct through PPRE-dependent activation of the LPL gene (64) as well 178 
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as indirect through decreasing the levels of the LPL inhibitor and pro-atherogenic APO-CIII (65)(66) 179 

and increasing the levels of the LPL activator APO-AV (67). Reduced VLDL production contributes to 180 

the TG-lowering effects of PPARα activation mainly in rodents and, likely to a lesser extent, in 181 

humans. Indeed, reduced VLDL production, as observed in patients carrying a SNP in the TM6SF7 182 

gene, is associated with lower circulating TG levels but more severe hepatic steatosis (68), an effect 183 

not observed in PPARα agonist-treated patients (69). In MetS patients, fenofibrate treatment 184 

increases the fractional catabolic rate of VLDL-APOB, IDL-APOB and LDL-APOB, without affecting 185 

VLDL-APOB production (70). On the other hand, the rise in plasma HDL-C upon PPARα activation is 186 

linked to increased synthesis of major HDL-C constituents, apolipoproteins APO-AI and APO-AII (71) 187 

as well as induction of PLTP (72). Of note, differences between rodents and humans with respect to 188 

apolipoprotein regulation exist, as APO-AI and APO-AV are direct positive PPARα target genes in 189 

human but not murine liver (50). Through FAO, PPARα activation leads to energy dissipation not only 190 

in the liver but also in SKM (73) and white adipose tissue (WAT) (74). In brown adipose tissue (BAT), 191 

PPARα stimulates lipid oxidation as well as thermogenesis in synergy with PPAR coactivator 1α 192 

(PGC1A) (75). Interestingly, while PPARα activation reduces weight gain in rodents (74), there is no 193 

evidence of PPARα effects on body mass in humans (18)(19). 194 

The inability of fibrates to improve glucose homeostasis in T2D patients (18)(19) may result from 195 

several mechanisms. First, glucose handling in liver and peripheral tissues is reduced as a 196 

consequence of increased FAO (76). Next, PPARα activation reduces PK expression and induces PDK4 197 

in the liver, leading to decreased glycolysis and enhanced gluconeogenesis (77). By contrast, as 198 

discussed above, clinical and genetic data revealed a role for PPARα in preventing conversion from 199 

impaired glucose tolerance to overt T2D. This effect might stem from PPARα-induced protection of 200 

pancreatic β-cells from lipotoxicity (78) as well as PPARα-dependent decrease in insulin clearance 201 

through repression of CEACAM1, a membrane glycoprotein that promotes hepatic insulin 202 

endocytosis and targeting to the degradation process (79). 203 
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PPARγ is highly expressed in WAT, where it controls FA uptake and lipogenesis. Target genes 204 

contributing to this activity include fatty acid binding protein-4 (FABP4) and the fatty acid translocase 205 

CD36 (80). In addition, PPARγ is a master regulator of white adipocyte differentiation. Multiple TFs 206 

including the glucocorticoid receptor (GR) and STAT5A team up to induce PPARγ during adipogenesis 207 

(28), while other TFs such as C/EBPα cooperate with PPARγ to stimulate genomic binding and 208 

transcription of target genes (81), thereby regulating both house-keeping and adipocyte-specific 209 

functions (82). These PPARγ-mediated changes in gene expression are preceded by chromatin 210 

remodelling involving both adipocyte-specific TFs such as C/EBPβ (83) as well as ubiquitous TFs such 211 

as CCCTC-binding factor (CTCF) (84). Interestingly, promotion of adipogenesis by the mTORC1 212 

complex occurs through stimulation of PPARγ translation (85) and transcriptional activity (86), which 213 

contrasts with the inhibitory effect of mTORC1 on PPARα discussed above (59). 214 

In contrast to WAT, PPARγ target genes in BAT encode thermogenic proteins and inducers of 215 

mitochondrial biogenesis such as PGC1A and uncoupling protein 1 (UCP1, also known as 216 

thermogenin). PPARγ promotes differentiation of brown adipocytes, but activation of additional TFs 217 

including PPARα is required to switch on their thermogenic program (75). 218 

PPARγ enhances whole body insulin sensitivity through multiple mechanisms (Figure 2). By 219 

augmenting WAT expandability, PPARγ shifts lipids from liver and SKM to WAT, thereby indirectly 220 

increasing glucose utilization in liver and peripheral tissues. As a result of this ‘lipid steal’ process, 221 

lipotoxicity, which impairs insulin signalling, is alleviated. PPARγ also regulates the expression of 222 

adipocyte hormones such as adiponectin and leptin, which modulate liver and SKM insulin sensitivity 223 

(2). PPARγ induces adiponectin, an effect which likely contributes to PPARγ-mediated increase in 224 

glucose tolerance (87). Leptin expression is inhibited by PPARγ activation (88), which may contribute 225 

to TZD-induced appetite and body weight gain. Finally, PPARγ activation also improves pancreatic β-226 

cell function and survival by preventing FA-induced impairment of insulin secretion (78) and 227 

enhancing the unfolded protein response (89). Thus, whereas PPARα activation leads to energy 228 



 10 

dissipation, activation of PPARγ stimulates energy storage in WAT, thereby sensitizing liver and 229 

peripheral tissues to insulin. 230 

The contrasting mechanisms of action of PPARα and PPARγ are also illustrated by their opposite 231 

function on hepatic lipid metabolism. Reduced hepatic steatosis due to increased FAO in hepatocytes 232 

occurs upon PPARα activation in rodent models of NAFLD (90)(91). In contrast, PPARγ activation in 233 

rodents increases liver fat accumulation by enhancing hepatic expression of PPARγ-dependent genes 234 

involved in lipogenesis (80), as confirmed by liver-specific PPARγ deletion (92). Interestingly, hepatic 235 

PPARγ expression levels determine liver steatosis. Indeed, mice with low hepatic PPARγ expression 236 

are resistant to diet-induced development of fatty liver when treated with rosiglitazone, whereas 237 

liver steatosis is exacerbated in obese mice with high hepatic levels of PPARγ (93). The dimeric AP-1 238 

protein complex modulates NAFLD via differential regulation of hepatic PPARγ expression depending 239 

on the dimer composition. Whereas the FOS-like AP-1 transcription factor subunits FRA1 and FRA2 240 

inhibit the PPARγ pathway and reduce hepatic lipid content, other AP-1 proteins such as c-Fos and 241 

JunD induce hepatic PPARγ signalling and lipid accumulation (94). In NAFLD patients, PPARγ 242 

expression is, however, unaltered (60) and TZD treatment rather lowers hepatic steatosis, likely due 243 

to decreased FA flux from WAT to liver (95)(96). 244 

In addition to the ‘classical’ metabolic organs, energy homeostasis is also regulated by inter-organ 245 

communications involving the brain and the gut. Neuronal PPARγ deletion in mice diminishes food 246 

intake and energy expenditure resulting in reduced weight gain upon HFD feeding, suggesting that 247 

brain PPARγ exerts hyperphagic effects and promotes obesity (97). Similarly, central activation of 248 

PPARα may also increase food intake (6), although not all studies concur (98). In the intestine, PPARα 249 

activation suppresses the transient postprandial hyperlipidemia by enhancing intestinal epithelial cell 250 

FAO (99). In addition, activation of intestinal PPARα reduces cholesterol esterification, suppresses 251 

chylomicron production and increases HDL synthesis by enterocytes (100). 252 

 253 

Molecular basis for differential activities of PPARα and PPARγ 254 
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 255 

The exact mechanisms via which the different PPAR isotypes – which share similar DNA binding 256 

motifs – bind and regulate different genes, remain to be fully established. Nevertheless, several 257 

explanations and hypotheses can be put forward. First, PPARα is predominantly expressed in the 258 

liver, whereas PPARγ expression is highest in WAT (2). The different PPARs emerged during evolution 259 

from gene duplications, but subsequent sequence variations of their promoter and 3’UTR have 260 

contributed to acquisition of differential expression patterns and functions (101). Tissue-specific 261 

chromatin and TF environments also play a deterministic role by restricting PPAR recruitment to 262 

selective enhancers and therefore specifying PPAR target genes (28). This is illustrated by the tissue-263 

specific PPARγ cistromes in white adipocytes and macrophages, both expressing high levels of PPARγ. 264 

The macrophage-specific PPARγ cistrome is defined by the pioneer TF PU.1 (102), which induces 265 

nucleosome remodelling and histone modifications, promoting the recruitment of additional TFs 266 

(103). In white adipocytes, however, these macrophage-specific binding regions are marked with 267 

repressive histone modifications, disabling PPARγ binding (104). Furthermore, PPARγ cistromes differ 268 

between different types of white adipocytes (epididymal vs. inguinal) and are associated with depot-269 

specific gene expression patterns (105). 270 

Nutritional status is another contributor to differential PPAR regulation. PPARα is a metabolic sensor, 271 

switching its activity from coordination of lipogenesis in the fed state to promotion of FA uptake and 272 

oxidation during fasting (50). PPARα activation during fasting involves the induction of the 273 

coactivator PGC1α by the fasting-induced TF EB (TFEB) (106). In addition to PPARα itself (107), 274 

circadian transcription of genes encoding acyl-CoA thioesterases coordinates cyclic intracellular 275 

production of FA ligands (108). The TF CREBH, a recently identified circadian regulator of hepatic lipid 276 

metabolism, rhythmically interacts with PPARα and regulates its activity (109). Adjustment of PPARα 277 

transcriptional activity to nutritional status is also controlled by kinases phosphorylating PPARα or its 278 

coregulators. In the fed state, PPARα activity is enhanced through insulin-activated MAPK and 279 

glucose-activated PKC, while glucagon-activated PKA as well as AMPK increase PPARα signaling in 280 



 12 

fasting (50). Moreover, the fasting response is co-controlled by interaction of PPARα with GRα, which 281 

show extensive chromatin colocalization and cooperate to induce lipid metabolism genes upon 282 

prolonged fasting through genomic recruitment of AMPK (110). By contrast, GRβ antagonizes 283 

glucocorticoid-induced signaling during fasting via inhibition of GRα and PPARα, increasing 284 

inflammation and hepatic lipid accumulation (111). 285 

PPARγ activity is higher in the fed state, in line with its major role in the regulation of lipid synthesis 286 

and storage. PPARγ activity in WAT is repressed during fasting via mechanisms involving SIRT1 (112) 287 

or AMPK (113). In mice, the amplitude of hepatic circadian clock gene expression is reduced by HFD 288 

feeding (114), whereas circadian rhythmicity of PPARγ and PPARγ-binding site-containing genes is 289 

induced (115). Thus, the HFD-induced transcriptional reprogramming relies at least in part on 290 

changes in expression, pattern of oscillation and chromatin recruitment of PPARγ. Gut microbiota, 291 

which also exhibit circadian activity (116), are drivers of this hepatic transcriptional reprogramming 292 

by PPARγ upon HFD in mice (117). 293 

Nutritional status also links PPARs to FGF21 signaling. Indeed, fasting increases PPARα-dependent 294 

FGF21 expression in liver, further enhancing FAO and ketogenesis (118). In WAT, PPARγ induces the 295 

expression of FGF21 (119), where it acts as an autocrine factor in the fed state, regulating PPARγ 296 

activity through a feedforward loop mechanism (120). The related family member FGF1 is also 297 

induced by PPARγ in WAT, and this PPARγ-FGF1 axis is critical for maintaining metabolic homeostasis 298 

and insulin sensitization (121). In the pancreas, PPARγ agonism reverses the high glucose-induced 299 

impairment of islet function by enhancing FGF21 signaling (122). 300 

 301 

Combating inflammation: a shared function of PPARα and PPARγ 302 

 303 

Besides differentially regulating lipid and glucose metabolism, PPARα and PPARγ also display a 304 

shared function, i.e. countering inflammation. However, the anti-inflammatory effects of PPARα and 305 

PPARγ activation are likely distinct due to differences in tissue and cell-type expression. 306 
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 307 

Anti-inflammatory effects 308 

 309 

MetS is accompanied by a low grade inflammatory state in different metabolic tissues – termed 310 

meta-inflammation – characterized by increased secretion of pro-inflammatory chemokines and 311 

cytokines, many of which (including TNFα, IL-1 and IL6) influence lipid metabolism and insulin 312 

resistance (123). 313 

In WAT, fenofibrate as well as rosiglitazone reduce the expression of several pro-inflammatory 314 

mediators by white adipocytes, including IL-6 and the chemokines CXCL10 and MCP1 (124). PPARγ 315 

also inhibits pro-inflammatory cytokine production by WAT-resident macrophages, and modulates 316 

macrophage polarization (125). Although innate immune cells such as macrophages have long been 317 

considered as the drivers of WAT inflammation and metabolic dysregulation, recent reports argue for 318 

an important role of the adaptive immune system, including WAT regulatory T cells (Tregs) (126). 319 

PPARγ acts as a crucial molecular orchestrator of WAT Treg accumulation, phenotype, and function 320 

(127)(128). Indeed, the WAT Treg transcriptome alterations in obese mice are dependent on PPARγ 321 

phosphorylation by cyclin-dependent kinase 5 (CDK5) (127). In addition, PPARγ expression in WAT 322 

Tregs is necessary for complete restoration of insulin sensitivity in obese mice upon pioglitazone 323 

treatment (128). PPARγ is also implicated in the metabolic reprogramming of CD4+ T-cells. Indeed, T-324 

cell activation leads to mTORC1-dependent PPARγ induction and increased expression of genes 325 

involved in FA uptake, enabling the rapid proliferation of these T-cells, a prerequisite for an optimal 326 

immune response (129). 327 

In liver as well as isolated hepatocytes, IL-1-mediated induction of pro-inflammatory genes is 328 

repressed by pretreatment with PPARα agonists (130). In the vascular wall, PPARα and PPARγ 329 

modulate the recruitment of leukocytes to endothelial cells, stimulate cholesterol efflux from 330 

macrophage-derived foam cells, and regulate inflammatory cytokine production by smooth muscle 331 

cells (131). 332 



 14 

 333 

Molecular mechanisms 334 

 335 

Inhibition of pro-inflammatory gene expression is the main process underlying the anti-inflammatory 336 

properties of PPARα and PPARγ. Several mechanisms have been proposed for transcriptional 337 

repression by PPARs that are not mutually exclusive. These include direct physical interaction of 338 

PPARα or PPARγ with several pro-inflammatory TFs including AP-1 and NF-κB (132)(133). Repression 339 

of inflammation independently of direct DNA binding of PPARα results in anti-inflammatory and anti-340 

fibrotic effects in a mouse model of non-alcoholic steatohepatitis (NASH) (134). In addition to this 341 

PPRE-independent transrepression mechanism, interaction between NF-κB and PPRE-bound PPARα 342 

also occurs, leading to repression of TNF-α-mediated upregulation of complement C3 gene 343 

expression and protein secretion during acute inflammation (135). Moreover, simultaneous 344 

activation of PPARα and GRα increases the repression of NF-κB-driven genes, thereby decreasing 345 

cytokine production (136). Transcriptional repression of pro-inflammatory genes by PPARγ may 346 

include ligand-activated PPARγ sumoylation, which targets the receptor to corepressor complexes 347 

assembled at inflammatory gene promoters. This prevents promoter recruitment of the proteasome 348 

machinery that normally mediates the inflammatory signal-dependent removal of corepressor 349 

complexes required for gene activation. As a result, these complexes are not cleared from the 350 

promoters and inflammatory genes are maintained in a repressed state (137). 351 

In addition to downregulating the expression of pro-inflammatory genes, PPARα (138) as well as 352 

PPARγ (139) also suppress inflammation by direct upregulation of genes with anti-inflammatory 353 

properties such as IL-1Ra, suggesting a possible cooperation between PPAR-dependent 354 

transactivation and transrepression to counter inflammation. 355 

 356 

PPARα and PPARγ in human NAFLD 357 

 358 
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The anti-inflammatory properties of PPARα likely contribute to the improved lobular inflammation 359 

and hepatocellular ballooning observed in NAFLD patients treated with pioglitazone (140) or 360 

elafibranor (141), a dual PPARα/β(δ) agonist. Pioglitazone reduces hepatic steatosis in NAFLD 361 

patients (140), likely due to PPARγ activation. In line, the pure PPARγ agonist rosiglitazone also 362 

lowers liver fat in humans (96), whereas the pure PPARα agonist fenofibrate does not (69). 363 

Treatment of dyslipidemic patients with fenofibrate lowers plasma atypical deoxysphingolipids (142), 364 

whose levels increase upon transition of simple steatosis to NASH (143). Thus, both PPARα and 365 

PPARγ activation appear beneficial in human NAFLD, although the underlying mechanisms clearly 366 

differ. Whereas effects of PPARα agonism on inflammation and ballooning are due to direct PPARα 367 

activation in the liver, PPARγ’s effects on hepatic steatosis are likely mediated by indirect 368 

mechanisms, such as suppression of FA flux to the liver, in line with the low expression and absence 369 

of PPARγ induction in human fatty liver (60). 370 

 371 

PPARβ/δ, the clinically enigmatic third PPAR 372 

 373 

Selective synthetic PPARβ/δ agonists are not yet clinically available. However, beneficial effects of 374 

PPARβ/δ activation on various components of the MetS, displaying both differences and similarities 375 

with PPARα and PPARγ, have been reported. 376 

 377 

PPARβ/δ shares metabolic effects with both PPARα and PPARγ 378 

 379 

PPARD variants are associated with cholesterol metabolism (144) as well as insulin sensitivity (145) 380 

and T2D risk (146). In addition, several SNPs in PPARD associate with CV risk (41). In obese men, 381 

administration of the synthetic PPARβ/δ agonist GW501516 lowers liver fat content and plasma 382 

levels of insulin, FA, TG, and LDL-C (147). These beneficial effects on plasma lipids are also observed 383 

in overweight patients treated with MBX-8025, a novel PPARβ/δ agonist (148). Thus, PPARβ/δ 384 
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agonism combines the metabolic effects of PPARα and PPARγ activation on lipid metabolism and 385 

glucose homeostasis, respectively. Preclinical studies support this conclusion, as GW501516 386 

administration to overweight monkeys (149) or obese rats (150) lowers serum LDL-C and raises HDL-387 

C, while improving insulin sensitivity. 388 

 389 

Cellular and molecular mechanisms 390 

 391 

PPARβ/δ activation protects from diet- or genetically induced obesity in mice by increasing energy 392 

expenditure (151). In BAT, activation of PPARβ/δ induces the expression of thermogenic genes 393 

including UCP1 as well as genes involved in FAO (151). In addition, PPARβ/δ agonism promotes FAO 394 

in SKM (152), WAT (153), and liver (154). PPARβ/δ in brain also controls energy expenditure, since 395 

neuron-specific deletion of PPARβ/δ increases the susceptibility to diet-induced obesity (155). Thus, 396 

similar to PPARα, activation of PPARβ/δ induces energy dissipation. Interestingly, both isotypes 397 

exhibit crosstalk in liver, where PPARβ/δ stimulates the production of the PPARα ligand 16:0/18:0-398 

phosphatidylcholine as well as PPARα expression and DNA-binding activity, thereby increasing 399 

hepatic FAO (156). Enhanced FAO upon PPARβ/δ activation contributes to its plasma lipid-lowering 400 

effects, together with decreased cholesterol absorption (157) and increased trans-intestinal 401 

cholesterol efflux (158). PPARβ/δ also raises HDL-C by increasing hepatic expression of 402 

apolipoprotein AII (APO-AII) (159) and phospholipid transfer protein (PLTP) (160). 403 

Countering inflammation is also a hallmark of PPARβ/δ agonism. Similar to PPARα and PPARγ, ligand-404 

activated PPARβ/δ inhibits pro-inflammatory cytokine production (161) and regulates macrophage 405 

polarization in WAT (162) and liver (163). Inhibition of NF-κB is one anti-inflammatory mode of action 406 

of PPARβ/δ (164). 407 

PPARβ/δ agonism improves insulin sensitivity through several mechanisms (Figure 3). In SKM, 408 

PPARβ/δ activation favours fiber-type switching from type II fast-twitch glycolytic fibers towards type 409 

I slow-twitch oxidative fibers (165) via mechanisms involving PGC1α (166) and an estrogen-related 410 
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receptor γ (ERRγ)/miRNA regulatory circuit (167), thereby improving glucose handling (168). The type 411 

I fiber fraction is reduced in T2D patients (169), which may contribute to altered glucose 412 

homeostasis. Myocyte-selective PPARβ/δ knockout mice exhibit a fiber-type switching towards fewer 413 

type I fibers that precedes the development of a diabetic phenotype (166). PPARβ/δ also improves 414 

glucose handling and insulin sensitivity in the liver. GW501516 treatment suppresses hepatic glucose 415 

output and enhances glucose disposal by increasing glucose flux through the pentose phosphate 416 

pathway (170). Liver-restricted PPARβ/δ overexpression reduces fasting glucose levels and stimulates 417 

hepatic glycogen production via upregulation of glucose utilization pathways (171). In addition, 418 

stress-induced JNK signalling is reduced, contributing to improved hepatic insulin sensitivity (171). 419 

PPARβ/δ agonism promotes pancreatic β-cell mitochondrial function and ATP production, thus 420 

improving glucose-stimulated insulin secretion (172). In addition, PPARβ/δ increases intestinal 421 

production of the incretin glucagon-like peptide 1 (GLP1), an insulin secretagogue (173). 422 

In summary, the mechanisms underlying the metabolic effects of PPARβ/δ resemble those of PPARα, 423 

which promotes energy dissipation, as opposed to PPARγ, which promotes energy storage. PPARβ/δ 424 

normalizes plasma lipids through enhanced FAO in several tissues, coupled to actions on hepatic 425 

apolipoprotein metabolism and intestinal cholesterol homeostasis. However, in contrast to PPARα 426 

and similar to PPARγ, activation of PPARβ/δ enhances insulin sensitivity. The mechanisms underlying 427 

PPARβ/δ-mediated improvement in glucose handling are not similar to PPARγ, but involve PPARβ/δ-428 

specific actions on SKM fiber type distribution, hepatic glucose metabolism, and pancreatic islet 429 

function. 430 

 431 

Where do we stand? 432 

 433 

Currently used PPAR agonists display weak potencies (PPARα) or are associated with important side 434 

effects (PPARγ). Optimization of therapeutic efficacy may be achieved through the development of 435 

selective PPAR modulators that retain the beneficial effects of PPAR activation while diminishing 436 
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unwanted side effects (174). Pemafibrate (K-877), a promising candidate among the selective PPARα 437 

agonists (175), displayed greater lipid modifying efficacy than fenofibrate in a phase II trial, with little 438 

or no effect on serum creatinine and homocysteine levels (176). This compound is currently 439 

undergoing a phase III clinical cardiovascular prevention trial, PROMINENT, in patients with high TG 440 

and low HDL-C. Administration of LY518674, another potent and selective PPARα agonist, to MetS 441 

patients increased cholesterol efflux capacity without changing steady-state HDL-C or APO-AI levels 442 

(177). Use of the PPARγ agonists rosiglitazone and pioglitazone is restricted due to safety concerns 443 

related to congestive heart failure and bone fracture. Better insights into the molecular mechanisms 444 

of PPARγ activity may lead to new compounds with fewer side effects. As an example, PPARγ 445 

phosphorylation at serine 273 by CDK5 modifies interaction with thyroid hormone receptor-446 

associated protein 3 (THRAP3) and alters regulation of a large number of genes whose expression is 447 

changed in obesity including adiponectin (178)(179). These findings spawned the development of a 448 

new class of anti-diabetic drugs that inhibit CDK5-mediated phosphorylation of PPARγ while lacking 449 

classical agonist activity. Along these lines, Gleevec blocks CDK5-mediated PPARγ phosphorylation, 450 

exhibiting potent anti-diabetic effects in obese mice without triggering fluid retention or weight gain 451 

(180). Whether this concept will eventually result in novel, clinically useful compounds is still unclear. 452 

The non-TZD PPARγ modulator INT131 improves glucose tolerance in T2D patients to a similar extent 453 

as rosiglitazone without adverse effects on body weight or hemodilution (181). The PPARβ/δ agonist 454 

GW501516, whose development has been abandoned because of preclinical safety issues (182), and 455 

MBX-8025 have shown efficacy in decreasing plasma TG and increasing HDL-C as well as improving 456 

insulin sensitivity and liver function (148). 457 

Alternatives to selective agonists are dual (activating two PPAR isotypes) and pan-agonists (activating 458 

the three PPARs), aiming to combine the beneficial effects of each receptor isotype. The pan-agonist 459 

chiglitazar (CS038) improves the lipid profile and insulin sensitivity without increasing body weight in 460 

animal models of obesity, and is currently in phase III clinical development (183). IVA337, a pan-461 

agonist which prevents and reverses fibrosis in skin (184), is currently entering phase II for the 462 
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treatment of NASH. Many dual PPARα/γ agonists, also termed glitazars, showed improved efficacy on 463 

glucose and lipid metabolism in clinical trials, although safety concerns have halted further 464 

development (185). Substantial preclinical and clinical evidence suggests that a large part of adverse 465 

events are drug-specific, off-target actions and hence PPAR-independent, although identifying the 466 

mechanisms is often challenging in the in vivo setting as off-target actions are superimposed on 467 

target-mediated effects (186). Two phase III trials with saroglitazar showed improved glucose and 468 

lipid profiles in patients with diabetic dyslipidemia compared to pioglitazone (187) or placebo (188). 469 

In contrast to the other PPARγ-dominant glitazars, saroglitazar predominantly activates PPARα with 470 

only moderate PPARγ agonism, which may explain the lack of typical PPARγ side effects. The non-TZD 471 

dual PPARα/γ agonist DSP-8658, reportedly in phase I development, normalizes blood glucose and 472 

plasma lipids in obese mice without increasing adipogenesis (189). The dual PPARβ(δ)/γ agonist 473 

DB959 regulates glucose, TG, and HDL in preclinical models of T2D and dyslipidemia (190). 474 

Elafibranor (GFT505), a dual PPARα/β(δ) agonist, demonstrated protective effects against hepatic 475 

steatosis, inflammation, and fibrosis in animal models of NAFLD/NASH (90). In phase IIa trials, 476 

elafibranor improved the lipid profile and enhanced insulin sensitivity in dyslipidemic and prediabetic 477 

patients (191) as well as in obese individuals (192). The GOLDEN-505 phase IIb study in NASH 478 

patients showed that elafibranor treatment induces resolution of NASH without worsening fibrosis in 479 

a higher proportion of patients compared to placebo. The drug was well tolerated and improved 480 

glucose homeostasis and the patients' CV risk profile (141). 481 

 482 

PPARs are still valuable targets for metabolic diseases 483 

 484 

Over the last decades, market withdrawals and failed drug development programs have cast doubts 485 

on the clinical value of PPAR-activating compounds. However, this issue is not black and white. The 486 

pure PPARγ agonist rosiglitazone as well as dual PPAR agonists with predominant PPARγ activating 487 

properties all displayed important adverse effects, leading to restricted use or halted development. 488 
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However, most of these side effects were either drug-specific and hence off-target, or related to 489 

excessive PPARγ activation. Several fibrate trials, including FIELD and ACCORD, failed to meet the 490 

primary endpoint of reduced CV risk. However, such negative outcomes are likely linked to 491 

inappropriate patient selection, since subgroup analyses revealed significant CV risk reduction in 492 

those patients with marked dyslipidemia upon fenofibrate treatment (21). In addition, in several of 493 

these fibrate trials, including BIP and FIELD, the proportion of patients receiving statin therapy was 494 

unbalanced between the placebo and treatment groups. Correction for this non-randomized statin 495 

drop-in in the FIELD study estimated that fenofibrate induces a 19% relative CV risk reduction (193). 496 

To date, the mechanism of action of endogenous ligands is not fully elucidated. Therefore, one needs 497 

to rely on knockout mice and synthetic ligands to study PPAR functions, resulting in limitations in our 498 

understanding of the physiological functions of PPARs. Nevertheless, it has become increasingly clear 499 

that PPARα and PPARγ agonism display contrasting metabolic effects with different mechanisms of 500 

action. Whereas PPARβ/δ agonism is more related to PPARα, subtle differences exist (e.g. in 501 

regulation of glucose homeostasis). These findings are in line with the enhanced metabolic actions 502 

and improved safety profiles of novel compounds such as dual PPARα/β(δ) ligands, which target both 503 

the lipid abnormalities (via PPARα and PPARβ/δ), as well as the glucose alterations (via PPARβ/δ) in 504 

MetS patients without displaying PPARγ-related adverse effects. Altogether, we are convinced that 505 

modulating PPARs in metabolic disorders remains a valuable and promising approach with a future 506 

ahead. 507 
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Figure legends 1036 

 1037 

Figure 1. PPARα activation stimulates fatty acid and triglyceride metabolism. During fasting 1038 

(yellow), fatty acids (FA) released from white adipose tissue (WAT) are taken up by the liver and 1039 

transported to mitochondria where FA oxidation (FAO) takes place to produce acetyl-CoA (AcCoA) 1040 

which can be further converted to ketone bodies serving as fuel for peripheral tissues. In the fed 1041 

state (green), AcCoA is shuttled to the cytosol where de novo lipogenesis (DNL) takes place. Effects of 1042 

PPARα activation and PPARα target genes are indicated in pink. FAO is also stimulated by PPARα in 1043 

WAT and skeletal muscle (SKM). By regulating hepatic apolipoprotein synthesis, PPARα activation 1044 

decreases plasma triglycerides (TG) and low density lipoprotein-cholesterol (LDL-C) and increases 1045 

high density lipoprotein-cholesterol (HDL-C) levels. PPARα also acts on brown adipose tissue (BAT), 1046 

gut and pancreas, whereas central effects are unclear. Blue brackets indicate PPARα actions 1047 

restricted to mice and not (peroxisome proliferation, reduced liver fat content) or to a lesser extent 1048 

(reduced APO-B production) seen in humans  1049 

 1050 

Figure 2. PPARγ activation increases whole body insulin sensitivity. In white adipose tissue (WAT), 1051 

PPARγ activation (effects are indicated in pink) enhances fatty acid (FA) uptake and storage, 1052 

lipogenesis and adipogenesis (lipid steal action). PPARγ activation lowers circulating FA levels, 1053 

alleviating lipotoxicity and increasing insulin sensitivity. PPARγ agonism induces adiponectin 1054 

production by WAT further enhancing insulin sensitivity and lowering blood glucose. PPARγ also 1055 

exerts metabolic effects on brown adipose tissue (BAT), brain and pancreas. Increased hepatic 1056 

steatosis upon PPARγ activation occurs in mice but not in humans (blue brackets), who in contrast 1057 

display increased hepatic insulin sensitivity due to reduced FA flux from WAT. 1058 

 1059 

Figure 3. PPARβ/δ activation enhances glucose and lipid homeostasis. In skeletal muscle (SKM), 1060 

PPARβ/δ activation (effects are indicated in pink) favours fiber-type switching towards type I 1061 
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oxidative fibers, which have a higher glucose-handling capacity compared to type II fibers. PPARβ/δ 1062 

also augments fatty acid oxidation (FAO) in SKM, liver and white adipose tissue (WAT) and enhances 1063 

hepatic glucose metabolism and pancreatic β-cell function. PPARβ/δ activation decreases fatty acids 1064 

(FA), triglycerides (TG) and low density lipoprotein-cholesterol (LDL-C) and increases high density 1065 

lipoprotein-cholesterol (HDL-C) levels in blood. Metabolic effects of PPARβ/δ agonism also take place 1066 

in brain and gut. 1067 


