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Abstract

Background: Most confirmatory randomised controlled clinical trials (RCTs) are designed with specified power,
usually 80% or 90%, for a hypothesis test conducted at a given significance level, usually 2.5% for a one-sided test.
Approval of the experimental treatment by regulatory agencies is then based on the result of such a significance test
with other information to balance the risk of adverse events against the benefit of the treatment to future patients. In
the setting of a rare disease, recruiting sufficient patients to achieve conventional error rates for clinically reasonable
effect sizes may be infeasible, suggesting that the decision-making process should reflect the size of the target
population.

Methods: We considered the use of a decision-theoretic value of information (VOI) method to obtain the optimal
sample size and significance level for confirmatory RCTs in a range of settings. We assume the decision maker
represents society. For simplicity we assume the primary endpoint to be normally distributed with unknown mean
following some normal prior distribution representing information on the anticipated effectiveness of the therapy
available before the trial. The method is illustrated by an application in an RCT in haemophilia A. We explicitly specify
the utility in terms of improvement in primary outcome and compare this with the costs of treating patients, both
financial and in terms of potential harm, during the trial and in the future.

Results: The optimal sample size for the clinical trial decreases as the size of the population decreases. For non-zero
cost of treating future patients, either monetary or in terms of potential harmful effects, stronger evidence is required
for approval as the population size increases, though this is not the case if the costs of treating future patients are
ignored.

Conclusions: Decision-theoretic VOI methods offer a flexible approach with both type I error rate and power (or
equivalently trial sample size) depending on the size of the future population for whom the treatment under
investigation is intended. This might be particularly suitable for small populations when there is considerable
information about the patient population.
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Background
Prior to approval a drug typically goes through various
phases of clinical development, beginning with assess-
ing pharmacology in humans (phase I), followed by
exploration of therapeutic efficacy (phase II) and finally,
confirmation of the effectiveness (phase III). This is not a
necessary ordering, for example, prior to presenting over-
all clinical development, results and issues of the drug’s
efficacy and safety (this list is long) to regulatory agencies,
further investigation of the effect on human pharmacol-
ogy may be conducted. Based on the submitted informa-
tion, the regulatory authorities approve the product that
has demonstrated safety and effectiveness for the intended
population.
Treatments for rare diseases may not go through all the

phases of clinical development prior to submission to reg-
ulatory authorities. Buckley presented a brief summary
of treatments intended for rare diseases and approved
by European regulator that did not go through all these
phases [1]. The difference is usually attributable to the
small population where it is infeasible or impossible to
recruit many patients for trials.
The focus of this paper is the design of phase III trials in

particular in a small population. One of the fundamental
issues in clinical trial design is sample size determination.
The most common approach is to perform a power cal-
culation for a hypothesis test. In a two-arm randomised
controlled trial aiming to establish superiority of an exper-
imental treatment to the standard treatment, the null
hypothesis may state that the experimental treatment is
not superior to the control.
The sample size is determined by restricting type I and

II error rates. A type I error occurs when a true null
hypothesis is rejected and a type II error occurs when a
false null hypothesis is not rejected. Typically, the one-
sided type I error rate, α, is set to 0.025. The type II error
rate, β , is set to 0.10 or 0.20 for some specified alternative
hypothesis. Correspondingly, the power to detect the pre-
defined value, 1 − β , is 0.90 or 0.80. Values for α and β

are customarily set without consideration of the severity
or prevalence of the disease. In practice, however, clinical
trials in rare diseases have smaller sample sizes than those
in more common conditions, indicating that conventional
type I and type II error rates are being compromised in
this setting [2, 3]. Increasing the type I error rate might be
appropriate in a trial for rare disease as the small popula-
tion means that the number of patients who would benefit
from an effective treatment may be small and so it may
be justifiable to have alternate levels of type I error so
that an effective treatment may be made available more
easily.
To determine the sample size it seems reasonable to

consider information such as previous trial outcomes, the
cost of making type I or type II errors, the number of

people affected, the financial burden of the treatment and
other costs and rewards that will result from the treatment
being approved and marketed . One model that could be
used to optimise the sample size accounting for all the
information is the Bayesian decision theoretic approach.
In this framework, decisions are made so as to maximise a
utility function that quantifies their desirability of an out-
come. The utility function may be made up of observed
responses from a sample of patients, the costs of treat-
ing patients and conducting the trial, and the profits from
a successful treatment. Some authors have proposed to
include the cost of trials, the profit from a successful trial
(or a loss from an unsuccessful trial), two endpoints (e.g.
efficacy and adverse events) and the size of the popula-
tion, N, so that the sample size required for the trial is
optimised (see Hee et al. [4]). By including N we also
incorporate the potential gain to future patients. Such an
approach seems particularly suitable in the setting of a
small population, when there is likely to be considerable
knowledge of the size of the target population prior to the
start of a clinical trial and this is likely to be much smaller
than in other settings.

Methods
A Bayesian decision theoretic approach to sample size
determination
In our approach we assume that following safety and effi-
cacy exploration studies, once the drug has been shown
to be effective in a phase III trial for the intended pop-
ulation, it obtains regulatory approval. The objective of
a phase III trial is primarily to confirm effectiveness.
The typical design considered to be the gold standard in
providing the best evidence in assessing efficacy is the
randomised controlled trial (RCT). Let n be the size of
the RCT and assume that patients are randomised in
a 1:1 ratio to either the experimental or standard arm.
Let Yi = (Yi1, . . . ,Yin/2), i = (E, S), denote the out-
comes and Ȳi denote the sample mean from n/2 patients
from the experimental (E) and standard treatment (S)
arms, respectively. Assume Ȳi is normally distributed
with mean θi and known variance, 2σ 2

i /n, that is Ȳi ∼
N

(
θi, 2σ 2

i /n
)
. In the classical frequentist setting, we test

the null hypothesis that the two population means, θE and
θS, are equal, equivalently θ = θE − θS = 0. The dif-
ference of the sample means, denoted by X̄ = ȲE − ȲS
is normally distributed with mean θ and variance τ 2/n
where τ 2/n = 4σ 2/n when σ 2

E = σ 2
S = σ 2 (equal

variance) or τ 2/n = 2
(
σ 2
E + σ 2

S
)
/n when σ 2

E �= σ 2
S

(unequal variance).
In the Bayesian setting, θ is assumed to be unknown

but to follow a distribution with specified form. Assume
that the prior density of θ , which measures the belief
regarding the parameter prior to observing any responses,
is N

(
μ0, σ 2

0
)
. The prior density may be elicited from
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previous trials, case studies or experts’ opinions [5–9].
Following observations from patients, the prior is updated
to give a posterior distribution summarising belief about
θ given the observed data.
In the Bayesian decision theoretic framework, a util-

ity function summarises the value of all possible actions
given θ . The action that maximises the expectated value
of this utility over the posterior distribution of θ given
the observed data can then be chosen as the optimal
action. As with frequentist hypothesis testing, we may
consider that at the end of the trial, there are two possi-
ble actions, to reject the null hypothesis or not. The utility
function depends on the sample size n, and the decision,
d ∈ {do not reject H0, reject H0}, given θ . Let d(x̄, n)

denote the action taken at the end of the trial given data
x̄ with a sample size n and G(n, d, θ) denote the utility
function. We may also choose n optimally. As we will not
have observed any responses during the planning stage,
the expected utility is obtained from the distribution of X̄
given θ and n. As θ is unknown, the expectation of the
expected utility is taken over the prior density [4]. The
expected utility is then a function of the sample size and
decision rule, denoted by

G(n, d) =
∫

x̄

∫

�

G(n, d(x̄, n), θ)f (θ |x̄, n) dθ f (x̄|n) dx̄,

(1)

where f (θ |x̄, n) is the posterior density of θ given x̄ and

f (x̄|n) = 1
σx

φ

(
x̄ − μ0

σx

)

is the prior-predictive density function for X̄ before sam-
pling, with σ 2

x = σ 2
0 + τ 2/n the prior predictive variance

of X̄ and φ(·) the normal density function. If the action
taken at the end of the trial is determined by the out-
come of some hypothesis test, the function d and hence
the expected utility G(n, d), will depend on the type I error
rate, or equivalently the critical value, for that test, as
described in more detail in the next subsection. The opti-
misation problem then becomes one of choosing the trial
sample size and test type I error rate.

Formulation of utility function
We assume that the decision maker for our proposed
model represents society. A reward corresponds to
improved treatment either of patients in the trial or of
future patients if the experimental treatment receives reg-
ulatory approval.
The regulator is assumed to approve the experimental

treatment if the observed difference, X̄ = x̄, is greater than
a threshold, zατ/

√
n, where zα is the upper α percentile of

the standard normal distribution, so that d(x̄, n) = ‘reject

H0’ or ‘do not reject H0’ for x̄ above or below this thresh-
old. This is equivalent to a classical frequentist analysis
of the primary endpoint using a significance test con-
ducted at (one-sided) level α. This assumption is similar
to that proposed by Pezeshk et al. who also assume that
the regulatory agency will test the null hypothesis that
there is no difference between the outcomes means at
the α test size [10]. Since the decision function d then
depends only on zα , we will write G(n, zα) for G(n, d)

given by (1) above, and refer to zα as the significance level
threshold.
We assume that the size of the population for the treat-

ments we are testing is known, and denote this by N.
The number of patients that can be treated following
the trial depends on N and on the trial sample size. We
assume that during the trial a proportion ρ of patients are
enrolled in the trial, so that there are n(1 − ρ)/ρ concur-
rent patients not enrolled in the trial and the number of
patients remaining to be treated is N − n/ρ.
We suppose that the utility given x̄ represents the gain

from treating patients with the experimental treatment.
There are n/2 such patients in the trial and, if x̄ ≥ zατ/

√
n

so that the new treatment is approved, N − n/ρ such
patients following the trial. The reward for each treated
patient is taken proportional to the true effect size, i.e.
the more effective the treatment is the greater the reward
will be. Note that it is considered a loss if the treatment
effect is <0.
The utility function also includes fixed and variable

financial costs [11]. Fixed costs are incurred regardless of
the size of the trial, denoted by cf ; these may be the set-
ting up and running cost of the trial. Variable costs depend
on the size of the trial. The cost per patient, denoted by
c1, may be administrative costs to recruit, screen, treat
and follow-up patients in the conduct of the trial. Our
proposed utility function also includes additional costs,
either monetary or harmful effects, of treating a patient
with the experimental treatment, denoted by c2. All these
costs may be scaled to one unit of efficacy such that they
are relative to θ . Alternatively, the treatment efficacy may
be scaled to one unit of cost such that it is relative to
monetary reward and costs [12].
The utility at the end of the trial if the regulator approves

the experimental treatment is the reward from treating
patients in the trial and the future less the cost of treat-
ing them and both the fixed and variable trial costs. If
the regulator does not approve the experimental treat-
ment, the utility is the reward from treating patients in
the trial minus the cost of treating patients in the trial
with the experimental treatment and fixed and variable
costs. Possible actions are to approve or not the experi-
mental treatment. Thus, the utility function, taken relative
to the baseline of treating all patients with the control
treatment, is
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G(n, d, θ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(θ − c2)
(
N − n

ρ
+ n

2

)
− c1n

−cf I{n>0} d = reject H0,
(θ − c2)n2 − c1n

−cf I{n>0} d = do not reject H0,
(2)

where I{n>0} = 1 if n > 0 and 0 otherwise. The expected
utility given by (1) is then

G(n, zα)

=
∫∫ {

(N − n/ρ)(θ − c2)I{x̄≥zατ/
√
n}

+n
2
(θ − c2) − c1n − cf I{n>0}

}

× f (θ |x̄)f (x̄|n) dθ dx̄

= (N − n/ρ)

{

(μ0 − c2)
(−Z) + σ 2
0

σx
φ(Z)

}

+ n
2
(μ0 − c2) − c1n − cf I{n>0},

(3)

where 
(·) is the normal cumulative distribution func-
tion and Z = (zατ/

√
n − μ0)/σx is the z-score of the

significance level threshold, zα , on the prior predictive
distribution of X̄. The full derivation is presented in the
Additional file 1.

Optimisation
The optimal sample size and significance level threshold
are obtained by maximising the expected utility, G(n, zα).
Let z∗α denote the optimal value for the significance level
threshold. This is obtained for any n by differentiating
G(n, zα) with respect to zα , to obtain

d
dzα

G(n, zα) = (N − n/ρ)(μ0 − c2)
d
dzα


(−Z)

+ (N − n/ρ)
σ 2
0

σx

d
dzα

φ(Z)

= (N − n/ρ)

[

(μ0 − c2)
τ/

√
n

σx
φ(Z)

+σ 2
0

σx

τ
(
zατ/

√
n − μ0

)
/
√
n

σ 2
x

φ(Z)

]

.

(4)

Equating the differentiated expression (4) to zero, for a
given sample size n the optimal zα is

z∗α = c2
σ 2
x
√
n

σ 2
0 τ

− μ0
τ

σ 2
0
√
n
. (5)

Subsequently, the optimal sample size, n∗, is obtained
numerically by substituting (5) into (3) (see Additional
file 1 for details).

Results
Application to a case study
Abrahamyan et al. presented a decision analytic value of
information (VOI) model for assessing evidence on treat-
ments for children with severe haemophilia A, a rare dis-
ease [12]. They summarised that there are three types of
treatments currently available in various developed coun-
tries; alternate day prophylaxis (AP), on-demand (OD)
and tailored prophylaxis (TP) of intravenous administra-
tion of recombinant Factor VIII (FVIII). They utilised
information from US and Canada studies to evaluate
whether or not to conduct another trial. They performed
three pairwise comparisons; TP vs. AP, OD vs. TP and
OD vs. AP, and in each comparison the optimal decision,
whether to conduct another trial or to accept one of the
treatments as a standard therapy, was given depending on
the maximum acceptable price per unit health gain.
We adapted this work to illustrate the application of

our proposed model. Table 1 shows the estimated val-
ues used in our example. The primary endpoint was
binary, whether or not the patient had magnetic reso-
nance imaging (MRI)-detected joint damage. Similar to
Abrahamyan et al., we assume large sample approxima-
tions to this binary endpoint and so the efficacy mean,
μ̂t , t = (AP,OD,TP), is the proportion of patients with-
out MRI-detected joint damage. The sample and prior
variances are σ̂ 2

t = μ̂t(1−μ̂t) and σ̂ 2
0t = var(μ̂t) = μ̂t(1−

μ̂t)/n0t , respectively where n0t is the number of prior
observations for treatment t reported by Abrahamyan et
al., that is n0,AP = 27, n0,OD = 29 and n0,TP = 24.
To illustrate our model, consider a two-arm RCT com-

paring the on-demand (OD), which we assumed to be the
standard treatment, with the tailored prophylaxis (TP).
The point prevalence of haemophilia A in US is 7.0 per
100,000 which is about 22,400 in the US given the US
population of approximately 320 million [13, 14].
Let the measure of efficacy be the absence of MRI-

detected haemophiliac joint damage and the unknown
parameter measuring treatment benefit be the differ-
ence of proportion of patients without MRI-detected joint
damage valued in monetary terms using the value the
decision-maker places on each unity of efficacy, which
will be denoted λ. The prior distribution for the unknown

Table 1 Summary statistics and costs (in dollar, $) by treatment
for haemophilia A, adapted from Abrahamyan et al. [12]

Treatment, t

Statistics AP OD TP

Prior mean, μ̂t 0.9259 0.5517 0.7917

Prior variance, σ̂ 2
0t 0.0025 0.0085 0.0069

Sample variance, σ̂ 2
t 0.0686 0.2473 0.1649

Mean cost, c2t ($) 176,397 56,619 117,651

AP, Alternate day prophylaxis; OD, on-demand; TP, tailored prophylaxis
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parameter is then normal with prior mean μ0 = λ(μTP −
μOD) and prior variance σ 2

0 = λ2
(
σ 2
0,TP + σ 2

0,OD

)
. As

shown in Table 1, σ 2
TP �= σ 2

OD, therefore, the sample vari-
ance is estimated by τ 2 = 2λ2

(
σ 2
TP + σ 2

OD
)
. Following

Abrahamyan et al., take λ = $400, 000 leading to the
values given in Table 2. Suppose the fixed financial cost
incurred from conducting the trial is cf = $1m, the cost
of conducting the trial per patient is c1 = $5, 000 and the
cost of treating a patient is c2 = c2,TP − c2,OD = $61, 032
(see, Table 2).
Similar to Abrahamyan et al., we assume annual

haemophilia A incidence of 200 with 1/5 of patients
recruited to the trial (ρ = 0.2). Let the time horizon be
20 years and assume that all new cases will be prescribed
with the recommended treatment after the trial. The total
number of future patients who will benefit from the new
treatment is thus 4000 − 5n.
Figure 1 shows the expected utility for zα = z∗α for a

range of values of n. The optimal sample size, correspond-
ing to the value for which the expected utility is highest is
shown by the plotted point and is equal to n∗ = 46 (i.e.
23 patients per arm), G

(
n∗, z∗α

) = $141 million and the
threshold to approve TP is z∗α = 0.36876, equivalent to
α = 0.35615.
Both n∗ and z∗α are far from their conventional values.

In particular, except in the cases when n = 0, the power is
much smaller than a conventional level. Taking α = 0.025
and β = 0.8 for an alternative θA = σ0/2 = $24, 819
would require n = 268. The expected utility for this design
is $109 million.

Operating Characteristics
Figure 2 shows optimal sample sizes and significance
levels obtained from our model for population sizes
between 100 and 10,000,000 with other parameters fixed
as θ ∼ N

(
96, 000, (49, 638)2

)
, τ 2 = ($363, 202)2, c1 =

$5, 000, c2 = $61, 032 and cf = $1m. Figure 2a shows that
if the population is small (N < 3000), the optimal sam-
ple size is n∗ = 0. In this case the optimal significance
level threshold to approve TP is z∗α → −∞ (equivalently,

Table 2 Parameter estimates for the pairwise comparison
between on-demand (OD) and tailored prophylaxis (TP)

Parameter Estimates

Population size, N 4000

Prior mean, μ0 = λ(μTP − μOD), ($) 96000

Prior variance, σ 2
0 = λ2

(
σ 2
0,TP + σ 2

0,OD

)
, ($) (49638)2

Sample variance, τ 2 = 2λ2
(
σ 2
TP + σ 2

OD

)
, ($) (363202)2

Cost of conducting the trial per patient, c1, ($) 5000

Cost of treating a patient, c2 = c2,TP − c2,OD, ($) 61032

Fixed financial cost incurred from conducting the trial, cf , ($) 1 million
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Fig. 1 Expected utility, G
(
n, z∗α

)
, against n

α → 1, see Fig. 2c and d respectively), corresponding to an
optimal decision to approving the experimental treatment
based on the prior belief alone.
Other than for very small population sizes (N > 3, 000)

the optimal trial sample size increases with N , with
log(n∗) increasing approximately linearly with log(N).
This reflects work by Cheng et al. and Stallard et al. show-
ing that as N increases n∗ ∝ √

N [15, 16]. The optimal
significance level decreases as N increases (Fig. 2d),
requiring a stricter level of statistical significance.
Figure 2b shows the type II error rate of the test using sam-
ple size n∗ and significance level threshold z∗α , to detect
an alternative θA = σ0/2 = $24, 819. In this case the
type II error rate increases to approach 1 as N increases,
so that that power approaches 0. This is reasonable since
as θA < c2, this true effect difference is insufficient
to justify recommendation of the treatment for use in
future patients, though is very different to a more con-
ventional approach in which the power will increase with
increasing n.
Figure 3 shows optimal sample size (n∗), threshold

(
z∗α

)
,

type I (α∗), and II (β∗) error rates, against the size of
the population for various values of cost, c2 = 0, c2 =
$12, 409, c2 = $24, 819, c2 = $61, 032, c2 = $96, 000 and
c2 = $120, 819. Cases include c2 equal to, above and below
θA and the prior mean.
When c2 = 0 we have n∗ > 0 only if N > 390, 000

(Fig. 3a). If N < 390, 000 the optimal decision is to
approve the experimental treatment without a trial. When
c2 = μ0, it is optimal not to start the trial if the popu-
lation size, N < 200. In this case prior belief is that the
expected utility from the new and standard treatments are
equal so that rejection or non-rejection of H0 lead to the
same expected utility so zα can be taken to be ∞ or −∞,
or equivalently α may be taken to be 1 or 0. When c2 > μ0
although it is optimal to conduct no trial if the popula-
tion size is less than 640 it is optimal not to approve TP
but to continue with the standard treatment, OD. This



Pearce et al. BMCMedical ResearchMethodology  (2018) 18:20 Page 6 of 9

0
10

00
20

00
30

00
40

00

N

n*

102 103 104 105 106 107

a

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N

β*

102 103 104 105 106 107

b

0
2

4
6

8
10

N

z*

102 103 104 105 106 107

c

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N

α*

102 103 104 105 106 107

d

Fig. 2 Optimal (a) sample size, n∗ , (b) type II error rate, β∗ , in order to detect an alternative θA = σ0/2 = $24819 (c) z∗α and (d) type I error rate, α∗
against the size of the population, N, with fixed μ0 = $96000, σ 2

0 = ($49638)2, τ 2 = ($363202)2, c1 = $5000, c2 = $61032 and cf = $1 million

is shown in Fig. 3d where the optimal type I error rate,
α∗ → 0. The optimal type II error rate, β∗ approaches
1 (power approaches 0) as N and n∗ become large when
c2 > θA and, though this is hard to see from the plot,
approaches 0 (power approaches 1) as N becomes large
when c2 < θA. Although not shown on these plots, as c2
becomes very large, the optimal sample size, n∗, decreases,
with n∗ = 0 for largest c2 values reflecting very strong
prior belief that the TP is not sufficiently promising to
overcome the cost c2.
Additional calculations were performed to evaluate the

sensitivity of the results obtained to specification of
the prior mean, μ0, and variance, σ 2

0 . Figures illustrating
the optimal design parameters, n∗ and α∗ are given in the
Additional file 2. These show that increasing or decreasing
μ0 has a similar effect on the choice of n and α as decreas-
ing or increasing c2 and that increasing or decreasing the
prior variance, that is decreasing or increasing the level
of prior information assumed, decreases or increases the
value of N below which n∗ = 0.

Discussion
The methodology of decision theory is the foundation of
the value of information (VOI) method presented in the

health economics literature. The method is used to assess
uncertainty in existing evidence and aid decision-making
as to whether to adopt one of the competing treatments
or to obtain more information. The decision-theoretic
VOI method is based on expected utility maximisation
and does not involve constructing and testing of hypothe-
ses. Rather costs of gathering additional information are
compared with expected returns in terms of the reduced
likelihood of making the wrong decision, and the utility
loss from doing so, though the result remains a decision as
to whether or not the new treatment should be used and
so is analogous to a hypothesis test. This requires specify-
ing a utility function, which will be based on all outcomes
(e.g. depending on the decision-maker, this may include
health care use, adverse events, quality of life). The under-
lying methods are consistent in that for reasonable utility
functions the decision to approve a treatment will bemade
so long as it appears sufficiently promising, corresponding
to a hypothesis test conducted at some significance level.
A number of authors have proposed decision-theoretic
approaches to clinical trial design, both in the setting of
normally distributed outcomes as considered here and
binary outcomes [4]. A distinctive feature of this work is
the specific focus on the small population setting. This is
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Fig. 3 Optimal (a) sample size, n∗ , (b) type II error rate, β∗ , (c) z∗α and (d) type I error rate, α∗ in order to detect an alternative θA = $24819 against
the size of the population, N, with fixed μ0 = $96000, σ 2

0 = ($49638)2, τ 2 = ($363202)2, c1 = $5000 and cf = $1 million for different values of;
c2 = 0 (light grey dotted line), c2 = σ0/4 = $12409 (light grey dashed line), c2 = σ0/2 = $24819 (light grey solid line), c2 = $61032 (heavy black
solid line), c2 = μ0 = $96000 (heavy black dashed line) and c2 = σ0/2 + μ0 = $120819 (heavy black dotted line)

reflected in the construction of the utility function used,
for example in the assumption of a fixed finite future pop-
ulation, with this decreasing in size depending on the
length of the clinical trial.
Regulatory agencies may prefer the use of classical

frequentist methods in the evaluation of pharmaceuti-
cal products. In the design of a clinical trial based on
the frequentist method, the type I error rate, α, is usu-
ally restricted at a one-sided 0.025 level. This value is
a conventional, but arbitrary, choice, and there is some
indication that in practice there may be some flexibility
depending on severity and/or prevalence of the disease.
Our approach involves calculating a z-score for a pri-
mary clinical outcome that corresponds to maximising
expected utility. It therefore allows a hypothesis testing
framework to be maintained, but ensures that the error
rate for that hypothesis test on the primary outcome is
consistent with a utility maximisation framework. Results
from Fig. 3 suggest that different α-levels are appropriate
for diseases with different prevalence rates. Discussion of
choice of α-level depending on prevalence and severity of
disease has been considered by Montazerhodjat and Lo

(2015) [17]. In their working paper they also show that
the optimal critical value increases with disease preva-
lence, but find a greater dependence on the severity
of the disease with a more severe disease (e.g. pancre-
atic cancer) requiring a lower critical value (e.g. zα =
0.587,α = 0.279) and a less severe disease (e.g. prostate
cancer) requiring a higher critical value (e.g. zα = 2.252,
α = 0.012).
In the example presented above, we made some simpli-

fying assumptions from the Abrahamyan et al. model for
tractability, such as assuming independence of costs and
clinical outcomes, which lead to slightly different optimal
designs. In our model, we assumed that there is a non-trial
cost in treating a patient with the experimental treat-
ment, c2, that is known and fixed. However, c2 may also
be interpreted as the harm and risk of the experimental
treatment. Other authors, for example, have interpreted
this cost as critical event, treatment for side effects due to
the experimental treatment, the loss from the reversal of
a decision which is when after the decision to adopt the
new treatment is made but following information from
subsequent patients the treatment has to be withdrawn,
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or observing adverse events both within and outside the
trial which will affect costs and take-up of the new treat-
ment [18–20]. As such the optimisation of sample size
may depend on two endpoints; efficacy and safety. This
may be simplified by aggregating efficacy and safety in
a clinical utility index that could be used as the primary
endpoint. Therefore, the unknown parameter, θ , would
represent the mean difference in this utility index.
There are two possible decisions in our model where

the experimental treatment is approved for treating future
patients depending if the observed difference is greater
than the optimal threshold. An alternative to defining the
threshold at some frequentist test size, we could define
it as some monetary value such as willingness to pay for
one unit of health, e.g. in the model proposed by Willan
and Eckermann where the decision making is from the
perspective of the society who is responsible to decide
whether or not to reimburse a new intervention at the
given price to the company. In their model, the societal’s
decision is based on the threshold of the willingness to pay
at a certain price [21].
We also assume that the size of the population is known.

Based on Abrahamyan et al., who estimated the annual
incidence to be 200, we took N = 4000 correspond-
ing to a 20 year period of market exclusivity (the time
during which the new treatment is the sole drug in the
market). Alternatively, the population size could be mod-
elled by considering the accrual time, market exclusivity
period (the new treatment being the sole drug in the
market) and the delay taken from the availability of results
to the submission to the regulatory approval, production,
marketing, distribution and sales [11, 19, 21, 22]. The
inclusion of time or a model of growth and decay in our
model is straight forward.
The estimate of the proportion of patients who will

benefit from the new treatment if it is approved for rou-
tine use may be more complex by including patient’s life
expectancy and quality of life [23–25]. Or depending on
the severity of the disease, the number of future patients
who would take up the recommended new treatment
depends on the treatment efficacy in a piecewise linear
function [10, 26–29]. There may be no future patients
who receive the treatment if the effectiveness is lower than
a predefined threshold and some maximum number of
patients if it is greater than a predefined threshold, i.e.
the improvement is sufficiently large. If the efficacy is in
between the lower and upper thresholds, the number of
patients is a linear function that increases with the effi-
cacy. This could effectively limit the choice of the optimal
value α∗ as insufficiently strong evidence from the trial
of a treatment effect might lead to the new treatment not
being used for any patients following the trial.
A challenge associated with implementation of the

method proposed is specification of the prior distribution.

A number of authors have discussed elicitation of prior
distribution parameters for Bayesian trial design, includ-
ing in the setting of a rare disease [9, 30]. Using a more
informative prior generally results in a smaller optimal
trial sample size, sometimes with the optimum to be to
conduct no trial at all but to make a decision based on
prior data alone. If this is considered to be inappropriate,
careful consideration should be given to the prior distribu-
tion as well as the specification of parameters of the utility
function.
We have assumed that regulatory agencies make a

simplistic binary decision, approve or not the submit-
ted product. Agencies such as FDA/EMA may also
give “accelerated approval/conditional approval”. Our pro-
posed model can be expanded to include this decision
where the utility function for this action may depend on
the subsequent actions that the sponsor would take. Those
subsequent actions may depend on whether or not the
regulatory agencies might take given future observations.
This type of sequential decision-theoretic model has been
explored by various authors [31–35].

Conclusions
Decision-theoretic VOI analysis provides an alternative to
conventional power calculations for the determination of
the sample size for a clinical trial. Using such an approach,
the final decision at the end of the trial and choice of the
trial sample size are made so as to maximise the posterior
expected value of a specified utility function.
Although the trial is not designed so as to control fre-

quentist error rates at specified levels, since the decision
to approve a new treatment will be taken so long as
the observed mean difference is sufficiently large, this is
equivalent to a frequentist hypothesis test conducted with
a type I error rate corresponding to the optimal deci-
sion. The method can thus be seen as providing a flexible
approach in which both the type I error rate and the power
(or equivalently the sample size) of a trial can reflect
the size of the future population for whom the treat-
ment under investigation is intended. We believe such an
approach could be particularly valuable in the setting of
a small population such as a trial of a rare disease, when
there is likely to be considerable knowledge of the size of
the target population.
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