

Figure 1: Optimal (a) sample size, n^* , (b) type II error rate, β^* , (c) z^*_{α} and (d) type I error rate, α^* in order to detect an alternative $\theta_A = \$24\19 against the size of the population, N, with fixed $\sigma_0^2 = (\$4963\$)^2, \tau^2 = (\$363202)^2, c_1 = \$5000, c_2 = \$61032$ and $c_f = \$1$ million for different values of; $\mu_0 = 0$ (light grey dotted line), $\mu_0 = \$32000$ (light grey dashed line), $\mu_0 = \$12\000 (heavy black solid line), and $\mu_0 = \$12\000 (heavy black dashed line).

Figure 2: Optimal (a) sample size, n^* , (b) type II error rate, β^* , (c) z^*_{α} and (d) type I error rate, α^* in order to detect an alternative $\theta_A = \$24\19 against the size of the population, N, with fixed $\mu_0 = \$96000, \tau^2 = (\$363202)^2, c_1 = \$5000, c_2 = \61032 and $c_f = \$1$ million for different values of; $\sigma_0^2 = (\$49638)^2/4$ (light grey dotted line), $\sigma_0^2 = (\$49638)^2/2$ (light grey dashed line), $\sigma_0^2 = (\$49638)^2$ (heavy black solid line) and $\sigma_0^2 = 4(\$49638)^2$ (heavy black dashed line).