Derivation of expected utility function

Assuming that the difference between means follows a normal distribution, $\bar{X} \sim N(\theta, \tau^2/n)$, and the unknown parameter also follows a normal distribution, $\theta \sim N(\mu_0, \sigma_0^2)$. The optimal utility is

$$G(n,\theta) = (\theta - c_2)(N - n/\rho)I_{\{\bar{x} > z_{\alpha}\tau/\sqrt{n}\}} + \frac{n}{2}(\theta - c_2) - c_1n - c_f I_{\{n>0\}}.$$

The expectation of the utility is the expectation taken over the posterior distribution of θ for all possible values of responses, \bar{X} . However, as \bar{X} is unknown at the planning stage the expected utility of the optimal decision is obtained from the distribution of \bar{X} given θ and n. As θ is unknown, the expectation of the expected utility is taken over the prior distribution of θ ,

$$\begin{aligned} \mathcal{G}(n, z_{\alpha}) \\ &= \iint \left[(\theta - c_2)(N - n/\rho) I_{\{\bar{x} \ge z_{\alpha} \tau / \sqrt{n}\}} + (\theta - c_2) \frac{n}{2} \right. \\ &- c_1 n - c_f I_{\{n > 0\}} \right] f(\theta | \bar{x}) f(\bar{x} | n) \, d\bar{x} \, d\theta \\ &= (N - n) \int_{z_{\alpha} \tau / \sqrt{n}}^{\infty} \int_{-\infty}^{\infty} \theta f(\theta | \bar{x}) f(\bar{x} | n) \, d\theta \, d\bar{x} \\ &- c_2 \Phi(-Z)(N - n/\rho) + \frac{n}{2} (\mu_0 - c_2) - c_1 n \\ &- c_f I_{\{n > 0\}} \\ &= (N - n/\rho) \Big\{ (\mu_0 - c_2) \Phi(-Z) + \frac{\sigma_0^2}{\sigma_x} \phi(Z) \Big\} \\ &+ \frac{n}{2} (\mu_0 - c_2) - c_1 n - c_f I_{\{n > 0\}} \end{aligned}$$
(1)

where $f(\theta|\bar{x})$ is the posterior density of θ given \bar{x} , $f(\bar{x}|n)$ is the prior predictive density function of \bar{x} , $\Phi(\cdot)$ is the normal cumulative distribution function, $\phi(\cdot)$ is the normal density function, $Z = \frac{z_{\alpha}\tau/\sqrt{n-\mu_0}}{\sigma_x}$ and $\sigma_x^2 = \sigma_0^2 + \tau^2/n$. The expected utility is a function of n and z_{α} .