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Abstract

Background and objective: Nonlinear mixed-effect models (NLMEMs) are increasingly used for the anal-
ysis of longitudinal studies during drug development. When designing these studies, the expected Fisher
information matrix (FIM) can be used instead of performing time-consuming clinical trial simulations. The
function PFIM is the first tool for design evaluation and optimization that has been developed in R. In this
article, we present an extended version, PFIM 4.0, which includes several new features.
Methods: Compared with version 3.0, PFIM 4.0 includes a more complete pharmacokinetic / pharmacody-
namic library of models and accommodates models including additional random effects for inter-occasion
variability as well as discrete covariates. A new input method has been added to specify user-defined mod-
els through an R function. Optimization can be performed assuming some fixed parameters or some fixed
sampling times. New outputs have been added regarding the FIM such as eigenvalues, conditional numbers,
and the option of saving the matrix obtained after evaluation or optimization. Previously obtained results,
which are summarized in a FIM, can be taken into account in evaluation or optimization of one-group pro-
tocols. This feature enables the use of PFIM for adaptive designs. The Bayesian individual FIM has been
implemented, taking into account a priori distribution of random effects. Designs for maximum a posteriori
Bayesian estimation of individual parameters can now be evaluated or optimized and the predicted shrinkage
is also reported. It is also possible to visualize the graphs of the model and the sensitivity functions without
performing evaluation or optimization.
Results: The usefulness of these approaches and the simplicity of use of PFIM 4.0 are illustrated by two
examples: i) an example of designing a population pharmacokinetic study accounting for previous results,
which highlights the advantage of adaptive designs; ii) an example of Bayesian individual design optimiza-
tion for a pharmacodynamic study, showing that the Bayesian individual FIM can be a useful tool in ther-
apeutic drug monitoring, allowing efficient prediction of estimation precision and shrinkage for individual
parameters.
Conclusion: PFIM 4.0 is a useful tool for design evaluation and optimization of longitudinal studies in phar-
macometrics and is freely available at http://www.pfim.biostat.fr.
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1. Introduction

Nonlinear mixed-effect models (NLMEMs) are frequently used in model-based drug devel-

opment to analyze longitudinal data [1]. They were initially used in pharmacokinetic (PK) or

pharmacodynamic (PD) analyses: PK analysis deals with the time course of drug concentration,

whereas PD refers to the relationship between the drug effect and doses or concentrations. The

analysis through NLMEMs (i.e. the population approach) allows the estimation of mean parame-

ters, their inter-individual/inter-occasion variability as well as covariate effects, and is appropriate

for exploiting the richness of repeated measurements. Consequently, this approach is increasingly

used in the biomedical field, not only for PKPD [2, 3] or joint PK analysis of parent drugs and their

active metabolites [4, 5], but also for analyses of viral loads [6], of bacterial resistance to antibi-

otics [7], and of the dose-response relationship [8]. This approach has become the main statistical

tool in pharmacometrics, the science of quantitative pharmacology [9]. To estimate parameters in

NLMEMs, maximum likelihood estimation is commonly used, although the likelihood for these

models has no analytical solution. Specific algorithms, implemented in several software packages,

have therefore been proposed to perform this maximization [10, 1]. Once population parameters

are estimated, individual parameters can be obtained using maximum a posteriori (MAP) Bayesian

estimation. This approach optimally incorporates all the information available from the whole

population to increase the ability to estimate individual parameters and allows the use of sparse

sampling, where few samples are collected from each subject.

Before the estimation step, the investigator of a study is confronted with the choice of the ex-

perimental design, which is crucial for efficient estimation of parameters in NLMEMs, especially

when the studies are conducted in patients from whom few samples can be taken. A design in

NLMEMs, also called a population design, is composed of the number of elementary designs and

the specification of each elementary design and the associated number of subjects. In this setting,

the term elementary design is used to describe a group of subjects with identical design characteris-

tics. The choice of design consists in determining a balance between the number of subjects and the

number of samples per subject, as well as the allocation of informative times and doses, according

to experimental constraints. To evaluate and compare designs, the theory of optimum experimental

design in classic nonlinear models has been introduced [11, 12, 13], based on the expected Fisher

information matrix (FIM). The inverse of the FIM, according to the Cramer-Rao inequality, is the
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lower bound of the variance covariance matrix of any unbiased estimators of the parameters. From

the square roots of the diagonal elements of the inverse of the FIM, the predicted standard errors

(SE) for estimated parameters can be calculated. A widely used optimality criterion for design

optimization is the D-criterion, which consists in maximizing the determinant of the FIM. While

the individual FIM for standard nonlinear regression has an analytical expression in fixed effect

models, there is no closed form of the population FIM in NLMEMs. That is why linear approxi-

mations of the model are common approaches in the design theory to evaluate the population FIM

[14, 15, 16]. When linearizing the model around a guess value of the fixed effects, the variance of

the observations is then independent of the fixed effects, which leads to a block-diagonal expres-

sion of the FIM [17]. It has been shown that this simpler expression of the FIM performed better

than the full matrix expression given by other linearization approaches, providing results closer to

those obtained by clinical trial simulation [18]. This expression of the FIM was extended to de-

sign crossover trials, including inter-occasion variability and discrete covariates fixed or changing

between periods [19]. Beside the individual and population FIM, the expected Bayesian individual

FIM was also developed to predict the estimation error of individual parameters obtained by MAP

[20, 21]. In addition, the Bayesian FIM can also be used to predict the shrinkage [21], a metric

quantifying the informativeness of the individual data and the reliability of individual parameter

estimates [22]. The design approach based on these developments using the FIM is a good alter-

native to clinical trial simulation [23]. However, it requires a priori knowledge of the model and

its parameters, which can usually be obtained from previous experiments and which leads to lo-

cally optimal designs. Alternatives to locally optimal designs are robust designs, relying on a priori

distribution of parameters [24, 25], or adaptive designs, which use accumulating information in

order to decide how to modify predefined aspects of the study during its implementation instead of

leaving them fixed until the end [26, 27]. An adaptive design approach in NLMEMs that optimizes

the design of each cohort while taking into account previous FIM obtained from previous cohorts

has been proposed [28, 29].

Expressions of the individual FIM and population FIM based on FO are available in several

software tools for designs in NLMEMs [18]. In particular, these expressions were implemented in

PFIM, the first R function dedicated to design evaluation and optimization (www.pfim.biostat.fr).

PFIM has been available since 2001 [30] for designs in single-response models. Version 3.0 in-
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cluding extensions of PFIM to multiple-response models was released in 2008 and described in

[31]. Then version 3.2 was released in 2010, with a more complete PKPD library of models, had

additional features, as described in [32], for including inter-occasion variability (IOV), discrete

covariates with prediction of power for the comparison or equivalence Wald test [33, 19]. PFIM

Interface, the graphical user interface (GUI) using R software, is also available and can be used

to perform several features of the R script versions of PFIM. Optimization in PFIM is based on

the D-optimality criterion described previously. Version 3.0 and later versions implement two op-

timization algorithms in PFIM: Simplex [34] and the Fedorov-Wynn algorithm [35, 36, 33].

Several features have been added to the new version 4.0 of PFIM. This new version includes a

new input method to specify user-defined models through an R function. Design optimization can

now be performed with fixed parameters or fixed sampling times. The FIM obtained after evalu-

ation or optimization can be saved in a file. Evaluation and optimization can also be performed

accounting for a previous FIM which summarizes previously obtained results, following the prin-

ciple of adaptive designs. Additional features based on the Bayesian individual FIM have been

implemented. Designs for MAP estimation of individual parameters can be evaluated or optimized

and the predicted shrinkage is also reported. Finally, it is now possible to visualize the graphs of

the model and the sensitivity functions without necessarily performing evaluation or optimization.

All the new features of PFIM 4.0 are described in this article. Section 2 presents the method-

ological developments for different new aspects of designs in NLMEMs. Then, the features im-

plemented in PFIM 4.0 and the structure of the R program and its use are presented in Section 3,

through a summary of model specifications as well as a description of the input/output files. Lastly,

two illustrations of the use of PFIM 4.0 are provided in Section 4: i) an example of designing a

population PK study taking into account previous results and ii) an example of Bayesian individual

design optimization for a dose-response study.

2. Statistical methods

2.1. Design

The elementary design ξi of individual i (i = 1, ...,N) is defined by the number ni of samples

and their allocation in time (ti1..., tini). In the case of K responses, ξi is composed of K sub-designs
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such that ξi = (ξi1,ξi2, ...,ξiK). The sub-design ξik is then defined by (tik1, tik2, ..., tiknik), with nik

sampling times for the observations of the kth response, so that ni =
K

∑
k=1

nik.

In the case of designs with H occasions, ξi is composed of H sub-designs such that ξi =

(ξi1,ξi2, ...,ξiH). The design ξih at each occasion h (h = 1, ...,H) for K responses is composed

of (ξih1,ξih2, ...,ξihK), with ξihk = (tihk1, tihk2, ..., tihknihk). The number of sampling times at the hth

occasion is nih =
K

∑
k=1

nihk, so that ni =
H

∑
h=1

K

∑
k=1

nihk.

For N individuals, the population design is composed of the N elementary designs such as

Ξ = {ξ1, ...,ξN}. Usually, population designs are composed of a limited number Q of groups of

individuals with identical design ξq within each group, performed in a number Nq of individuals.

The population design can thus be written as Ξ = {[ξ1,N1]; [ξ2,N2]; ...; [ξQ,NQ]}. In the case of

identical elementary designs in all individuals, the one-group population design is defined by Ξ =

{ξ ,N}.

Individual design (for standard nonlinear regression) and individual Bayesian design (for Bayesian

estimation of individual parameters) are defined only by an elementary design ξ to be performed

in one individual.

2.2. Nonlinear mixed-effects models

2.2.1. Basic single and multiple response models

An NLMEM, or a population model, with no covariate and for one response, is defined as

follows. The vector of observations Yi for the individual i (i = 1, ...,N) is defined as:

Yi = f (θi,ξi)+ εi = f (g(µ,bi),ξi)+ εi, (1)

where the function f defines the nonlinear structural model for one response, θi is the vector of

the p-individual parameters for individual i, ξi is the elementary design of individual i and εi is

the vector of residual error. The vector of individual parameters θi depends on µ , the p-vector of

the fixed effect parameters and on bi, the p-vector of the random effects for individual i through a

function g, that is θi = g(µ,bi). If θi follows a normal distribution then g is an additive function,

so that θi = µ +bi. If θi follows a lognormal distribution then g is an exponential function, so that

θi = µ exp(bi).
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It is assumed that bi ∼ N(0,Ω) with Ω defined as a p× p diagonal variance-covariance matrix,

for which each diagonal element ω j, j=1,...,p, represents the inter-individual variability of the jth

component of the vector bi. It is also supposed that εi follows a normal distribution of mean 0

and ni×ni-diagonal variance-covariance matrix Σi. Conditional on the values of the individual pa-

rameters θi, the matrix Σi is defined as Σi(θi,σinter,σslope,ξi) = diag(σinter +σslope f (θi,ξi))
2. The

terms σinter and σslope are the additive and proportional parts of the error model, respectively. Of

note Σi = σ2
interIni for a additive error variance model, Σi = diag(σslope f (θi,ξi))

2 for a proportional

error variance model and Σi = diag(σinter +σslope f (θi,ξi))
2 for a combined error variance model.

Conditional upon the value of bi, it is assumed that the εi errors are independently distributed.

In the case of K multiple responses, the vector of observations Yi can then be composed of K

vectors for the different responses:

Yi = [Y T
i1 ,Y

T
i2 , ...,Y

T
iK]

T , (2)

where Yik, k = 1, ...,K, is the vector of nik observations for the kth response. Each of these responses

is associated with a known function fk, which can be grouped in a vector of a multiple response

model F , such as

F(θi,ξi) = [ f1(θi,ξi1)
T , f2(θi,ξi2)

T , ..., fK(θi,ξiK)
T ]T , (3)

Each response can have its error model and εi is then the vector composed of the K vectors

of residual errors εik, k = 1, ...,K, associated with the K responses. It is also supposed that

εik ∼ N(0,Σik) with Σik a nik × nik-diagonal matrix such that: conditional on the values of θi,

Σik(θi,σinterk ,σslopek ,ξik) = diag(σinterk +σslopek fk(θi,ξik))
2 where σinterk and σslopek are two pa-

rameters of the model for the variance of the residual error of the kth response. The variance of

εi over the K responses is then noted Σi(θi,σinter,σslope,ξi), where Σi is a ni× ni-diagonal matrix

composed of each diagonal element of Σik with k = 1, ...,K and σinter and σslope are two vectors of

the K components σinterk and σslopek , k = 1, ...,K, respectively.
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2.2.2. Models accounting for inter-occasion variability

In mixed models, several levels of variability can be taken into account. In particular, in the case

of trials including several occasions, there are additional random effects for inter-occasion variabil-

ity that can be estimated separately from inter-individual variability. For instance, the individual

parameters θih of an individual i at occasion h are linked to the fixed effect µ , the inter-individual

variability random effects bi and the inter-occasion variability random effects κih through the func-

tion g defined previously, that is θih = g(µ,bi + κih). bi and κih are supposedly independent. It

is assumed that bi ∼ N(0,Ω) and κih ∼ N(0,Γ) with Ω and Γ defined as diagonal matrices of

size p× p. Each element ω j of Ω and γ j of Γ represents the inter-individual variability of the jth

component of bi and the inter-occasion variability of the jth component of κih, respectively.

2.2.3. Models accounting for discrete covariates

Part of the inter-individual variability or inter-occasion variability could be explained by the

influence of covariates which can be continuous or discrete and can also change between occasions.

Only discrete covariates will be addressed in this work.

Let C denote the set of discrete covariates changing or not between occasions, and Dc is the

set of all possible categories d of the covariate c in C. It is assumed either that covariates are

additive for parameters if the random effect model is additive, or that covariates are additive for log

parameters if the random effect model is exponential. For instance, in the case of an exponential

model, the individual parameter vector θih for an individual i at occasion h can be expressed as a

function of the covariate cih as follows:

θih = µ× exp(∑
c∈C

∑
d∈Dc

1cih=dβcd)× exp(bi +κih). (4)

The covariate cih for individual i at occasion h can take any value d in the set Dc. 1cih=d is the

indicator function of the category d in the set Dc. βcd is the p-vector of effects for category d of

covariate c (βcd = 0 for the category of reference) for the p parameters of the structural model. We

denote ρ the vector of all fixed effects composed of µ and βcd and u the function characterizing

their relationship with the vector of all covariates Cih such as θih = g(u(ρ,Cih),bi +κih).
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2.3. Fisher information matrix

Three types of FIM are proposed in this paper to quantify the informativeness of the designs, ac-

cording to different analysis purposes: the population FIM, MPF(Ψ,Ξ), for population analysis, the

individual FIM, MIF(θi,ξi), for individual regression and the individual Bayesian FIM, MBF(ξi),

for Bayesian estimation of individual parameters in NLMEMs. The population Bayesian FIM for

population analysis is not addressed in the present work.

2.3.1. Population Fisher information matrix

Expression of MPF

We consider the model Yi = F(θi,ξ )+εi. θi = (θ T
i1 , ...,θ

T
iH)

T is the individual parameter vector for

H occasions. θi∼N(ui(ρ),Ω
∗) in the case of additive random effects and logθi∼N(logui(ρ),Ω

∗)

in the case of exponential random effects, with ui(ρ) = (u(ρ,Ci1)
T , ...,u(ρ,CiH)

T )T and Ω∗ is the

H×H-blocks matrix with (Ω+Γ) on the diagonal and Ω elsewhere. We denote λ the vector of the

variance terms composed of the inter-individual variability and inter-occasion variability as well as

residual variability. Let Ψ be the population parameter vector defined by ΨT =(ρT ,λ T ). Assuming

independence across N individuals, the population FIM, MPF(Ψ,Ξ), for a population design Ξ, is

defined by the sum of the N elementary matrices MPF(Ψ,ξ i) computed for each individual i,

MPF(Ψ,Ξ) =
N

∑
i=1

MPF(Ψ,ξi). (5)

For one subject, the elementary FIM, MPF(Ψ,ξi), for the elementary design ξi, is defined as

MPF(Ψ,ξi) = EYi

(
∂ logL(Ψ,Yi)

∂Ψ

∂ logL(Ψ,Yi)
T

∂Ψ

)
, (6)

where L(Ψ,Yi) is the likelihood of the observations Yi given the population parameters Ψ. Under

some general regularity conditions, equation (6) is equivalent to MPF(Ψ,ξi) = EYi

(
−∂ 2 logL(Ψ,Yi)

∂Ψ2

)
.

Linear approximations of the model are common approaches in the design theory to circumvent the

problem of the missing closed form of the likelihood [14]. By linearizing the response function F

around a guess value of the fixed effects ui(ρ0) in the case of additive random effects, as in [17],
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we obtain (subscript i omitted in the followings):

Y ' F(u(ρ0),ξ )+
∂F(θ),ξ )

∂θ T

∣∣∣∣
θ=u(ρ0)

(θ −u(ρ0))+ ε

' F(u(ρ0),ξ )+
∂F(θ ,ξ )

∂θ T

∣∣∣∣
θ=u(ρ0)

(θ −u(ρ))+
∂F(θ ,ξ )

∂θ T

∣∣∣∣
θ=u(ρ0)

(u(ρ)−u(ρ0))+ ε

(7)

As a consequence, it is assumed Y ∼ N(E,V ) with :

E(Y ) ∼= E = F(u(ρ0),ξ )+
∂F(θ ,ξ )

∂θ T

∣∣∣∣
θ=u(ρ0)

(u(ρ)−u(ρ0))

Var(Y ) ∼= V =

(
∂F(θ),ξ )

∂θ T

∣∣∣∣
θ=u(ρ0)

)
Ω∗

(
∂F(θ),ξ )

∂θ T

∣∣∣∣
θ=u(ρ0)

)T

+Σ(u(ρ0),σinter,σslope,ξ )

(8)

By deriving the log-likelihood logL(Ψ,Y )'−1
2

n log(2π)− 1
2

log |V |− 1
2
(Y−E)TV−1(Y−E), the

elementary FIM is a block matrix defined as

MPF(Ψ,ξi) =
1
2

 A C

CT B

 , (9)

where the blocks A, B and C have following expressions[37]:

Aml
∼= 2

∂ET

∂ρm
V−1 ∂E

∂ρl
+ tr(

∂V
∂ρm

V−1 ∂V
∂ρl

V−1), (10)

with m and l = 1, ...,dim(ρ)

Bml
∼= tr(

∂V
∂λm

V−1 ∂V
∂λl

V−1), (11)

with m and l = 1, ...,dim(λ )

Cml
∼= tr(

∂V
∂ρm

V−1 ∂V
∂λl

V−1), (12)

with m = 1, ...,dim(ρ) and l = 1, ...,dim(λ ).

Since
∂F(θ ,ξ )

∂θ T

∣∣∣∣
θ=u(ρ0)

is independent of ρ , ∂V
∂ρm

= 0, the elementary FIM is then a block di-

agonal matrix with Aml
∼= 2∂ET

∂ρm
V−1 ∂E

∂ρl
in equation (10) and Cml = 0 in equation (12). Similar
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calculations can be done to evaluate the FIM in the case of exponential random effects by writing

the model as Yi = F(exp(logθi),ξ )+εi = G(logθi,ξ )+εi and by linearizing the response function

G around a guess value logu(ρ0) for logθi. The FIM is then evaluated assuming ρ0 = ρ , the fixed

effect values for which the design is evaluated. This block diagonal expression of the FIM is the one

computed by default in PFIM. Other linearization approach to evaluate the FIM is also available,

giving a full matrix expression of the FIM [18]. However the full matrix is not recommended, pro-

viding predicted standard errors which are less accurate than those obtained by the block diagonal

matrix when comparing with clinical trial simulation results [17, 18].

Recently, new alternative methods have been developed (not available in PFIM) to compute

the FIM for discrete data without linearization, using Adaptive Gaussian Quadrature (AGQ) [38]

or Markov Chain Hamiltonian Monte Carlo (HMC) [39] to integrate the derivatives of the log-

likelihood over the random effects, and Monte Carlo (MC) integration to evaluate its expectation

with respect to the observations. The HMC-based approach is available in the R package MIXFIM

[39].

Computation of power and number of subjects needed using MPF

In this paragraph, we consider the Wald tests of comparison or equivalence on a discrete covariate

effect, fixed or changing between occasions. These tests are performed on the estimator of the

effect size βcd ,p of a category d of each covariate c for parameter p. Given a design and values of

population parameters including a value for βcd ,p, from MPF(Ψ,Ξ), we can derive the SE of βcd ,p.

Then, we can predict the power of the tests and also compute the number of subjects needed to

achieve a given power [33, 19]. For simplicity, we omit index (cd, p) for β in this section.

The null hypothesis for the Wald test of comparison is H0 : {β = 0} while the alternative hy-

pothesis is H1 : {β 6= 0}. Denoting β̂ as the estimator of β , then the statistic of the Wald test under

the null hypothesis H0 is W = β̂/SE(β̂ ). With a type I error α , H0 is rejected if |W | > z1−α/2,

where z1−α/2 is the (1−α/2) quantile of the standard normal distribution.

We compute the power of the Wald test of comparison under H1, when β = β1 6= 0. Under H1,

W is asymptotically distributed with a normal distribution centered at β1/SE(β1). Therefore, the

power of the comparison Wald test PC is

PC = 1−Φ

(
z1−α/2−

β1

SE(β1)

)
+Φ

(
−z1−α/2−

β1

SE(β1)

)
, (13)
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where Φ is the cumulative distribution function of the standard normal distribution.

In order to derive the number of subjects needed to achieve a power PC of the Wald test of

comparison to detect an effect of a category versus the reference category for a covariate, we first

compute the SE in β1 needed to obtain this power, called SEN(PC), using the following relation

SEN(PC) =
β1

z1−α/2−Φ−1(1−PC)
. (14)

We then compute the the number of subjects needed to obtain a power of PC, called NSN(PC) using

NSN(PC) = N×
(

SE(β1)

SEN(PC)

)2

. (15)

The null hypothesis for the Wald test of equivalence is H0 : {β ≤ −δ or β ≥ +δ}, while the

alternative hypothesis is H1 : {−δ < β <+δ}, where δ is the equivalence limit. In the guidelines

for equivalence assessment [40, 41], it is recommended that δ = 0.2. H0 is composed of two

unilateral hypotheses H0,−δ : {β ≤−δ} and H0,+δ : {β ≥+δ}. Equivalence between two groups

for the covariate effect β can be concluded if and only if the two hypotheses H0,−δ and H0,+δ

are rejected. The equivalence Wald test using NLMEMs has already been developed from [42],

based on Schuirmann’s two one-sided tests (TOST) [43]. Denoting the estimator of β by β̂ , the

following formulas define W−δ , the statistic of the unilateral test under the null hypothesis H0,−δ ,

and W+δ , the statistic of the unilateral test under the null hypothesis H0,+δ : W−δ = (β̂ +δ )/SE(β̂ )

and W+δ = (β̂ −δ )/SE(β̂ ). With a type I error α , H0 is rejected if W−δ ≥ z1−α and W+δ ≤−z1−α ,

where z1−α is the (1−α) quantile of the standard normal distribution.

We compute the power of the Wald test of equivalence under H1, when β = β1 ∈ [−δ ,+δ ].

Usually we choose β1 = 0. From a given design and values of population parameters, SE(β1) can

be predicted using MPF . The power of the equivalence Wald test PE is then

PE = 1−Φ

(
z1−α −

β1 +δ

SE(β1)

)
if β1 ∈ [−δ ,0], (16)

PE = Φ

(
−z1−α −

β1−δ

SE(β1)

)
if β1 ∈ [0,+δ ], (17)

where Φ is defined as previously. As expressed in (16) and (17), the power of the equivalence test
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depends on the sign of β1. When β1 = 0, we can use any of the two equations to obtain the power

because in that case:

PE = 1−Φ

(
z1−α −

δ

SE(β1)

)
= Φ

(
−z1−α −

(−δ )

SE(β1)

)
. (18)

In order to derive the number of subjects needed to achieve the power PE of showing the equiv-

alence between a category versus the reference category for a covariate, we first compute the SE in

β1 needed to obtain the power of PE , called SEN(PE), using

SEN(PE) =
−β1−δ

−z1−α +Φ−1(1−PE)
if β1 ∈ [−δ ,0], (19)

SEN(Pequi) =
−β1 +δ

z1−α +Φ−1(PE)
if β1 ∈ [0,+δ ], (20)

We then compute the number of subjects needed to obtain the power of PE , called NSN(PE) using

(15) with SEN(PE) instead of SEN(PC). If β1 < 0, we substitute (19) for (15); if β1 > 0, we

substitute (20) for (15); if β1 = 0, we can substitute either of (19) or (20) for (15) because in that

case:

SEN(PE) =
−δ

−z1−α +Φ−1(1−PE)
=

δ

z1−α +Φ−1(PE)
. (21)

MPF accounting for previous results

When evaluating or optimizing designs for maximum likelihood estimation of parameters Ψ, one

may want to take into account results already obtained after fitting the data from a previous study

or a previous cohort, which is usually done in adaptive designs. Following the approach proposed

by [28] and [29], the previous results summarized in a predicted or an observed FIM, denoted

MPF prev(Ψ) could be combined with the current MPF(Ψ,Ξ) as follows:

MPF(Ψ,Ξ)+MPF prev(Ψ). (22)

In this formula, the previous FIM MPF prev(Ψ) should have the same dimension as the current FIM

MPF(Ψ,Ξ).
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2.3.2. Individual and Bayesian Fisher information matrix

In standard nonlinear regression models, the predicted individual FIM for individual parameter

θ (index i omitted for simplicity) is defined by

MIF(θ ,ξ ) = EY

(
∂ log p(Y |θ)

∂θ

∂ log p(Y |θ)T

∂θ

)
, (23)

where p(Y |θ) is the probability density of the observations Y given the parameters θ .

In NLMEMs, once population parameters are estimated, individual parameters can be derived

using MAP, as the mode of the posteriori distribution. To find informative designs for MAP es-

timation, Bayesian experimental design approaches and Bayesian optimality criteria can be used

[44, 45]. For MAP estimation, µ is known, therefore estimating θ is similar to estimating the

random effects b. More precisely, the MAP estimate of b is given by b̂ = argmax(p(b|y)) =

argmax
(

p(y|b)p(b)
p(y)

)
= argmax(log(p(y|b)) + log(p(b))), where p(y|b) is the probability density

of the observations given the random effects and p(b) the probability density of the random ef-

fects, which follows the normal distribution N(0,Ω). Thus the Bayesian individual FIM [20, 21] is

expressed as

MBF(ξ ) = EY

(
∂ log p(b|Y )

∂b
∂ log p(b|Y )T

∂b

)
(24)

= Eb

(
EY |b

(
∂ log p(Y |b)

∂b
∂ log p(Y |b)T

∂b

))
+Eb

(
∂ log p(b)

∂b
∂ log p(b)T

∂b

)
. (25)

We recognized in the first term of expression (25) the expectation of the predicted individual

FIM over the distribution of the random effects. As b follows a Gaussian distribution, the second

term is the inverse of Ω−1. Therefore we can write

MBF(ξ ) = Eb (MIF(g(µ,b),ξ ))+Ω
−1. (26)

The expectation Eb(MIF(g(µ,b),ξ )) can be evaluated by first-order linearization of the model

around the expectation of random effects (i.e., 0) as MIF(g(µ,0),ξ ). The shrinkage (Sh), quantified

the ratio of the estimation variance predicted by M−1
BF (ξ ) and the variance of the random effects,

can therefore be calculated as the diagonal elements of the matrix I−W (ξ ) = MBF(ξ )
−1Ω−1 [21].
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3. Implementation and use of PFIM 4.0 in R

The methods described previously have been implemented in R [R Development Core Team, R:

A Language and Environment for Statistical Computing, R Foundation for Statistical Computing,

Vienna, Austria, 2004] (http://cran.r-project.org/), in version 4.0 of the function PFIM available at

www.pfim.biostat.fr.

3.1. Features of PFIM 4.0

Compared with version 3.0 described in [31], PFIM 4.0 includes a more complete PKPD library

of models as well as a new way to specify user-defined model through R functions (see details

in Section 3.3 below). Regarding statistical models, PFIM 4.0 accommodates models including

additional random effects for inter-occasion variability as well as discrete covariates. Users can

specify either additive or exponential random effects. PFIM 4.0 only supports designs with the

same sampling times in each occasion, which is the design usually used in bioequivalence crossover

trials. The number of occasions, of covariates, of parameters associated with each covariate as well

as the number of categories for each covariate that can be included in the models is not limited.

Knowledge of distributions of covariates is, however, required for FIM computation and these

distributions are supposedly independent. It is possible to compute the power of the Wald tests of

comparison or of equivalence for a discrete covariate effect that can be fixed or changing between

different periods of a crossover trial. The Wald test is performed on the effect size of each category

for each covariate; the global Wald test on the vector including all effect coefficients of a covariate

is not implemented in the present version.

Regarding the expression of the FIM, based on publications showing the better performance of

the block diagonal expression compared with the full one with first-order linearization of the model

[17, 18], by default the block diagonal matrix is used in PFIM 4.0. Population, individual and

Bayesian individual designs for single and multiple-response models can be evaluated based on the

computation of the population, individual and Bayesian individual FIM, respectively. The expected

SE and relative standard error (RSE) for the population or individual parameters corresponding to

each type of design are calculated from the square roots of the diagonal elements of the inverse of

FIM. The user can choose to fix one or several model parameters in the computation of the FIM.

Two algorithms have been available in PFIM since version 3.0 [31] for design optimization: the
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Simplex and the Fedorov-Wynn algorithm. The D-optimality criterion was used i.e the determinant

of the FIM normalized by the number of parameters P to be estimated in the model (det(FIM)1/P).

The optimal design is then the one maximizing the determinant of MPF (including the features

mentioned previously regarding multiple occasions, discrete covariates), MIF or MBF for single or

multiple-response models. The Simplex algorithm optimizes statistical or exact designs in con-

strained intervals, given a total number of samples. PFIM uses the Splus function "fun.amoeba"

by Daniel Heitjan, which is a translation from the Numerical Recipes [46] for Nelder and Mead’s

Simplex function [34]. The Fedorov-Wynn algorithm [35, 36, 33] optimizes statistical designs

for a given total number of samples among pre-specified sampling times, avoiding clinically un-

feasible sampling times. It is written in C and loaded in PFIM as a dynamic library. Moreover,

PFIM uses the function "combn" in the R package combinat to determine all possible elementary

designs to be evaluated among the set of allowed sampling times. In PFIM 4.0, optimization can

be performed assuming some fixed sampling times. The best one-group population design is the

one maximizing the determinant of the FIM of every one-group design defined from all possible

elementary protocols. It is obtained by combinatorial optimization and is given by default when

running the Fedorov-Wynn algorithm (before calling the dynamic library). This is the approach

used for individual design and Bayesian individual design optimization. Of note, there is no limit

to the number of sampling points or subjects in PFIM. However, if the design is not enough infor-

mative to identify all parameters of the specified model, it could result in a singular information

matrix. Moreover, in Fedorov-Wynn algorithm, if the required number of samples for the optimal

design and the vector of allowed samples result in too many elementary designs to be evaluated,

it may be time consuming especially for complex models and/or written in ordinary differential

equations.

New outputs have been added regarding the FIM such as eigenvalues, conditional numbers, the

option to save the matrix obtained after evaluation or optimization in a file. Predicted shrinkage

is also reported when evaluating or optimizing Bayesian individual design. Evaluation and opti-

mization of the best one-group protocol for population design can be performed accounting for

previously obtained results, which can be summarized through a predicted or an observed FIM.

Nevertheless, this feature is not yet included in the Fedorov-Wynn algorithm to optimize both the

design structure and samplings. It is also possible to visualize the graphs of the model and the
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sensitivity functions without performing evaluation or optimization.

3.2. Components of the PFIM 4.0 program

PFIM 4.0 packaged in a zip file can be downloaded from the webpage www.pfim.biostat.fr. It

includes two main folders called "Program" and "Examples" as well as three extensive documen-

tations: the user-guide PFIM4.0_UserGuide.pdf, the library of models PFIM_PKPD_Library.pdf

and the example document PFIM4.0_Examples.pdf. All the core functions needed to compute

the FIM and evaluate or optimize designs are implemented in several R-scripts of the "Program"

folder. The files to be filled in by the user are the model.r and the stdin.r files. The model.r file

contains equations of the structural model. The stdin.r file contains input information such as the

user’s knowledge on model parameter values and the specification of the designs to be evaluated

or the constraints for the optimization. The path to the folder of the model.r and stdin.r files and

to the "Program" folder has to be specified in the PFIM.r file in which the main function PFIM()

is implemented. The results obtained after calling this function for the specified inputs are written

into stdout.r.

3.3. Structural model specification

The structural model to be specified in the model.r file can be expressed either through an

analytical form or as a solution of a system of differential equations. PFIM 4.0 provides libraries

of pre-implemented models, and users may also define their own model analytically or through a

system of differential equations.

3.3.1. Library of models

The PFIM library of models implements R expressions or differential equation systems for

PKPD models in several R files available in the Program folder. The user has to assign the path

of these files in the model.r file in order to use this library. This PKPD library has been avail-

able in the PFIM program since PFIM version 3.2 and PFIM Interface version 3.1. Documen-

tation is available and reports the analytical expressions of these models, which have been de-

rived from the PKPD library developed by Bertrand and Mentré [47] for the MONOLIX software

(www.lixoft.com/products/monolix).

The PK model library, implemented in the file LibraryPK.r of the Program folder, includes

one-, two- and three- compartment models with linear elimination (written using an analytical
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form through an R expression) and with Michaelis-Menten elimination (written using a differen-

tial equation system). The list of all the available PK models is given in Tables S1 and S2 of the

Supplementary Material, including their characteristics according to: the type of input (bolus, in-

fusion, first-order absorption), the type of elimination (linear or Michaelis-Menten), the number of

compartments (one, two or three), the parametrization and the type of administration (single dose,

multiple dose or steady state). Presently, there is no model with lag time in this library.

The PD model library supports immediate response models (either as a function of observed

concentrations or linked to a pharmacokinetic model) and the turnover response models linked

to pharmacokinetic models. Linear, quadratic, logarithmic, Emax, sigmoid Emax, Imax, sigmoid

Imax models with null or constant baseline are available to describe an immediate pharmacody-

namic response alone and are implemented in closed form in the file LibraryPD_PDdesign.r of the

Program folder. For these models, the design variables are the concentrations or the doses instead

of the sampling times.

Regarding PD models linked to PK models, there are in PFIM 4.0 four cases to compose the

PKPD model depending on the form for each submodel: either with an analytical form (AF) or

an ordinary differential equation system (ODE): 1) PK model with linear elimination (AF) and

immediate response PD model (AF); 2) PK model with linear elimination (AF) and turnover re-

sponse PD model (ODE); 3) PK model with Michaelis-Menten elimination (ODE) and immediate

response PD model (AF); 4) PK model with Michaelis-Menten elimination and turnover response

PD model (ODE). The lists of the available PD models are given in Tables S3, S4 and S5 of the

Supplementary Material.

3.3.2. User-defined models

In the previous versions of PFIM, a model defined in analytical form by the user needed to

be specified through an R expression. An alternative way to write the model is now available in

PFIM 4.0, through an R function with arguments that are the vector of parameters of the structural

model, the times and/or the doses. This feature is used in the first illustrative example of Section 4.

Users can also define their model using a system of differential equations in a format suitable for

the function "lsoda" of the solver package deSolve.

More details of how to specify models are given in the user guide PFIM4.0_User_guide.pdf
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available when downloading PFIM 4.0.

3.4. Input file

The inputs for PFIM 4.0 are entered through specific R variables by filling in the input file

called by default stdin.r. In the first section of this input file, the user has to specify "EVAL" or

"OPT" for design evaluation or optimization, respectively, as well as the type of the FIM (MPF ,

MIF or MBF ) corresponding to the type of design studied (population or individual or Bayesian

design, respectively). The user can choose to save the evaluated or optimized FIM and can load

previous information through a predicted or observed FIM stored in a file, by specifying its file

name as input. The FIM computed by PFIM 4.0 has a block diagonal expression by default (option

1). The number of responses must correspond to those specified in the structural model written in

the model.r file.

The second section of the input file is composed of general parameters required for both evalua-

tion and optimization, such as the model form (analytical expression model or differential equation

model), according to which, the user has to fill in corresponding specifications. The parametrization

of the structural model, the inter-individual or inter-occasion variance model (additive or exponen-

tial), the values of the fixed effect parameters (fixed or estimated), of the variance terms including

inter-individual variability and inter-occasion variability (when the number of occasions is greater

than 1) as well as parameters for the residual error model are required. To take into account discrete

covariates (changing or not with occasion), the user has to specify the corresponding parts. The

user has to specify the design to evaluate or, for optimization, an initial design. In the case of pop-

ulation design, it is a group of elementary designs, each one associated with a number of subjects.

In the case of individual or Bayesian individual design, only an elementary design to be performed

in one subject is considered.

The third section of the input file is dedicated to the design optimization, where different al-

gorithm parameters are written. First, the user specifies whether or not the same sampling times

are required for each response. Then, the algorithm is chosen: Fedorov-Wynn or Simplex. The

Fedorov-Wynn algorithm finds optimal times among vectors of allowed sampling times proposed

by the user. In PFIM 4.0, optimization with the Fedorov-Wynn algorithm can be performed as-

suming that some sampling times are fixed. The Simplex algorithm optimizes the sampling times

in given continuous intervals. The user has to specify the minimum delay between two sampling
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times and the time intervals. These specifications apply to optimization of either the population or

the Bayesian/individual design. Of note, in order to obtain the best one-group population design

and the best individual design, only the combination/evaluation step preceding the Fedorov-Wynn

algorithm is used (without calling the dynamic library). The information matrices corresponding

to every one-group design from all possible elementary protocols are computed and compared in

terms of D-optimality criterion.

Graphical representations are provided if the corresponding option parameters are filled in.

Previous PFIM versions already allowed drawing of the graph of the predicted output(s) and the

sampling times. PFIM 4.0 now also allows drawing of the graphs of the sensitivity functions (first-

order derivation of the model) with respect to each parameter. These plots can give a good idea

about the informative points at which the magnitude of the curves is the greatest. The user can

choose to display only graphs of models and/or sensitivity functions before computing the FIM and

therefore without performing evaluation or optimization.

Once the model file and the input file are filled in, the user can run the function PFIM 4.0 by

calling the function in the R Console window: PFIM ().

3.5. Output file

The results are written into an output file named by default Stdout.r or with a name specified in

the input file. As in the previous versions, PFIM 4.0 returns a summary of the input, including the

the number of responses, the number of occasions in the case of crossover designs, the population

or individual/Bayesian design evaluated or the initial design for optimization, the doses or initial

conditions (in the case of models defined by the differential equation system), inter-individual

variability or inter-occasion variability model and residual error model for each response, covariate

model if specified in the input file, error tolerances for the solver of the differential equations system

if used, and the name of the previous FIM if considered.

When design optimization is performed, the list of the algorithm options and the optimized

protocol are reported in the output file. The file also includes the corresponding population, indi-

vidual or Bayesian FIM, the name of the file where the FIM is saved, the value of each parameter

with the corresponding expected SE and RSE. In the case of Bayesian design, the corresponding

shrinkage values are reported. The output file also reports the value of the determinant of the FIM
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corresponding to the evaluated design or the optimized design as well as the D-optimality crite-

rion (i.e. the determinant of the FIM normalized by the number of parameters P to be estimated,

det(FIM)1/P). The eigenvalues of the FIM and the conditional numbers (ratio of maximal over

minimal eigenvalues) as well as the correlation matrix are also given by default.

If a graph has been supplied in the input file, the curves of the models and/or the sensitivity

functions are plotted. Examples of PFIM 4.0 output file will be shown in Section 4.

4. Illustration

We illustrated the use of the new features in PFIM 4.0 by means of two examples. In the first

example, we took into account available information from a previous PK study when designing a

subsequent study on the same drug. This new feature is particularly useful in adaptive designs.

In the second example, we used the Bayesian individual FIM to evaluate and optimize designs for

MAP estimation of individual parameters in a dose-response study. This new feature is particularly

useful for selecting informative sampling times in therapeutic drug monitoring.

4.1. Population design for a PK study accounting for previous information

In this example, we used PFIM 4.0 to determine the best-one group population design taking

into account available previous information which was loaded through a FIM.

4.1.1. Model and methods

We considered a one-compartment PK model with first-order linear absorption and elimination

after single dose administration,

f (ka,V,k, t) =
d
V

ka

(ka− k)
(e−kt− e−kat) (27)

where d is the dose, ka is the absorption rate constant, V is the apparent volume of distribution

and k is the elimination rate constant. The vector of fixed effects µ is (µka,µV ,µk) = (2, 15,

0.25). We assumed an exponential random effect model with a diagonal variance-covariance matrix

diag(1,0.1,0.25) and a combined residual error model with σinter = 0.5 and σslope = 0.15. This

example involved 50 subjects who received a dose of 100 (dose units).
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A previous PK study on the same drug was conducted in 50 subjects, according to the follow-

ing design composed of four groups: ξ = (0.33, 1, 1.5) h for 13 subjects, ξ = (1.5, 8, 12) h for 10

subjects, ξ = (0.33, 8, 12) h for 9 subjects and ξ = (0.33, 1.5, 8) h for 18 subjects. Considering

available information from this previous PK study, we wanted to propose the best one-group pop-

ulation design composed of 3 sampling times from the set (0.33, 1, 1.5, 3, 5, 8, 12) h. We used

PFIM 4.0 to find the best one-group design accounting for the FIM obtained from the previous

study described above. The resulting design was compared with the one optimized without previ-

ous information in terms of allocation of optimal times. Both designs were then evaluated for their

performance through predicted RSE of population parameters and criterion value.

The text S1 (Supplementary material) is the input file for the evaluation of the best-one group

design obtained considering previous information.

Figure 1: The concentration versus time curve predicted by the one-compartment pharmacokinetic model

with first-order linear absorption and elimination. Symbols 1 correspond to the best-one group design ξ =

(1.5, 3, 12) h obtained by considering previous information (left). Symbols 2 correspond to the design ξ =

(0.33, 1.5, 12) h obtained without previous information (right).

4.1.2. Results

The best one-group design is ξ = (1.5, 3, 12) h when considering previous information versus

ξ = (0.33, 1.5, 12) h without previous information (Figure 1). By evaluating the performance of

these two designs, as expected, overall the RSEs are lower and the criterion value is higher when

taking into account previous information. Figure 2 displays the output files of the evaluation of the

best-one group design obtained for 50 subjects considering previous information versus without
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previous information.

Figure 2: Excerpts of PFIM 4.0 output files for best-one group population design evaluation with previous
information loaded though a Fisher information matrix (left) versus without previous information (right).

4.2. Bayesian individual design for a dose-response study

In this example, we used PFIM 4.0 to design a new dose-response trial based on a model

inspired by [48]. We evaluated the influence of design (number and allocation of doses) and of

different variability levels on the precision of estimation and shrinkage of individual parameters.

4.2.1. Model and methods

We considered an Emax model (Figure 3) describing the effect of a drug at different doses

d j ( j = 1, ...,n) as a function of three parameters: the maximal increase Emax of the effect from
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baseline, the baseline effect E0 and the dose D50 corresponding to 50% of the maximal increase of

the effect from baseline,

f (Emax,D50,E0,d j) = E0 +
Emax d j

D50 +d j
(28)

Figure 3: The dose-response curve predicted by the Emax model. Symbols 1 and 2 correspond to the studied
rich (n = 7) and reduced designs (n = 4), respectively.

The vector of fixed effects µ is (µEmax ,µD50,µE0) = (30, 500, 5). As in [48], we consid-

ered an exponential random effect model with a diagonal variance-covariance matrix of diago-

nal terms ω2 as well as an additive residual error model with σinter = σ and σslope = 0. Two

levels of inter-individual variability and residual error variability were studied: ω = 30% ver-

sus 70% and σ = 1 versus 2. Two designs were studied: a rich protocol with n = 7 doses ξ =

(0,100,300,500,1000,2500,5000) versus a reduced one with n = 4 doses ξ = (0,100,500,1000)

dose unit.

For each one of the eight scenarios corresponding to different studied values of (n,ω,σ), we

used PFIM 4.0 to perform a Bayesian design evaluation: to predict the RSE for individual parame-

ters by MBF , to compare them with those obtained by MIF and to compute the expected shrinkage

by MBF . We also performed Bayesian individual design optimization, with a view to choosing 4

optimal doses among the 7 doses of the rich design, for the standard scenario where ω = 30% and
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σ = 1. The Text S2 (Supplementary material) is the input file for this optimization in PFIM 4.0.

4.2.2. Results

Figure 4 (Panel A) reports the RSE of parameter D50 predicted from MBF vs MIF , for different

numbers of doses (n) and different levels of variability. Overall, with a sparser design or higher

residual error level (σ ), the RSE predicted either by MBF or MIF increased. However, the influence

of losing informativeness, either by reducing the number of samples or increasing the error levels,

on the RSE was much lower for MBF . With higher inter-individual variability (ω), the RSE obtained

with MBF increased but those predicted by MIF remained unchanged as expected. Here, the results

showed the advantage of the Bayesian approach in estimating individual parameters especially in

the case of sparse design and with high residual variability. Figure 4 (Panel B) shows the shrinkage

of parameter D50 predicted from MBF for different evaluation scenarios. As expected, the shrinkage

increased with the loss of information, i.e., as the design became sparser or residual error level

increased. In contrast, as shrinkage quantifies the ratio between individual information and inter-

individual variability, it decreased when ω increased. Similar conclusions can be drawn regarding

other parameters (not shown).

The best protocol with 4 doses, optimized using PFIM 4.0 for ω = 30% and σ = 1, comprised

the doses (0, 300, 500, 5000). This design was much more informative than the initial design (0,

100, 500, 1000) previously evaluated, with RSE(D50) equal to 13.9% vs 22.8%, Sh(D50) equal to

21.6% vs 57.8% and the D-optimality criterion equal to 0.0777 vs 0.0485, respectively. Therefore,

design optimization using MBF in PFIM 4.0 allows us to find an informative sparse design, giving

reasonable RSE and shrinkages. An excerpt of the PFIM 4.0 output file showing the results with

this optimal design is given in Figure 5.

5. Discussion

This paper presents all the available features in PFIM 4.0, the newest version of the R program

PFIM for design evaluation and optimization in NLMEMs. The methodology is based on the Fisher

information matrix, evaluated using a linear approximation of the model, first proposed for single

response models by [14], and extended to account for multiple response models by [16] (imple-

mented in PFIM since version 3.0) as well as for inter-occasion variability and discrete covariates
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Figure 4: Panel A: Relative standard error (RSE,%) of parameter D50 predicted from the individual Fisher in-
formation matrix MIF (light grey bar) versus the individual Bayesian information matrix MBF (dark grey bar);
Panel B: Shrinkage (Sh,%) of parameter D50 predicted from MBF (dark grey bar). The results were obtained
for different number of doses (n) and different levels of inter-individual (ω) and residual (σ ) variability.

by [33] and [19] (since version 3.2). The current version 4.0 includes several new features. First,

regarding model specification, since version 3.2, the library of PK models has included one-, two-

and three- compartment models with linear elimination and with Michaelis-Menten elimination. A

library of PD models is also available. Besides using the library of models and user-defined models

written as R expressions or as differential equation systems, a new way has been added to specify

models through R functions. Furthermore, PFIM now allows evaluation and optimization assuming
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Figure 5: Excerpt of a PFIM 4.0 output file for individual Bayesian design optimisation to choose 4 optimal
doses among 7 doses and the associated relative standard error (RSE), shrinkage and D-optimality criterion.

some parameters are fixed. Regarding optimizations, both the Fedorov-Wynn and Simplex algo-

rithms have been available for D-optimal designs since version 3.0. Each algorithm corresponds to

a different optimization strategy. The former chooses optimal points among those specified by the

user, while the latter optimizes within continuous intervals which can be useful to explore all the

design space. However, the Simplex algorithm can be much slower than Fedorov-Wynn algorithm

and sometimes result in sampling times that have no clinical relevance. By default, the best-one

group protocol when using Fedorov-Wynn algorithm is always given in this new version, which

can be useful to simplify logistical aspects in clinical practice. Moreover, PFIM now allows opti-

mization with some times fixed in the Fedorov-Wynn algorithm. New outputs regarding the FIM,

such as eigenvalues, conditional numbers, the option to save the matrix obtained after evaluation

or optimization in a file, are now available. Previous obtained information can be taken account

by loading a predicted or an observed FIM, which is important when performing adaptive designs.

The population of a previous study providing this amount of information, which obviously depends

on its sample size, can be different from the population of the new study to be designed. In addi-

tion, the Bayesian individual FIM has been implemented, taking into account a priori distribution

of random effects, in order to find informative designs for MAP estimation of individual parame-
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ters. These designs can now be evaluated or optimized and the predicted shrinkage is also reported,

which is useful in therapeutic drug monitoring. It is also possible to visualize the graphs of the

model and the sensitivity functions without performing evaluation or optimization.

We illustrated the use of some new features for a PK and a PD study. In the PK example,

available information from a previous study saved through the FIM was taken into account in

PFIM 4.0 when designing a new study. The best-one group design was different when accounting

or not for previously available information. Not surprisingly, since the previous information was

obtained from a design with early time points, these times disappeared from the best one group

design obtained when considering previous information. By comparing the estimation precision

with the two optimized designs, we showed that the precision could be improved with additional

information from previous studies, which highlighted the advantage of adaptive designs. In the PD

example, PFIM 4.0 was used to evaluate and optimize Bayesian individual designs, showing that

the Bayesian FIM enables efficient prediction of estimation precision and shrinkage for individual

parameters obtained by MAP [21, 5]. This new feature in PFIM 4.0 is useful to select informative

sampling times in therapeutic drug monitoring.

PFIM 4.0 implements an approximate population and Bayesian individual FIM to evaluate and

optimize designs. The relevance of this approximation, based on a linearization of the model, has

been shown by clinical trial simulation in several publications based on examples from continuous

data [16, 19, 18, 39]. However, the linearization has some limitations in the case of complex

nonlinear models with large variability and in mixed models for discrete data, especially for sparse

designs, as shown in [49, 39]. Alternatives using Monte Carlo and Adaptive Gaussian Quadrature

[38] or using Monte Carlo and Hamiltonian Monte Carlo (available in R package MIXFIM for

design evaluation) [39], which work well for both continuous and discrete data models have been

proposed; they have not yet been integrated into PFIM. A limitation of the design methods based on

the expected FIM currently implemented in all design software programs or clinical trial simulation

is that they require knowledge of the model and its parameters, which leads to designs that are only

locally optimal. Robust designs (with respect to model and/or parameters) [50, 51] and/or adaptive

designs [29, 28] are the solutions to overcome this limitation.

We plan to include other new developments and extensions in future versions of PFIM: allow-

ing non-diagonal variance-covariance matrix of the random effects for correlation between these
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random effects [52], accounting for fixed effects for the influence of continuous covariates, includ-

ing the possibility for the user to specify cost functions in the Fedorov-Wynn algorithm to penalize

less feasible designs [53], taking into account the probability of data being observed or below the

limit of quantification at each sampling time [4, 54]. It would also be interesting to include in PFIM

different optimality criteria and to explore alternative algorithms for finding optimum designs such

as multiplicative algorithms [55] or discrete particle swarm optimization [56]. Presently, the PFIM

group is working on implementing PFIM into a proper package in object-oriented R (S4) which will

facilitate addition of all these new features, including the Hamiltonian Monte Carlo and Adaptive

Gaussian quadrature methods for evaluating the FIM.

In parallel to PFIM 4.0, PFIM Interface 4.0, an extension of the graphical user version PFIM

Interface 3.1 including several new features based on the R script program of PFIM 4.0, has recently

been proposed and is available for downloading on the PFIM website. These works were in part

performed through the DDMoRe (Drug Disease Model Resources) project (www.ddmore.eu). One

of the main objectives of the project was to develop languages and tools facilitating modelling and

simulation activities. The PFIM group contributed to the methodology of optimal design [23], to

the definition of the language for design elements and to the requirements for a converter to PFIM

allowing workflows to be streamlined [57].

In conclusion, the implementation of the FIM in NLMEMs proposed in PFIM 4.0 is a useful tool

for the evaluation and optimization of designs in the expanding development of longitudinal studies

in pharmacometrics. PFIM 4.0 is distributed under the terms of the GNU General Public License

(GNU GPL), version 3 or later. PFIM functions, including the user-guide, the documentations of

all implemented PK/PD models and a large number of illustrative examples, are freely available

from the PFIM website: http://www.pfim.biostat.fr.
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