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4Université Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, F-75018 Paris, France
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Abstract

Purpose: Normalised prediction distribution errors (npde) are used to graphically and statistically

evaluate mixed-effect models for continuous responses. In this study, our aim was to extend npde to

time-to-event (TTE) models and evaluate their performance.

Methods: Let V denote a dataset with censored TTE observations. The null hypothesis (H0) is that

observations in V can be described by model M. We extended npde to TTE models using imputations to

take into account censoring. We then evaluated their performance in terms of type I error and power to

detect model misspecifications for TTE data by means of a simulation study with different sample sizes.

Results: Type I error was found to be close to the expected 5% significance level for all sample

sizes tested. The npde were able to detect misspecifications in the baseline hazard as well as in the link

between the longitudinal variable and the survival function. The ability to detect model misspecifications

increased as the difference in the shape of the survival function became more apparent. As expected, the

power also increased as the sample size increased. Imputing the censored events tended to decrease the

percentage of rejections.

Conclusions: We have shown that npde can be readily extended to TTE data and that they perform

well with an adequate type I error.

Keywords— Model evaluation, npde, time-to-event, PSA
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Abbreviations

BLQ: Below the limit of quantification

IIV: Inter-individual variability

KM: Kaplan Meier

KMVPC: Kaplan Meier visual predictive check

NLMEM: Nonlinear mixed-effect models

npde: normalised prediction distribution errors

pd: prediction discrepancies

PSA: Prostate specific antigen

TTE: Time to event

VPC: Visual predictive check
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Introduction

An aim of many clinical trials is to evaluate a difference in response between several treatment groups.

Survival analysis or, more generally, time-to-event (TTE) analysis - as the event can be something other than

death, is a growing topic in this field because the time to an event is a meaningful and interpretable measure

of many efficacy and safety endpoints and is usually more informative than a simple yes/no response [1].

Examples of such endpoints are time to death, time until organ rejection, time until infection and time

until a satisfactory response is achieved. TTE analysis can be applied to a single group of patients or

subjects, or be used to compare the experience of different groups of patients or subjects [2]. It is also used

in observational trials to determine and test the existence of an epidemiological association [3, 4]. Clinical

trials focusing on survival time or on responses that evolve over time generally involve regular visits, at

which multiple follow-up measurements are collected. With this design, a change in the terminal outcome

measurement can be associated with a change in the exposure condition. Subjective measures can also be

helpful in understanding the impact of the treatment or intervention, and recording information on how

a patient feels during and after treatment is becoming increasingly common in clinical trials. Nonlinear

mixed-effect models (NLMEM) have become an integral part of drug development. They are widely used to

capture both intra- and between-subject variabilities, which characterise the longitudinal measurements used

in population pharmacokinetic and pharmacodynamic analysis, and can take into account missing values or

unbalanced data [5]. There has also been a recent growing interest in joint models [6], which extend NLMEM

by linking the longitudinal trajectory of a variable (such as a biomarker) to survival, and adequate estimation

methods have been proposed [7]. These models form part of the discipline of pharmacometrics, which aims at

identifying sources of variability and differences in drug efficacy and safety among population subgroups [8].

NLMEM development consists of building a structural and statistical model, estimating its parameters,

and improving the model through selection and evaluation procedures. Model evaluation, or qualification,

is described in the regulatory guidelines of various medicines agencies and is required as part of the model’s

development process [9, 10, 11]. How models should be evaluated depends on the intended purpose of the

analysis, and how that evaluation should be reported has been described in a white paper for industry [12].

Model evaluation consists of checking how well a dataset can be described by the model [13, 14] and can be

both internal and external. Internal evaluation takes place during the model-building process and consists

of assessing fit or predictive ability by using the same data that is used to estimate parameters and select
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models. External evaluation on the other hand uses independent data.

Many diagnostic tools have been proposed and described [15], including residual-based diagnostics such

as weighted residuals (WRES) [16], or simulation based approaches using posterior predictive check [17]. For

NLMEM with continuous data, such as biomarker concentrations, Mentré and Escolano developed a model

evaluation tool called prediction discrepancies (pd), which takes into account the nonlinearity of the model

function. They showed that this metric performs better than the WRES (also called standardised prediction

errors or SPE) that were previously used [18] because it does not require linearisation of the model, unlike

WRES or conditional WRES [19]. Brendel et al. developed a decorrelated version of the pd, called normalised

prediction distribution error (npde) [20] in order to account for the correlation between multiple observations

within an individual, and proposed a test to compare the distribution of calculated npde and their theoretical

distribution. They also demonstrated good performance of npde through both statistical tests and graphical

diagnostics [21, 22]. Both pd and npde can handle heterogeneous designs without the need to stratify on

covariates or dosing regimens, offering an advantage over visual predictive checks (VPC), which are often used

for their ability to show the evolution of the process being modelled [23, 24]. npde have recently been extended

to pharmacokinetics data below the limit of quantification (BLQ) through imputation approaches [25]. This

tool is available in an add-on package for R [26] and npde computation for continuous data is now integrated

in the main software [16, 27] used in pharmacokinetic/pharmacodynamic data analysis. npde has applications

in both internal and external evaluation [21].

The purpose of this study was to extend pd and npde to parametric TTE models by generalising the

approach previously developed to handle BLQ data for different types of censoring. In that approach,

prediction discrepancies for non-observed data were imputed within their expected distribution under the

null hypothesis that the model is appropriate to generate the data. In the Models and methods section of

this paper, we present the construction of pd/npde for TTE data. Then, by means of an extensive simulation

study, we evaluate the performance of npde in terms of type I error and power to detect model misspecification

in the context of external evaluation.
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Models and methods

Statistical models

npde were first developed for continuous longitudinal responses. In this study, our objective was to extend

this metric in the context of TTE models in order to address the TTE component of joint models. We

therefore considered a model that would describe the impact of the continuous evolution of a biomarker on

the risk of an event.

Time-to-event model

In clinical trials involving survival outcomes, patients are typically considered to be at risk of an event at

time t. In this study, we modelled this risk, as opposed to non-parametric analyses where the focus of interest

may be on difference in survival profile depending on covariates of interest.

Let T denote the variable representing the time of occurrence of the event, relative to a reference t = 0,

usually the time when the patient enters the trial. Patients are generally observed for a limited period of

time in a trial, during which they may or may not present the event of interest. The duration of the trial

acts as a censoring mechanism and if the event does not occur within this period, the event is said to be

right-censored. Other types of censoring can occur in clinical trials. Sometimes, the exact time of the event

is not observed directly but the event is known to have occurred within a known time interval, in which case

the event is called interval-censored. More rarely, in some specific designs, the true value of the event time is

missing, but is known to be smaller than the observation time. In this case the event is left-censored.

Let Ti be the observation of the outcome in subject i. In standard survival analysis, Ti is associated with

a variable Ci representing censoring. When Ci equals 0, the event is observed and Ti represents the time to

the event, whereas when Ci equals 1, the event is censored and Ti is set to the censoring time. For interval-

censored data, Ti is associated with a known interval [TLi , TRi ]. Right or left censoring can be considered as

a particular case of interval censoring, with respectively TRi = +∞ or TLi = 0. If TLi = TRi (=Ti), then Ti

is not censored. Regardless of how event times are recorded, we can define the survival function S, where,

for any time t ≥ 0, S(t) is the probability of being event free until time t:

S(t) = Pr(T ≥ t) (1)

and where S(0) = 1.
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An alternative is to use the hazard function, denoted by h(t), which describes the instantaneous risk of

having an event at time t for an individual having survived up until then. This can be expressed as:

h(t) = lim
dt→0

Pr(t ≤ T < t+ dt|T ≥ t)
dt

(2)

By integrating the hazard from 0 to t, we obtain the following relationship between S(t) and h(t) :

S(t) = exp

(
−
∫ t

0

h(x)dx

)
(3)

Time-to-event model involving a biomarker

In this study, we considered the special case in which a continuous variable, such as a biomarker, varies over

time, influencing the risk of an event. Let f(t, θi) denote the prediction of the biomarker at time t in subject

i. We assumed that f is a known nonlinear function supposed to be identical for all individuals, depending

on a vector of individual parameters θi. In NLMEM, the individual parameters θi are decomposed into fixed

effects µ, representing typical effects of the population, and random effects ηi, specific to each individual.

Following [14], we assumed a joint multinormal distribution for the vector of random effects ηi and that

there exists a transformation g such that g(θi) can be expressed as a linear function of µ, ηi, and possibly

covariates. Usual transformations in pharmacokinetics or pharmacodynamics include the identity function,

which yields a normal distribution for the parameters, the logarithmic function, which yields a log-normal

distribution, and the logit function, which yields a logit-normal distribution. The variance-covariance matrix

Ω of the random effects quantifies the magnitude of interindividual variability (IIV), as each diagonal element

ω2
k represents the variance of the kth component of the random effects vector. For the purposes of this work,

we assumed that the structural model f and the parameters of the statistical model are known.

A joint model can be defined by considering the relationship between the hazard function h and the

evolution of the biomarker f . A standard practice is to decompose h as follows:

hi(t | fi(t)) = h0(t) exp(βfi(t, θi)) (4)

in which β represents the strength of the association between the longitudinal outcome and the instantaneous

risk h. If β = 0, the hazard is not affected by the evolution of the marker, so there is no link between

biomarker and survival. h0(t) denotes the baseline risk function. In our joint modelling framework, h0

was a parametric function (as opposed to non-parametric or semi-parametric models) defined by a vector of

parameters λ = (λ`, 1 ≤ ` ≤ nλ). Using a parametric model allowed us to define the joint likelihood function.
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Note that because the event was unique for each individual, parameters λ and β were assumed to have no

IIV for reasons of identifiability.

Finally, we call Ψ the vector of population parameters, where Ψ = {µ,Ω, λ, β} for our purposes. For

full joint models, we could also include the parameters of the measurement error model on the longitudinal

outcome, as well as covariate effects.

npde for TTE models

Model evaluation for TTE response

In a previous paper, we proposed an approach for model evaluation of continuous responses suited to NLMEM,

by defining residuals that take into account the nonlinearity in the structural model [20]. We tend to consider

npde as residuals because although they are not defined as the difference between observations and predictions,

their distribution can be interpreted in a similar way to the more traditional residuals, which suffer from

poor statistical properties in NLMEM [18, 20]. Also, we can evaluate npde using the same graphs as with

standard residuals. In this study, our objective was to extend these residuals to TTE data. Considering the

time to the event rather than the yes/no occurrence of the event allows the same approach to be used as for

continuous response. Denoting V as a dataset with TTE observations andM as the model to be tested, our

null hypothesis (H0) is that the observations in V can be described by model M.

Residuals called pd were developed by Mentré and Escolano [18] and decorrelated in [20] to account for

repeated measurements to obtain npde. pd are defined as the quantile of an observation within its predictive

distribution. Let pi(Ti|Ψ) denote the predictive distribution of observation Ti in the individual i under the

modelM being tested. In NLMEM, we only know how to write the probability of an observation conditionally

to the individual parameters θi, so the predictive distribution is obtained by integrating over the distribution

of the random effects:

pi(Ti|Ψ) =

∫
p(Ti|θi,Ψ)p(θi|Ψ)dθi (5)

Note that when the structural model is nonlinear, there is no analytical solution for the integral in (5).

Denoting Fi as the cumulative predictive distribution function of Ti under the tested model, the prediction

discrepancy pdi for Ti is defined as the value of Fi at the observation Ti:

pdi = Fi(Ti) =

∫ Ti

0

pi(t|Ψ)dt =

∫ Ti

0

∫
p(t|θi,Ψ)p(θi|Ψ)dθidt (6)

Mentré and Escolano [18] showed that construction of the pd implies that they follow a uniform distri-
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bution under H0. A pdi corresponds to the quantile of the observation in its predictive distribution. If the

model is well characterised, with the variability adequately taken into account, these quantiles are expected

to distribute uniformly over the interval [0,1].

Taking censoring into account

To address the censoring inherent to this type of response, we used the same imputation approach as Nguyen

et al. [25].

In the general case of interval-censoring, where the observation Ti lies within an interval [TLi , TRi ], we

computed the probability of being below TLi (respectively TRi) as:

P (Ti ≤ TLi) = F (TLi) =

∫ TLi

0

pi(t|Ψ)dt (7)

pdi lies within the interval [F (TLi), F (TRi)], and we proposed to impute it from a uniform distribution

U (F (TLi), F (TRi)) as, under the model, the distribution of the pd is known to be uniform. This definition

generalises to the right-censored case in which F (TRi) = 1 and to the left-censored case in which F (TLi) = 0.

When the exact time of the event is observed, F (TLi) = F (TRi), meaning that no imputation is required as

the usual definition holds.

Figure 1 illustrates how prediction discrepancies are derived from an observed event on the X-axis through

the cumulative predictive distribution (solid line). The dashed lines show the interval over which pd are

imputed in the case of interval-censored TTE.

As previously, by construction, the pdi’s follow a uniform distribution U(0, 1) under H0. pdi’s are generally

transformed into a normal distribution using the inverse function of the cumulative distribution function φ

of N (0, 1):

npdei = φ−1(pdi) (8)

In this study, we considered survival data so that only one TTE observation is available for each individual,

and the resulting npde are expected to follow a N (0, 1) distribution under the null hypothesis that M

describes adequately the data in V [21].

Test based on npde

To compare the npdei with their theoretical distribution, we used the global test proposed in [20], which

first involves performing three tests: (1) Wilcoxon signed rank test to check whether the median significantly
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differs from 0; (2) Fisher test to check whether the variance significantly differs from 1; and (3) a Shapiro-Wilk

test to check whether the distribution significantly differs from a normal distribution. As part of the global

test, these three tests were then combined with a Bonferroni correction for multiple comparisons: for a given

significance level α, the null hypothesis was rejected if one of the three p-values was smaller than α/3.

Practical implementation

In NLMEM, the predictive distribution pi(Ti|Ψ) given by Equation 5 has no analytical expression. Mentré

and Escolano proposed to approximate it using Monte Carlo simulations [18]. As such, K datasets were

simulated to approximate the predictive distribution of each observation. K must be chosen large enough to

provide a good approximation [26].

Using the approximated predictive distribution, the probability of being below TLi (resp. TRi) was

estimated for each individual i from the model as the fraction of simulated values T
sim(k)
i (k = 1, · · ·, K)

smaller or equal to TLi (resp. TRi):

P̂ r (Ti ≤ TLi) = F̂i(TLi) =
1

K

K∑
k=1

1
T
sim(k)
i

≤TLi
(9)

in which 1c equaled 1 if condition c was true and 0 otherwise. When Ti < T
sim(k)
i for all replicates k

(k=1,· · ·,K), pdi = 0 and similarly when Ti > T
sim(k)
i for all replicates k, pdi = 1. However, setting pdi

to 0 or 1 created numerical problems when converting to npde with eq (8). Therefore, in the case in which

Ti < T
sim(k)
i for all k, pdi was set to a random sample from a uniform distribution between 0 and 1

K .

Conversely when Ti > T
sim(k)
i for all k, pdi was sampled from a uniform distribution between 1− 1

K and 1.

In practice, and especially if K was small, two observed values may have fallen whithin the same quantile

of their respective predictive distributions, leading to ties in the pd and npde distribution. To avoid this, we

chose to resample pd within the uniform distribution defined by the two consecutive quantiles surrounding

the pd U(pd, pd+ 1
K ).

Graphs

pd and npde provide valuable tools for graphical diagnostics, enabling the detection of various model mis-

specifications [22]. For TTE, we were able to compare the empirical distributions with their theoretical

counterparts through quantile-quantile plots or histograms to assess when the model overpredicts or under-

predicts event occurrence. For instance, observed events occurring later than predicted are materialised as

a shift to the right of the median value in the histogram of npde. For continuous data, we were able to
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compute individual predictions allowing us to look at trends versus time or predicted values. With single

TTE data however, the outcome was confounded with time itself, meaning that such scatterplots were not

as informative.

Evaluating npde performance for TTE data

In the previous section, we showed how to extend npde to TTE data. We evaluated their performance using

a simulation study based on a joint model linking the evolution of a biomarker with survival in prostate

cancer patients [28]. In this section, we give a brief description of Motivating example and underlying

models, followed by the simulation settings used to evaluate the performance of npde to detect various model

misspecifications in the risk function. In this study, we considered external evaluation of the TTE component

alone, with two key assumptions: (i) we did not have observations of the biomarker, only those of the time

to survival; and (ii) we assumed that the model for the biomarker was correct.

Motivating example

Prostate cancer is the most common form of cancer in men and the second leading cause of death from

cancer in developed countries [29]. For metastatic castration-resistant prostate cancer, evaluation of treatment

efficacy relies primarily on overall survival. The patients are also monitored throughout the trial by measuring

the prostate-specific antigen (PSA): since cancer cells produce PSA, the level of PSA is an indicator of tumour

size, which is related to overall survival. Therefore, PSA can be used as a surrogate biomarker in cases of

declared prostate cancer [30, 31]. In a healthy adult male population, the PSA value ranges from 2.5 (at 50

years of age) to 6.5 ng/mL (at 80 years of age), depending on age and number of prostate cells. In a study by

Desmée et al. [28], N = 500 patients were considered with a maximum follow-up of 735 days. Measurement

was every 21 days leading to a maximum of 36 PSA observations per patient, with only death considered as

a drop-out mechanism.

For the TTE model in our study, we used that developed by Desmée et al, who proposed a joint model

for PSA kinetics and survival data from the VENICE trial [32]. The model for the hazard built by Desmée

et al. relates the current PSA prediction to the hazard function:

h(t|PSA(t, θ)) = h0(t) exp(β × PSA(t, θ)) (10)

in which β corresponds to the strength of the link between PSA and the risk of having an event. h0 is
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described by the following parametric Weibull model:

h0(t) =
k

λ

(
t

λ

)k−1
(11)

in which k represents the shape and λ the scale in this model.

For the longitudinal model, PSA (ng.mL−1) is assumed to be secreted by all prostate cells C (mL−1),

regardless of whether these cells are cancerous. In the absence of treatment, prostate cells proliferate at rate r

(day−1) and are eliminated at rate kout (day−1). They secrete PSA at a production rate p (ng.day−1), and the

antigen is cleared at rate δ (day−1). Treatment consists of chemotherapy for metastatic castration-resistant

prostate cancer, and the treatment is assumed to block cell proliferation with time-varying effectiveness, due

to the onset of cancer cell resistance. The proliferation rate under treatment is given by r′ = r(1− e(t)) with

e(t) in [0,1] representing time-dependent treatment effect. Figure 2 depicts the evolution of PSA secreted by

prostate cells and it can be described by ordinary differential equations:
dC(t)
dt = r(1− e(t))C(t)− koutC(t)

dPSA(t)
dt = pC(t)− δPSA(t)

(12)

Treatment is supposed to have a constant efficacy (ε) until a time Tesc, when it becomes ineffective, allowing

the tumour to proliferate:

e(t) =


ε if t ≤ Tesc

0 otherwise

(13)

A quasi steady-state assumption at treatment initiation is made, allowing to estimate prostate cells and

cancer cells at baseline C0 = δ×PSA0

p in which PSA0 is the value of PSA at baseline. With a piecewise

constant treatment effect, the model has an analytical solution:

PSA(t, θ) =


δPSA0

r(1−ε)−kout+δ e
(r(1−ε)−kout)t +

[
PSA0 − δPSA0

r(1−ε)−kout+δ

]
e−δt if t ≤ Tesc

δPSA0

r−kout+δ e
(r−kout)t−rεTesc +

[
PSA(Tesc)− δPSA0e

(r(1−ε)−kout)Tesc

r−kout+δ

]
e−δ(t−Tesc) otherwise

(14)

Table I shows the population parameters estimated by Desmée et al. for this model on the VENICE

data [28], rounded for the purposes of the present simulation study. In [28], kout and δ were set respectively

at 0.046 day−1 and 0.23 day−1, owing to issues with the identification of model parameters. IIV was estimated

for four parameters, [r, PSA0, ε, Tesc], with a logit distribution for the treatment effect ε and a log-normal

distribution for the three others. Ω was assumed to be diagonal, with the last column in Table I giving the

standard deviation of the random effects. There was no variability on the parameters of the TTE model

(Equation 10).

12



Table I: Values of the population parameters for PSA used for the simulation in all scenarios, and parameters

of the base Weibull model for the TTE component.

Parameter Fixed effects Transformation Inter-individual standard deviation

r 0.05 log-normal 0.1

PSA0 80 log-normal 0.6

ε 0.3 logit-normal 1.5

Tesc 140 log-normal 0.6

k 1.5 - 0

λ 580 - 0

β 0.001 - 0

Simulation study

The objective of the simulation study was to evaluate the performance of npde in terms of type I error

and power for different types of model misspecifications. The general evaluation framework is described in

Figure 3. For each scenario, 1) the dataset V was generated under model MV , and 2) using Monte Carlo

simulations, K replicates based on the same design as V were simulated under the tested model M to

approximate the predictive distribution. This process was repeated a number of times (B=200), and then 3)

the statistical performance of npde was assessed as the empirical probability of rejecting the hypothesis that

M describes V .

In the first simulation, we evaluated the performance of npde to detect misspecification in the link function,

specifically through the exponential term of Equation 10 representing the impact of the longitudinal variable

on survival. TTE data for V were simulated according to one of two models: (1) the base modelMV,medium

with β = 1e − 3 (which represents an arbitrary moderate effect of PSA on survival) and parameters from

Table I, or (2) a model MV,noLink with β = 0 (no effect of PSA on survival).

For each of these two settings, we then tested four models with the same baseline hazard and β equal to 0,

1e-4, 1e-3 or 5e-3, corresponding respectively to models without a link (MnoLink), or with a low (Mlow),

medium (Mmedium) or high link (Mhigh). These tested models were used to build the predictive distribution

and to compute pd and npde.

Each scenario (defined as a combination of simulated data and tested model) was run with four different

sample sizes for the study, N = {50, 100, 250, 500}.
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The aim of the second simulation was to check the performance of npde in detecting misspecification in

the baseline risk h0 of Equation 10. In this scenario, V was again simulated according to the model described

in Table I.

We tested five models for M with β and λ unchanged, and k equal to 1, 1.3, 1.5, 1.7 and 2. Note that the

case in which k equals 1 is the exponential distribution with constant hazard function. Each scenario was

run with three values of sample size for the study, N = {50, 250, 500}.

Simulation settings

In all scenarios, PSA was simulated as described in the Motivating example with the parameters in Table I

both under H0 and H1, so that no model misspecification was assumed for the longitudinal component. We

did not simulate any PSA data as we only needed the predictions of the model to approximate the predictive

distribution for the TTE component of the model. This corresponded to an external evaluation in late-phase

trials in which only observations of time to death are recorded. We evaluated the performance of npde both

using the full data (no censoring) and assuming a follow-up duration of t = 735 days. Event times were

assumed to be observed during the trial and only right-censoring was considered.

For each scenario and each candidate model M, the predictive distribution was computed once, using

K = 1000 datasets simulated under M. This predictive distribution was then used to compute the pd/npde

for the 200 datasets V . The proportion of simulated datasets in which M was rejected was defined as the

type I error for scenarios in which MV and M were the same (H0), whereas it corresponded to the power

for scenarios in which MV and M were different (H1):

Type I error =
# of rejected datasets simulated under H0

# of datasets simulated under H0
(15)

and

Power =
# of rejected datasets simulated under H1

# of datasets simulated under H1
(16)

Assuming a theoretical p-value of 5% for the global adjusted test, we computed the expected prediction

interval for the 200 tests using the exact Binomial test as [0.024-0.09].

Implementation

We used the statistical software R [33], version 3.2.3, to implement the computation of the pd and npde

for TTE data and to perform the statistical tests. We also simulated data in R for the simulation study,
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by predicting PSA kinetics with the analytical function (14) and using the simulx function from the mlxR

package to simulate TTE data. An R script with the code for the simulation of the events is provided in the

Supplementary material.

Results

Data

Figure 4 shows the predicted evolution of the logarithm of the PSA for each individual over time for one

dataset with the base model described in the ’Motivating example’ (see Table I), with N = 500 subjects. To

represent the observations of the time to survival, we show the associated Kaplan Meier (KM) curve as a solid

line. In this particular scenario, there is a ”medium” link between PSA kinetic and survival (MV,medium)

which is why very high PSA values (over 4000) are not observed, as they would be associated with patients

death.

Graphical diagnostics using npde

We computed the npde for the dataset simulated in the previous section, under two tested models M,

Mmedium (H0), the same model used to generate V , and model MnoLink, in which β = 0 (H1). Figure 5

shows the diagnostic plots obtained with Mmedium on the left and MnoLink on the right: quantile-quantile

plots are shown in the top row and histograms in the middle row. Another way to evaluate the model is to

look at the Kaplan Meier visual predictive check (KMVPC) plots which are represented in the bottom row.

In these graphs, the survival in the data is estimated along with its 90% prediction interval based on the 1000

Monte Carlo simulation. Table II shows the corresponding p-values for the tests comparing each distribution

to a theoretical normal distribution.

Table II: p-values of the tests performed on npde in cases under H0 and H1.

Case Test of median Test of variance Normality test Adjusted p-value

H0 :M =MV 0.267 0.483 0.585 0.799

H1 :M 6=MV < 10−5 0.055 0.363 < 10−4

Under H0,MV andM correspond to modelMmedium (β = 0.001). Under H1,MV corresponds toMmedium (β = 0.001)

whereasM isMnoLink (β = 0)

In Figure 5 under H0, the graphs show no major departures from the distribution of npde when compared
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with the theoretical standard normal distribution, and the adjusted p-value of the test equals 0.799. Under

H1, the strength of PSA impact on survival in M is lower than in the model MV,medium used to simulate

V , leading to a longer average survival. This can be seen in the VPC graph as an overprediction of the

survival. This also shows in the distribution of the npde: the histogram of the npde shows a negative shift

of the median from the theoretical standard normal distribution leading to a rejection of the model. This

is confirmed by the tests in Table II, in which the p-value of the median test is significant after Bonferroni

correction, whereas the two other tests are not significant.

Misspecification of PSA impact on survival

In the first simulation, we focused on the impact of a misspecification in the link function by varying the

parameter β. Figure 6 illustrates the performance of npde in terms of type I error and power. The curves

show the proportion of simulated datasets V in which the tested model M was rejected, plotted against the

value of β in M used to generate the distribution of npde. We tested two scenarios in which we investigated

different strengths of the link and different sample sizes. The tested models are ordered on the X-axis with

an increasing value of β and the proportion of rejection, which corresponds to the type I error or power, is on

the Y-axis. Because this was a simulation study, true event times were known, meaning that we compared

the performance both with (dashed line) and without (solid line) censoring.

In both scenarios, under H0, the type I error falls within the prediction interval of the expected value

(5%) for all sample sizes and regardless of whether the event times are censored. Censoring the data leads

to a slight decrease in the type I error (numbers can be found in the additional Table SI given in the

Supplementary material), but it remains within the variability materialised by the prediction interval shown

in grey in Figure 6.

Considering the simulations under H1, the power increases with the sample size, as expected, as well as

with the difference between MV and M. That is to say, the difference between the ”true” β and the one

in the model M used to compute the predictive distribution. Larger β imply earlier occurrence of events,

so that differences in β between MV and M are reflected in a shift of the predictive distribution compared

with observations in V . Models that overpredict the time to event will, by construction, induce a negative

shift of the median of the npde. Accordingly under H1, rejection of the global test is due in most cases to a

rejection of the Wilcoxon test (data not shown), which tests whether the median of npde equals 0. However

in the scenario in which MV is MV,noLink with β = 0 (left-hand figure), the rejection of the model is also
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due to a rejection of the Fisher test (not shown) where the null hypothesis is that the variance equals 1.

Figure 6 shows that the proportion of rejected datasets decreases when the data are censored, leading

to a decreased power under H1. This is expected because in the presence of censored data, pd are imputed

under the model being tested, so that part of the distribution of the npde is in fact imputed under H0. We

also observe that the loss of power is larger in the left-hand plots (V simulated under MV,noLink) than in

the right-hand plots (V simulated under MV,medium), as shown by a larger difference between the dashed

and solid lines. Part of the difference can be explained by the difference in the proportion of censored

events in the two simulations. This proportion is around 25% for MV,noLink, compared with around 16%

for MV,medium. As the pd for censored events are imputed in their expected distribution under the null

hypothesis, we expect the p-value to be closer to the theoretical 5% with large amounts of censored events.

To account for this difference, we adjusted the proportion of censoring by changing the censoring time to

have the same proportion of censoring for the different settings. The results are shown in the Supplementary

material (Figure S1) for three proportions of censoring (12, 25, and 50%); the figure shows that, as expected,

a higher proportion of censoring led to a decrease in the power.

However, even after correcting for the difference in the proportion of censored events in the datasets,

the loss of power remains higher in the scenario in which MV = MV,noLink. Looking at the distribution of

the npde, we found a very skewed distribution in this case with a large difference between the censored and

uncensored distribution at late times (data not shown), which can explain the larger loss of power under

this model. This skewed distribution is due to late event times simulated under a model with no link, while

the predictive distribution under the tested model in the alternatives H1 is centred on earlier times. With

the complete dataset, this translates to a group of npde clustered at the high end of the distribution, which

is imputed to a uniform distribution under censoring. Additional simulations (see Table SI) in which V is

simulated with a link β equal to 1e-4 (low link) or 0.005 (high link) show less loss of power when censoring

data for the models in which biomarker evolution impacts survival through a non-null β, at least for moderate

proportions of censoring (up to 25%).

Misspecification of the baseline hazard model

In the second simulation, we assessed the performance of npde to detect model misspecifications in the

baseline hazard h0(t). Observed TTE data in V were simulated according to the base model MV,medium.

The scenario under H0 was the same as in the second scenario from the previous simulation, with a predictive
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distribution obtained under the same model. We also computed the npde assuming four other Weibull models,

by varying k between 1 (where the Weibull model is equivalent to an exponential distribution with constant

hazard model) and 2, to evaluate the power under several alternatives H1.

Figure 7 shows the proportion of datasets in which the model is rejected when the npde are computed

under the five possible models.

This figure illustrates the ability of npde to detect misspecifications in h0. Under H0 (k=1.5), the type I

error is close to 5% and remains whithin the prediction interval ([2.4%-9%]) both with and without censoring.

As previously, the power increases as the difference between the true and tested value of k increases. Again,

the power also decreases with a reduction of the sample size, dropping quite sharply below N=100. The

proportion of simulated datasets in which the test is rejected is lower in the presence of censoring, which is

consistent with an imputation under the model. Similar results were obtained with other scenarios under H0

and are presented in Table SII of the Supplementary material.

Discussion

Joint models are increasingly used in clinical trials analysis, as they enable investigation of the relationship

between a primary outcome, such as survival or the achievement of a response, and longitudinal variables, such

as biomarkers, measured throughout the trial [34]. In previous studies, we developed a diagnostic approach,

called npde, to evaluate NLMEM used to describe the evolution of continuous longitudinal variables [20, 21].

In this paper, we propose and evaluate an extension to npde that is adapted to the TTE data component of

joint models.

npde are obtained by decorrelating and normalising the pd, defined by Mentré and Escolano as the quantile

of an observation in its predictive distribution [18]. An advantage of pd and npde, compared with standardised

residuals which involve a first-order approximation of the model function, is that their theoretical distribution

is known. A global adjusted test was proposed [20], comparing the npde with a normal distribution with

median 0 and variance 1. In a simulation study, the test was found to maintain a 5% type I error, in

stark contrast with linearisation-based metrics which almost always rejected the model even under the null

hypothesis [21]. npde also performed better than numerical predictive checks, which provide a statistical test

for graphical VPC diagnostics, as they take into account the correlation intrinsically present in longitudinal

data. In this study, we found that the npde also performed well for TTE models, maintaining an adequate
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type I error in simulations evaluating misspecified baseline hazard or misspecified link function.

In our simulation study, only the survival model was evaluated, as we assumed that the evolution of PSA

was similar in the evaluation dataset, and we did not simulate observations of the biomarker. Although the

computation of npde involved predictions of the time course of the biomarker, it is worth noting that we did

not need any individual observations of the longitudinal variable in our method, as we imputed the pd for

censored events directly in the predictive distribution. This approach was first proposed to impute pd for

BLQ data [25], and here we showed that it has a natural extension to right- or interval-censored data. For

interval-censored data, we assumed that the event occurred within a predefined interval. An example of this

would be to consider trials in which events were recorded at weekly or monthly visits. The exact time of

the events was not known but they were supposed to have occurred since the last visit. We could surmise

that imputing pd in this case could lead to loss of power, similar to what we observed for terminal censoring.

However, provided the time intervals were not too large, we would still be able to detect shifts in median time

to events even in the presence of censoring, so the loss of power would be limited. It would be interesting to

investigate in a future study the impact of the duration of the interval, i.e. the impact on power if we were

to consider weekly versus monthly visits, for example.

For continuous responses, an alternative method, used in Monolix [27], is to impute the censored obser-

vation to the model prediction. However, this method requires the definition of a predicted response, which

is more difficult for survival data as we deal directly with the probability distribution. The two methods

of imputation are available in the npde package [26] for continuous responses, but have not been formally

compared. Both methods rely on the model, but imputing to the model prediction may be slightly more con-

servative when the residual variability is high and the proportion of censored data increases. This is because

the resulting prediction discrepancies would ignore the residual error model, compared to imputing the pd

directly within the cumulative distribution. It could be interesting to evaluate whether this approach could

be extended for joint models in settings in which observations of the longitudinal biomarker are available, by

defining the predicted time to event based on the individual survival function, which uses the information

produced by the evolution of the biomarker [35].

The problem of defining predictions for TTE models also makes it more difficult to compute residuals,

which are generally defined as the difference between observed and predicted data, possibly weighted by the

expected variance of the prediction. As survival models are framed in terms of probability distributions, Cox-

Snell residuals [36] have been proposed instead, which are computed using the logarithm of the estimated
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survival function. Under H0 and in the absence of censoring, Cox-Snell residuals follow an exponential

distribution. They are generally used to check the overall fit of parametric TTE models [37]. Martingale

residuals, on the other hand, are defined as the difference between the observed and expected number of

events [38]. In contrast with the Cox-Snell residuals, they can be used both to evaluate model adequacy

and to check the functional form for a covariate. However, their distribution is not known and tends to be

asymmetric, so evaluation is mostly based on graphical diagnostics which may be subjective and difficult to

interpret. Transformation to reduce their asymmetry leads to deviance residuals [39], which have been mostly

used to help detect which individuals were poorly fit by the model, i.e. the outliers. None of these residuals

have a known distribution under the null hypothesis except the Cox-Snell residuals, although the test needs

to be adjusted in the presence of censoring, contrary to npde. We did not compare these metrics to npde in

our study because the computations of all these residuals involve the estimation of individual parameters,

which for the joint models would require data on the longitudinal biomarker, while in our simulation study

we assumed that only TTE observations were available.

Simulation-based diagnostics can also be defined for TTE models, relying on the Bayesian idea of predictive

distributions. KMVPC compares a nonparametric estimate of the survival function, obtained with a KM

approach, with the survival prediction interval of the tested model. A second method has been proposed [40,

41], inspired by the KMVPC, which consists of comparing a nonparametric estimation of the hazard with a

predictive interval under the tested model hazard. However, both approaches provide only a visual diagnostic,

and there is no obvious way to derive a statistical test from the graphs, which makes it difficult to compare

their performance with npde. Most of the time in our simulations, a misspecification seen in the VPC was

associated with a significant p-value for the test on npde. However, in other cases under H1, KMVPC

was considered visually acceptable whereas npde detected a misspecification. Both npde and KMVPC can

therefore be used as visual diagnostics, although npde also provides a statistical test.

Other tools for model evaluation in survival analysis have been described in the literature but the focus is

more often on testing model components such as a covariate effect with, for example, Wald, Likelihood ratio

and Score tests. The proportional hazard assumption can be assessed by plotting standardised Schoenfeld

residuals versus time [42]. Also, to avoid making assumptions on the shape of the hazard, non-parametric or

semi-parametric hazards are often used, and only sub-components of the model are tested.

The simulation study in this paper was based on a real example [28], and set in a context of external

evaluation in which models were evaluated using data that was not used for model building. However, npde
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are also used as an internal evaluation tool during model building, combined with Wald or Likelihhod ratio

test used for model selection, in which case they can provide a visual diagnostic of model misspecifications

making it possible to orient further model development [22]. In this case, the tested models M would be

developed during the course of the analyses, and their parameters estimated instead of being fixed, as they

were here, to arbitrary values. Using estimated parameters instead of theoretical values can be expected to

have an impact on power as the estimation process may absorb some of the misspecification in the structural

model. Simulation-based diagnostics are more computer-intensive, as the predictive distribution needs to be

approximated by Monte-Carlo simulations in the absence of an analytical solution to compute the density

in NLMEM. Following [15], we suggest computing npde for the final model and other key models in the

analysis. Another issue in the computation of the predictive distribution is that the biomarker trajectory

must be predicted to simulate event times. In this study, we used a simplified model with an analytical

solution to predict PSA trajectories, but the use of ordinary differential equations can be much more time-

consuming for complex models.

In our simulation settings, the power of the npde reached 100% in scenarios with a large difference in

survival and a large number of subjects but, as expected, could be much lower when the tested model was

close to the one generating the data. There is no gold standard against which this power can be compared, as

there was no biomarker observations making it possible to fit the joint model in our simulations. This is both

a strength and a weakness of the npde, in that we can compute npde in cases such as this where we cannot

use the Likelihood ratio or the Wald tests but, in our setting, performance of the npde depended on a correct

specification of the biomarker model. In our study, we assumed that only TTE observations were available,

for instance, in the form of external evaluation data from a new study. Note also that there was no IIV here

in the survival model, as a model with IIV would not be identifiable without repeated observations of the

event. As a result, the predictive distribution of the biomarker was similar in V and M in all our scenarios,

so that we effectively assessed only the fixed parameters associated with the survival function. Additional

studies are needed to explore this issue further by considering repeated TTE models, as well as investigating

misspecifications in the biomarker model and their impact on the power of npde for the TTE component. In

a future study, we will investigate decorrelation methods for npde when considering multiple responses in the

joint model, as well as the extension of npde to repeated TTE data, including IIV in the survival parameters.

We performed additional simulations with other distributions, such as that of Gompertz, to represent

the baseline hazard (not shown). We found similar results in terms of type I error and a high power, as
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these distributions induced marked changes in the time course of event occurrences. The type I error usually

remained within the prediction interval expected for a theoretical p-value of 5%, except in one case shown in

the Supplementary material (Table SII). The inflation in that case appeared to be due to sampling variability

with an insufficient number of Monte Carlo samples used to build the predictive distribution. This may be

an issue when there is a strong skewness in the distribution of TTE under some distributional assumptions.

Indeed, very high values of event time could be simulated in V , for instance with model MnoLink, without

appearing in the predictive distribution (which was built only once within one scenario as it was a time-

consuming step). These extreme values biased the estimate of the variance and because our test on npde

includes a Fisher test to check if the variance of npde equals 1, the proportion of dataset which was rejected

increased. On the other hand, observations lying outside of the predictive distribution can also mean that

the model underestimates observations, so the test must be robust enough to reject the model when this is

the case. The global test proposed in [20], combining a test of normality with a test of the median and a test

of the variance through a Bonferroni correction, performed well with continuous responses in a simulation

study [21], but the Bonferroni correction assumes that the three tests are independent which may not always

be a valid assumption. Alternatives to this test could be envisaged, such as a global Kolmogorov-Smirnov

test or tests on the distribution of the pd. In any case, the stability of the p-value for the test based on npde

can be assessed by increasing the number of replications used to compute the predictive distribution, which

should be performed especially for the final model to be evaluated. An estimate of the threshold for the test

statistic can be obtained through a simulation study using the design of the trial, and can be used to correct

the power if inflation is observed. In our study, no correction was used for the power reported in the results

as the type I error remained within its prediction interval.

Conclusion

In conclusion, we propose an extension to npde making it possible to evaluate models for TTE data. This is

an extension that performed well in a simulation study based on a joint model coupling biomarker evolution

with time and survival, in which we investigated the type I error and power to detect model misspecification

in the link between biomarker and survival as well as in the baseline hazard function.
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Figure 1: Example of the computation of prediction discrepancies for time-to-event observation. The black

line is the cumulative predictive distribution F for one observation. Ti lies within an interval [TLi , TRi ] and

the corresponding pdi is sampled in a uniform distribution within the interval [F (TLi), F (TRi)].
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Figure 2: PSA evolution model. PSA is expressed in ng.mL−1 and prostate cells C in mL−1; r is the rate

of prostate cell proliferation in the absence of treatment (day−1); kout the rate of prostate cell elimination

(day−1); p the rate of PSA secretion by C (ng.day−1); δ the rate of PSA elimination (day−1); and e(t) the

time-dependent treatment effect.
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Figure 3: Schematic representation of the evaluation process. For each replication, a dataset V is simulated

under model MV . The npde are obtained using the cumulative predictive distribution F of an observation

obtained under a model M , and we test the hypothesis that M describes the data in V . The process is

repeated 200 times for each scenario.
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Figure 4: Spaghetti plot of the predicted PSA in one simulated dataset (grey). The PSA profile for the

typical individual is shown as a dashed black line. The survival Kaplan Meier estimate for the same dataset

is shown as a solid black line.
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Figure 5: Top: Quantile-quantile plots of npde based on observations versus the theoretical standard normal

distribution N (0, 1). The theoretical distribution is represented by line y = x with the 95% confidence

interval. Middle: histograms of npde are compared to the normal density function (black curve). The

median of npde is represented by the red vertical line. Bottom: Kaplan Meier VPC: Kaplan Meier survival

estimate curve (black line) is compared to the 90% prediction interval (shaded grey area and median in

dashed grey line). For graphs, the dataset was generated with MV = Mmedium. In the left (resp. right)

panel, the tested model M is Mmedium (resp. Mhigh).
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Figure 6: Performance of npde in two scenarios. The left-hand plot corresponds to datasets V simulated

under MV,noLink (β = 0), whereas the right-hand plot was obtained with datasets V simulated under

MV,medium (β = 0.001). The tested models are ordered on the X-axis with increasing values of β, from

MnoLink (β = 0) to Mhigh (β = 0.005), representing an increasing strength for the link between the

longitudinal biomarker and survival. When the tested model is the true model used to generate V (leftmost

point in the curve when MV =MV,noLink, and second to last point in the curve when MV =MV,medium),

we are under H0 and the proportion of rejection corresponds to the type I error. The shaded grey area

represents the prediction interval of a theoretical type I error equal to 0.05, and we expect the type I error

to remain within this interval. All other cases are under H1 and the proportion of rejection represents the

power. Each colour represents the performance (type I error or power) with a different sample size, ranging

from N = 50 to N = 500. Solid (resp. dashed) lines show the proportion of rejected datasets without (resp.

with) censoring.
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Figure 7: Type I error and power for different values of k. Each line represents the evolution of the

proportion of rejection versus k for different values of N (in {50,250,500}), with solid lines for uncensored

data and dashed lines in the presence of censoring.
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