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Supplementary Materials 1 

Data Simulation 2 

Founder haplotypes were created with HapGen using a theoretical population size of 3,000 and the 3 

default mutation rate. This choice led to simulated data with similar kinship to the observed genotypes in 4 

Campora (Supplementary Figure 3). The percentage of sites phased by SLRP serves as a good proxy for the 5 

proportion of IBD that can be found within the sample. When phasing the true data from Campora, 99% of 6 

heterozygous sites were phased, a similar percentage to those observed on the HapGen+Pedigree simulation, 7 

Supplementary Figure 8a.  8 

Error Models. 9 

Here we describe our error model for the WGS data of the 93 SSP individuals. For each simulated 10 

genotype, a set of bases was sampled from the two possible alleles of the genotype in order to represent the 11 

bases across multiple reads containing the position. Error bases are simulated within this set and can take any 12 

value out of A,C,T and G. The depth of the set was randomly selected from the depths observed in the Campora 13 

WGS data at the corresponding position. We then used the approach of Kim et al. (2011) to make approximate 14 

calculations of genotype likelihoods from which we calculated genotype qualities based on the models 15 

implemented by the next-generation sequence calling software GATK (DePristo et al., 2011). 16 

As in to Kim et al. (2011), our error models were not symmetric. Lower genotype quality was observed 17 

in Campora on AT and GT SNPs. Hence we simulated higher error rates for error types A → T, T → A, G → T, 18 

and T → G as shown in Supplementary Table 1. For all genotypes, the error rate from the true base to the base 19 

corresponding to the other possible allele at the position (according to the simulated genotype) was augmented 20 

by 1/120. For example, when simulating error bases for a true base of A at a position with alleles A and G 21 

present in the simulated data, the error rate A → G was 1/120 + 1/120. However, if the alleles present in the data 22 

were A and T, the error rate A → G would remain at 1/120 and the error rate A → T would be augmented by 23 

1/120. Such error models were chosen in order to create similar distributions of genotype quality as had been 24 

observed in Campora and overall genotyping error rates high enough to be of interest when analysing their 25 

effect on phasing and imputation. Our error models do not attempt to provide a faithful representation of the 26 

calling of genotypes from raw sequence reads but simply to create errors and missingness simply, randomly, and 27 

in similar patterns to those observed in WGS data in Campora. 28 

Quality Control 29 
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ARRAY variants were removed for high missingness (> 5%), low MAF (< 1%), and significant 30 

deviation from Hardy-Weinberg equilibrium (p < 10
-5

). WGS variants were removed for high missingness (> 31 

10%), low Minor Allele Count (< 2), and significant deviation from Hardy-Weinberg equilibrium (p < 10
-5

). 32 

Phasing 33 

When using EAGLE2+1000G we set the parameter 'pbwtiter' to 3 which significantly improved the 34 

phasing and ensures that phasing inference was made not just from the 1000G but from estimated haplotypes of 35 

other individuals in the sample. When phasing with BEAGLE we found that results were generally robust to 36 

changes in the 'window' and 'overlap' parameters. For EAGLE2 and BEAGLE we allowed multiple threading 37 

(four threads) after observing that restricting to one thread did not significantly change results. However, for 38 

SHAPEIT2 it is recommended to not use multiple threading so we used a single thread for each phasing run. 39 

Using BEAGLE with the 1000G as an external reference panel proved problematic as many variants were 40 

removed from the analysis by the algorithm due to high differences in MAFs between the sample and the 41 

reference panel. As population isolate data has been simulated, it is to be expected that MAFs differ from those 42 

observed in 1000G. We thus did not present BEAGLE results for this option. We did not test SHAPEIT3 with 43 

the 1000G as a reference panel due to the similarity between SHAPEIT2 and SHAPEIT3. Otherwise software 44 

were used with default settings. 45 

Note that it is not possible to calculate SER at the exact site of a genotype error or missing genotype as 46 

there is no true phase from which to make a comparison with. Hence all calculations are made irrespective of 47 

error sites in each replication. An error can still cause a SER in a direct way but this would be measured at the 48 

preceding and following heterozygous sites on the chromosome (Supplementary Figure 10). 49 

IBD-Sharing 50 

 To create Supplementary Figure 11 for SHAPEIT2+duohmm+1000G and EAGLE2 we randomly 51 

selected 200 heterozygous sites with switch errors and 200 heterozygous sites which were phased correctly. For 52 

each of the 400 sites we then counted the number of haplotypes in the sample IBD to the individual at the site. 53 

This analysis was performed on ARRAY data with no genotyping errors or missingness simulated and on the 54 

Pedigree simulation where the exact IBD sharing information was accessible. This is because on the Pedigree 55 

simulation, we know exactly which founder haplotype has been copied at every site for each individual. On the 56 

HapGen+Pedigree simulation, we could not keep track of this information. 57 

Imputation 58 
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Following user manual recommendations for IMPUTE2, the region was split into four regions each of 59 

width 5Mb and using a buffer region of 0.25Mb. Identical settings were used for IMPUTE4. Outputs from the 60 

four runs were then concatenated after imputation. We experimented with the 'k-haps' parameter in IMPUTE2 61 

and were unable to observe significant changes in accuracy and so the default parameter was used. MINIMAC3 62 

was run with default parameters as was BEAGLE as we found that results were not sensitive to changes in the 63 

'window', 'overlap' and 'Ne' (effective population size) parameters. A detailed investigation on the effects of 64 

model parameters on IMPUTE2, MINIMAC3 and BEAGLE is to be found in Browning and Browning (2016). 65 

As population isolates are the subject of this investigation it might be suggested that a lower value of 'Ne' would 66 

theoretically be suitable. In the context of imputation, the 'Ne' parameter controls the expected rate of 67 

recombination. Whilst our simulated individuals were constructed as mosaics of founder haplotypes with 68 

relatively few recombinations, a high recombination rate is still required in order to model each individual as an 69 

imperfect mosaic of external reference haplotypes. For IMPUTE2 we took advantage of the ‘merge-ref-panel’ 70 

option to perform cross imputation between the 1000G and our WGS SSP. 71 

Difference in MAF between sample and reference panel 72 

We compared the absolute difference in MAF between the simulated data in each replicate and either 73 

the 1000G Europeans populations or the complete 1000G. We averaged these differences over all variants used 74 

to estimate imputation accuracy and compared them to the baseline mean difference in MAF between the 75 

UK10K (our source of founding haplotypes) and the 1000G (Supplementary Figure 15). Compared to the 76 

Pedigree simulation, the HapGen+Pedigree simulation strategy produced simulated data with greater disparity in 77 

MAF compared to the 1000G. It was possible to observe a pattern between this disparity in MAF and lower 78 

imputation accuracy (Supplementary Figure 16a). To illustrate the importance of this difference in MAF we 79 

selected variants with a high MAF in our simulated data set (>0.3) and a large difference in MAF compared to 80 

the 1000G (top 10% of all MAF differences). We also excluded variants with imputation quality score (‘info’) 81 

below 0.7 coming from imputation using IMPUTE2+1000G. In the Pedigree simulation an average of 2,340 82 

variants fulfilled these criteria and the average 90th percentile of absolute MAF differences was 0.17. In the 83 

HapGen+Pedigree simulation there were an average of 2,166 variants and the average 90th percentile of 84 

absolute MAF differences was 0.20. We compared the mean imputation accuracy from imputation using 85 

IMPUTE2+1000G and IMPUTE2+SSP over this selection of variants to the mean imputation accuracy over a 86 

random selection of variants with similar MAFs (Supplementary Figure 16a). In both simulation strategies 87 
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variants with a large difference in MAF to the 1000G were harder to impute under IMPUTE2+1000G but were 88 

imputed with similar accuracy under IMPUTE2+SSP. 89 

To investigate further, we also selected variants with either a MAF significantly higher in the 1000G 90 

reference panel than in the sample or vice-versa. We then calculated the percentage increase in imputation 91 

accuracy by changing reference panel from the 1000G reference panel to the SSP (Supplementary Figure 16b). 92 

To put these increases into context, we again selected random selections of variants with a similar MAF to the 93 

chosen variants but without the large differences in MAF between the sample and the 1000G. Variants with 94 

significantly higher MAF in the sample (compared to the 1000G reference panel) experienced the most benefit 95 

from the change of reference panel for imputation. 96 

A final analysis was made on variants which were monomorphic in the sample. Such variants may 97 

represent the greatest difference in MAF between the sample and an external reference panel. We have 98 

compared imputation accuracy on the telomeric region of the short arm of chr10 (20Mb in length). In this region 99 

102,100 variants (found in the UK10K) were simulated and 22% and 31% of these variants became 100 

monomorphic in the Pedigree and HapGen+Pedigree simulation strategies respectively due to the founder 101 

effects that we simulated. From each replicate of each strategy, we selected 100 monomorphic variants at 102 

random. From this selection, an average of 18% and 19% of the variants passed a 0.4 threshold on the 103 

IMPUTE2 imputation quality score ‘info’. For each variant that passed the threshold, we called imputed 104 

genotypes from imputed dosages by assigning the genotype to the highest genotype likelihood if and only if one 105 

genotype likelihood exceeded 0.8. In Supplementary Figure 16c we present the number of individuals with an 106 

incorrect called genotype for the assembly of all variants considered across replicates. A few variants present 107 

extreme results, these were noted to be variants with extremely different MAF between the UK10K and the 108 

1000G. For example, the highest point on the left panel of Supplementary Figure 16c has a MAF of 0.47 in the 109 

1000G and 0.0026 in the UK10K. Supplementary Figure 16d shows a zoom-in on Supplementary Figure 16c. 110 

Genetic kinship coefficients between all 477 simulated individuals and the 1000G Europeans were 111 

computed using WGS positions after LD-pruning. The mean pairwise kinship on the Pedigree simulation was 112 

1.2×10
-4

 and 2.5×10
-6

 on the HapGen+Pedigree simulation. Again this demonstrated greater dissimilarity 113 

between the HapGen+Pedigree simulated data and 1000G than between the Pedigree simulated data and 1000G. 114 

Imputation Quality scores: ‘info’ and ‘RSQ’ 115 

First, we applied the standard thresholds for common variants of 0.4 for ‘info’ and 0.3 for ‘RSQ’ (Li, 116 

Willer, Ding, Scheet, & Abecasis, 2010; Pistis et al., 2015) (Supplementary Figure 18a).  117 
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We then specified different thresholds for ‘info’ and ‘RSQ’ and calculated the resulting mean 118 

imputation accuracy in the remaining variants (Supplementary Figure 18b) under MINIMAC3+1000G and 119 

IMPUTE2+1000G on the HapGen+Pedigree simulation strategy. We observed that increasing the thresholds 120 

continued to give gains in mean imputation accuracy at a price of removing large numbers of variants. 121 

Particularly for low MAF variants, greater increases in imputation accuracy were observed by placing thresholds 122 

on the ‘RSQ’ measure than ‘info’. Furthermore, the mean imputation accuracy of remaining variants became 123 

almost equal across all MAF bins when using the ‘RSQ’ measure while greater differences remain between 124 

MAF bins when using the ‘info’ score. 125 

By defining sets of well and poorly imputed variants (imputation accuracy above 0.5 or below 0.2) we 126 

observed that the standard thresholds of 0.4 for ‘info’ and 0.3 for ‘RSQ’ fail to remove many poorly imputed 127 

variants (Supplementary Table 4). Furthermore for rare variants, the quality scores have less ability to separate 128 

well imputed variants from poorly imputed variants as reported by others (Liu et al., 2012; Pistis et al., 2015). 129 

To ensure that the majority of poorly imputed low MAF variants will be removed, higher thresholds than the 130 

standard ones are required. For common variants we observed that similarly high thresholds could be used and 131 

only a small number of well imputed variants would be lost and more poorly imputed variants would be 132 

removed. The choice of threshold represents a compromise between attempting to remove all badly imputed 133 

variants while hoping to not discard too many well imputed variants that could be highly valuable to subsequent 134 

analyses. Poorly imputed variants could give false positive results. However, if the motivation for imputation 135 

was envisaged single point analyses, the damage would be minimal as the researcher could still access the ‘info’ 136 

or ‘RSQ’ scores in order to see whether significantly associated variants had a very high imputation quality 137 

score or one just above the threshold. If multipoint analyses (gene-based or haplotype based) were envisaged, 138 

then poorly imputed variants have the potential to cause false negative results which would be harder to rectify; 139 

suggesting that in this scenario higher thresholds should be taken. 140 

 141 
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 142 

 143 

Supplementary Figure 1. The pedigree of Campora as recorded from parish records. 144 

1600 

2007 
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 145 

Supplementary Figure 2. Schematic of the two simulation strategies. 146 



P a g e  | 9 

 

 147 

Supplementary Figure 3. Comparison of mean pairwise genetic kinship coefficients estimated on simulated 148 

ARRAY data for 477 individuals for both simulation strategies. The HapGen+Pedigree simulation created data 149 

with closer mean pairwise genetic kinship to the mean pairwise genetic kinship calculated on the observed 150 

genotypes in Campora for the same individuals (dashed line). As every pedigree founder haplotype is first 151 

generated from 80 UK10K haplotypes in the HapGen+Pedigree simulation, the pedigree founders are no longer 152 

independent and share regions of IBD. Proportions of IBD are consequentially elevated throughout the sample 153 

and surpass those predicted solely by the pedigree information. 154 
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 155 

Supplementary Figure 4. Mean Switch Error Rates for EAGLE1 and EAGLE2 on the HapGen+Pedigree 156 

simulation strategy.  157 
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 158 

Supplementary Figure 5. Comparison of Long Range Phasing Software SLRP and ALPHAPHASE on the 159 

HapGen+Pedigree simulation strategy. The percentages of heterozygous sites phased are displayed atop the 160 

figure.  161 

 162 

  163 

 164 
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 165 

 166 

Supplementary Figure 6. Comparison of SERs according to MAF for BEAGLE, EAGLE2 and 167 

SHAPEIT2+duohmm+1000G on the HapGen+Pedigree simulation strategy. In each MAF bin, the mean SER 168 

over all variants is displayed. The percentages of variants in each MAF bin are displayed atop the figure. 169 

 170 
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 171 

 172 

Supplementary Figure 7. Global SERs from both simulation strategies for all LD-based software. 173 
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 174 

Supplementary Figure 8a. Comparison of the fraction of heterozygous sites phased by SLRP for both 175 

simulation strategies. SLRP phased a higher proportion of sites when applied to the HapGen+Pedigree 176 

simulation, similar to the proportion of sites as when applied to the observed ARRAY genotypes in Campora by 177 

SLRP (blue line). Genotype errors and missingness led to a reduction in the number of sites that SLRP was able 178 

to phase in both simulation strategies. 179 

 180 
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 181 

Supplementary Figure 8b. Comparison of the fraction of heterozygous sites phased by ALPHAPHASE for 182 

both simulation strategies. ALPHAPHASE phased a higher proportion of sites when applied to the 183 

HapGen+Pedigree simulation. Genotype errors and missingness led to a reduction in the number of sites that 184 

ALPHAPHASE was able to phase in both simulation strategies. 185 

 186 
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 187 

Supplementary Figure 9a. Relationship between mean pairwise genetic kinship and individual SER for 188 

SHAPEIT2+duohmm+1000G and EAGLE2. In each replicate, ARRAY genotypes were used to calculate the 189 

mean pairwise genetic kinship coefficient of each individual to all others. We considered 10 equally sized bins 190 

of mean pairwise genetic kinship based on the quantiles of the distribution of mean pairwise genetic kinship. In 191 

each group we then calculated the mean SER for all individuals in the group. 192 
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 193 

Supplementary Figure 9b. As Supplementary Figure 9a, but for BEAGLE and SLRP. Note the different scale 194 

on the y-axis compared to Supplementary Figure 9a.  195 

 196 
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 197 

Supplementary Figure 9c. Fraction of all heterozygous sites left unphased by SLRP according to mean 198 

pairwise genetic kinship. 199 

 200 

 201 
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 202 

Supplementary Figure 10. Effect of genotype errors and missingness (Imperfect) on mean Switch Error Rate 203 

according to software and on the HapGen+Pedigree simulation strategy.   204 

 205 

 206 
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 207 

Supplementary Figure 11. Comparison of mean number of true IBD haplotypes at either correctly phased sites 208 

or switch error sites for SHAPEIT2+duohmm+1000G or EAGLE2. This analysis was only possible on the 209 

Pedigree simulation where the exact locations of simulated IBD-sharing were known. 210 

 211 
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 212 

Supplementary Figure 12. Mean SER for the phasing of the 93 WGS SSP individuals with 213 

SHAPEIT2+duohmm+1000G and EAGLE2. There are two likely causes for the higher SERs as compared to the 214 

phasing of ARRAY data: firstly, a smaller number of individuals are involved, and secondly the WGS data 215 

contained a higher proportion of variants with MAF below 0.05.  216 

 217 

 218 

 219 
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 220 

Supplementary Figure 13. Effect of genotype errors and missingness on the ARRAY data on imputation 221 

accuracy.  222 
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 223 

Supplementary Figure 14. Effect of genotype errors and missingness on the SSP on imputation accuracy. 224 

Imputation accuracy calculated from imputation strategy IMPUTE2+1000G+SSP.  225 

 226 

 227 

 228 

 229 
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 230 

Supplementary Figure 15. Comparison of absolute difference in MAF between simulated data and the 1000G 231 

panel for both simulation strategies. Dashed lines represent the mean difference in MAF between the UK10K 232 

(founding pool used for the simulation) and the 1000G. 233 
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 234 

Supplementary Figure 16a. Comparison of imputation accuracy for sets of variants with particularly high 235 

differences in MAF compared to the 1000G panel against random selections of similar variants without such 236 

elevated disparities. Imputation accuracy was calculated from the imputation strategies IMPUTE2+1000G and 237 

IMPUTE2+SSP.   238 
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 239 

Supplementary Figure 16b. Increase in imputation accuracy by changing from IMPUTE2+1000G to 240 

IMPUTE2+SSP for sets of variants with either MAF greater in the 1000G reference panel compared to the 241 

sample or vice-versa. Once again, for each set of chosen variants for comparison, we selected a random 242 

selection of control variants with similar MAF in the sample to the chosen set.  243 
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 244 

Supplementary Figure 16c. Imputation of monomorphic variants in the sample under IMPUTE2+1000G. The 245 

number of individuals with an incorrectly imputed genotype (after taking a hard call) against base pair position 246 

on chromosome 10.  247 

 248 

 249 
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 250 

Supplementary Figure 16d. Zoom-in onto Supplementary Figure 16c showing the distribution of points with 251 

y-axis values less than 50.  252 

 253 



P a g e  | 29 

 

 254 

Supplementary Figure 17. Comparison of individual imputation accuracy against the mean pairwise genetic 255 

kinship between each non-SSP member and all 93 SSP members. Mean numbers of individuals contributing to 256 

each bin of individual mean pairwise genetic kinship are displayed atop the figure. The minimum observed 257 

imputation accuracy for a single individual was just above 0.85 and just above 0.88 for the Pedigree and 258 

HapGen+Pedigree simulation strategies respectively.  259 

 260 
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 261 

Supplementary Figure 18a. Imputation accuracy across all MAFs following post imputation quality control 262 

based on a 0.4 threshold on ‘info’ scores for IMPUTE2 and a 0.3 threshold on ‘RSQ’ scores for MINIMAC3. 263 

These are the often recommended thresholds for ‘info’ and ‘RSQ’. The percentages of variants that remain in 264 

each MAF bin after thresholding are displayed atop the figure (blue for IMPUTE2 and green for MINIMAC3).  265 
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 266 

Supplementary Figure 18b. Imputation accuracy across all MAFs following post imputation quality control 267 

based on either ‘info’ scores for IMPUTE2 or ‘RSQ’ scores for MINIMAC3. Imputation accuracy and 268 

imputation quality scores are derived from IMPUTE2+1000G or MINIMAC3+1000G imputation.  269 
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 270 

 271 

 272 

 273 

Supplementary Table 1. Error rates between specific bases for the simulation of WGS data. 274 

  275 

Phasing Software + Options Mean Switch Error Rate 

 Pedigree HapGen+Pedigree 

ALPHAPHASE † 0.0235 0.0218 

BEAGLE 0.00490 0.00165 

EAGLE1 0.00267 0.000589 

EAGLE2 0.00152 0.000321 

EAGLE2+1000G 0.00293 0.00155 

SHAPEIT2 0.000910 0.000283 

SHAPEIT2+duohmm 0.000845 0.000247 

SHAPEIT2+duohmm+1000G 

SHAPEIT3 

0.000638 

0.000957 

0.000191 

0.000279 

SLRP † 0.00117 0.000950 

† Not all variants were phased. 276 

Supplementary Table 2. Mean global SER across simulation replicates for all phasing strategies considered. 277 

True Base 

 
Error Base rates 

G T C A Total 

G - 1/60 1/120 1/120 1/30 

T 1/60 - 1/120 1/60 1/24 

C 1/120 1/120 - 1/120 1/40 

A 1/120 1/60 1/120 - 1/30 
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Imputation Software + 

Reference Panel 

Mean Imputation Accuracy 

 Pedigree HapGen+Pedigree 

 MAF (0,0.01] (0.01,0.05] (0.05,0.10] (0.10,0.20] (0.20,0.50] (0,0.01] (0.01,0.05] (0.05,0.10] (0.10,0.20] (0.20,0.50] 

BEAGLE+1000G † 0.423 0.605 0.744 0.792 0.832 0.296 0.518 0.658 0.710 0.757 

IMPUTE2+1000G † 0.472 0.670 0.833 0.882 0.904 0.299 0.608 0.774 0.836 0.868 

IMPUTE4+1000G † 0.524 0.714 0.845 0.890 0.912 0.351 0.633 0.786 0.845 0.877 

MINIMAC3+1000G † 0.530 0.722 0.852 0.900 0.916 0.366 0.644 0.793 0.851 0.881 

PBWT+1000G (20 replicates) † 0.426 0.640 0.791 0.851 0.883 0.290 0.555 0.724 0.798 0.840 

 MAF (0,0.05] (0.05,0.10] (0.10,0.20] (0.20,0.50] (0,0.05] (0.05,0.10] (0.10,0.20] (0.20,0.50] 

IMPUTE2+1000G ‡ 0.749 0.863 0.883 0.907 0.670 0.811 0.834 0.871 

IMPUTE2+SSP ‡ 0.845 0.921 0.938 0.954 0.916 0.951 0.963 0.974 

IMPUTE2+1000G+SSP ‡ 0.872 0.933 0.946 0.960 0.914 0.950 0.961 0.973 

MINIMAC3+1000G ‡ 0.779 0.882 0.900 0.920 0.703 0.831 0.855 0.884 

MINIMAC3+HRC ‡ 0.844 0.918 0.930 0.942 0.752 0.860 0.879 0.903 

MINIMAC3+SSP ‡ 0.840 0.917 0.935 0.953 0.909 0.946 0.958 0.971 

MINIMAC3+HRC+SSP ‡ 0.905 0.951 0.961 0.971 0.918 0.953 0.964 0.974 

† Corresponds to a comparison on 40,989 and 40,407 variants on the Pedigree and HapGen+Pedigree simulation strategies respectively. 278 
‡ Corresponds to a comparison on 35,058 and 34,605 variants present in the SSP on the Pedigree and HapGen+Pedigree simulation strategies respectively. 279 
 280 
 281 
Supplementary Table 3. Mean Imputation accuracy across simulation replicates split by MAF, these results correspond to Figures 3, 4, and 5 in the main text. 282 
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MAF (0,0.01] (0.01,0.05] (0.05,0.10] (0.10,0.20] (0.20,0.50] 

 Good Bad Good Bad Good Bad Good Bad Good Bad 

N 313 595 2232 670 3568 272 7621 210 21682 359 

 Variants remaining (%) after threshold was applied 

info           

0.3 96 37 100 80 100 97 100 99 100 100 

0.4 94 30 100 69 100 90 100 96 100 99 

0.5 91 23 100 54 100 73 100 79 100 82 

0.6 89 17 99 37 100 48 100 47 100 43 

0.7 80 11 98 20 98 23 99 20 100 13 

0.8 68 6 93 8 92 9 95 7 97 3 

0.9 46 2 77 2 74 2 80 3 85 1 

RSQ           

0.3 85 13 96 37 100 55 100 60 100 65 

0.4 79 9 93 23 99 34 100 35 100 33 

0.5 71    6 88 14 97 18 99 18 100 10 

0.6 62 4 80 7 92 9 96 8 98 3 

0.7 51 2 67 4 84 4 90 4 94 1 

0.8 37 1 51 2 70 2 77 2 84 1 
0.9 20 0 29 0 47 1 53 0 60 0 

 283 

Supplementary Table 4.  Mean number of variants (N) in each MAF bin that were well imputed (Good) or 284 

poorly imputed (Bad) as defined by whether Imputation accuracy exceeded 0.5 or fell below 0.2 respectively. 285 

The body of the table displays the mean percentage of variants remaining after ‘info’ or ‘RSQ’ thresholds have 286 

been applied. ‘Info’ and ‘RSQ’ scores pertain to IMPUTE2+1000G and MINIMAC3+1000G imputation 287 

respectively.  288 

 289 
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Phasing Real Time Computational Time 

BEAGLE 0:05:53 0:36:58 

SLRP 3:39:20 3:34:38 

ALPHAPHASE 0:04:05 0:03:59 

EAGLE1 0:04:33 0:16:47 

EAGLE2 0:04:11 0:15:27 

EAGLE2+1000G 0:15:46 0:44:32 

SHAPEIT2 1:00:46 1:00:40 

SHAPEIT2+duohmm 1:01:58 1:01:53 

SHAPEIT2+duohmm+1000G 1:14:23 1:09:08 

SHAPEIT3 0:46:46 0:46:45 

Imputation   

BEAGLE+1000G 0:17:54 3:35:49 

IMPUTE2+1000G 2:03:24 1:57:39 

IMPUTE4+1000G 0:13:55 0:12:56 

IMPUTE2+SSP 0:02:49 0:02:42 

IMPUTE2+1000G+SSP 5:00:29 4:53:01 

MINIMAC3+1000G † 1:07:13 1:05:05 

MINIMAC3+SSP † 0:03:30 0:03:20 

MINIMAC3+HRC † 7:39:29 7:35:56 

† Part of the duration taken by MINIMAC3 was attributed to reformatting the reference panel into a specialised 290 
MINIMAC3 format. 291 

Hours:Minutes:Seconds 292 
 293 

Supplementary Table 5. Time requirements for phasing ARRAY data on the whole of chromosome 10 for and 294 

imputing 20Mb of chromosome 10.  295 

 296 
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