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Abstract 

In the search for genetic associations with complex traits, population isolates offer the advantage of reduced 

genetic and environmental heterogeneity. In addition, cost-efficient next-generation association approaches have 

been proposed in these populations where only a sub-sample of representative individuals is sequenced and then 

genotypes are imputed into the rest of the population. Gene mapping in such populations thus requires high 

quality genetic imputation and preliminary phasing. To identify an effective study-design, we compare by 

simulation a range of phasing and imputation software and strategies.  

We simulated 1,115,604 variants on chromosome 10 for 477 members of the large complex pedigree of 

Campora, a village within the established isolate of Cilento in southern Italy. We assessed the phasing 

performance of IBD-based software ALPHAPHASE and SLRP, LD-based software SHAPEIT2, SHAPEIT3, 

and BEAGLE, and new software EAGLE which combines both methodologies. For imputation we compared 

IMPUTE2, IMPUTE4, MINIMAC3, BEAGLE, and new software PBWT. Genotyping errors and missing 

genotypes were simulated to observe their effects on the performance of each software.  

Highly accurate phased data were achieved by all software with SHAPEIT2, SHAPEIT3, and EAGLE2 

providing the most accurate results. MINIMAC3, IMPUTE4, and IMPUTE2 all performed strongly as 

imputation software and our study highlights the considerable gain in imputation accuracy provided by a 

genome sequenced reference panel specific to the population isolate.  

 

Key Words: Founder Effect, Genotyping Errors, Identity By Descent, Linkage Disequilibrium, Study 

Specific Panel.  
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Introduction 1 

For many complex traits, attention has turned to the search for associations with low-frequency or rare variants. 2 

This follows the success of genome-wide association studies (GWAS) in identifying associations with many 3 

common variants but without yet gaining a satisfactorily complete description of the genetic heritability for 4 

various complex traits. The large sample sizes required to achieve sufficient power to detect associations with 5 

rare variants (particularly if effect size is modest), combined with the sequencing cost, limit the opportunities for 6 

finding such associations. 7 

Population isolates have inherent characteristics beneficial to the study of complex traits, namely 8 

reduced environmental and genetic heterogeneity (Bourgain & Génin, 2005; Hatzikotoulas, Gilly, & Zeggini, 9 

2014). Because of the bottleneck at the founding of the population followed by generations of genetic drift, 10 

some mutations which would be described as 'rare' in general populations can occur with greater frequency in 11 

the population isolate. Fewer individuals are hence required to achieve sufficient power for analyses. Also, 12 

unique patterns of linkage disequilibrium (LD) are expected within such populations and long haplotypes will be 13 

identical by descent (IBD) among members of the population even when not closely related.  14 

To take advantage of the prevalence of shared IBD regions, a subset of the study population can be 15 

whole-genome sequenced (WGS) and then made available as a Study Specific Panel (SSP) for genetic 16 

imputation on to the remainder of the genotyped sample (Asimit & Zeggini, 2012; Holm et al., 2011; Zeggini, 17 

2011). Alternatively, public reference panels could be employed for imputation: for example the 1000 Genomes 18 

Project (1000G) (The 1000 Genomes Project Consortium, 2015) or the Haplotype Reference Consortium (HRC) 19 

(McCarthy et al., 2016). All study designs require efficient phasing and imputation, and a range of software has 20 

been developed to this end. 21 

Methods for phasing can be classified as either LD-based (Browning & Browning, 2016; Delaneau, 22 

Zagury, & Marchini, 2013; O'Connell et al., 2016) or IBD-based (Glodzik et al., 2013; Hickey et al., 2011; 23 

Livne et al., 2015; Palin, Campbell, Wright, Wilson, & Durbin, 2011). O'Connell et al. (2014) found that despite 24 

the prevalence of IBD regions in an isolate, LD-based methods outperformed the IBD-based method proposed 25 

by Palin et al. (2011) when tested in several population isolates. Recently a new method was proposed to 26 

combine both LD-based and IBD-based approaches and was shown to achieve increased phasing accuracy over 27 

LD-based methods in a large outbred population (Loh, Danecek, et al., 2016; Loh, Palamara, & Price, 2016). 28 

However, this new approach is yet to be evaluated in a population isolate. 29 
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Several studies investigating imputation strategies have shown that using an imputation panel specific 30 

to the population under study increases imputation accuracy compared to using larger multi-ethnic public 31 

reference panels. This has been observed in population isolates (Joshi et al., 2013; Pistis et al., 2015; Surakka et 32 

al., 2010) and in outbred populations (Deelen et al., 2014; Mitt et al., 2017; Roshyara & Scholz, 2015). 33 

However, no study has compared imputation software and imputation strategies together in a population isolate 34 

since the recent releases of updated software versions (Browning & Browning, 2016; Bycroft et al., 2017; Das et 35 

al., 2016), new methods (Durbin, 2014), and larger and denser reference panels (McCarthy et al., 2016; The 36 

1000 Genomes Project Consortium, 2015). 37 

In population isolates, genealogical data may be available. There exist many methods for phasing and 38 

imputation using in part or solely pedigree data (Abecasis, Cherny, Cookson, & Cardon, 2002; Chen & Schaid, 39 

2014; Cheung, Thompson, & Wijsman, 2013; Hickey et al., 2011; Livne et al., 2015). The size and complexity 40 

of the pedigrees typical to isolates precludes the application of some methods which use only pedigree data. 41 

However, methods that combine IBD inference from both genetic and pedigree information should be well 42 

adapted for population isolates (Hickey et al., 2011; Livne et al., 2015). 43 

Here we provide an updated evaluation of state-of-the-art phasing and imputation methods in the 44 

context of a population isolate. We test the latest versions of existing software as well as recently released 45 

software on simulated data with the structure of the population isolate of Campora in southern Italy. The effects 46 

of errors and missingness on the performance of each software were also assessed. The design of our study also 47 

gives the opportunity to observe in detail the effects of isolate characteristics on phasing and imputation 48 

software in order to provide recommendations for future studies of population isolates.  49 

Methods 50 

Campora - Pedigree and genetic data for Campora have previously been gathered as part of the Vallo di Diano 51 

Project. The pedigree contains 2,894 members, including 495 founders and spans the 16th century to the present 52 

day (Colonna et al., 2007). The pedigree of Campora was reconstructed from parish records (Supplementary 53 

Figure 1). Whilst the pedigree captures many loops and connections that result in a high level of relatedness, it 54 

falls short of reaching back to the founding event of Campora. Previous analysis of sex chromosomes and 55 

mitochondrial DNA in Campora concluded that around 96.7% of the genetic variability was explained by 17 56 

female and 20 male lineages. Hence, whilst the recorded pedigree contains 495 founders, the true founding 57 

event in Campora likely involved closer to 37 founders (Colonna et al., 2007).  58 
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Of the present day individuals, 477 have high quality genotypes, all of whom have been genotyped on 59 

an Illumina 370K SNP-chip array (ARRAY). A subset of 93 individuals has whole exome sequencing (WES) 60 

data and another subset of 18 individuals has whole-genome sequencing (WGS) data. The WES subset was 61 

selected to serve as an SSP using the method described in Uricchio, Chong, Ross, Ober, and Nicolae (2012) but 62 

with genetic kinship in the place of genealogical kinship. This way we selected a subset with a high level of 63 

relatedness to the remaining unselected individuals whilst avoiding high levels of relatedness among the 64 

selected individuals. This resulted in a selection of 93 individuals spread across the bottom four generations of 65 

the Campora pedigree with a higher proportion coming from the bottom two generations. The set of 93 66 

individuals does not contain multiple members of any single nuclear family.  67 

Simulation - Genetic data were simulated with similar characteristics to those observed in the real genetic data 68 

from Campora (Supplementary Figure 2). Gene-dropping of chromosome 10 (chr10) was performed on the 69 

entire pedigree using the MORGAN package Genedrop (Wijsman, Rothstein, & Thompson, 2006). For time 70 

efficiency, Genedrop was only provided with a coarse genetic map, we then sampled precise location of 71 

recombination events on the far denser genetic map used in our study as in Gazal et al. (2014).  72 

We considered two approaches to generate the founder haplotypes, both enlisting the haplotypes of the 73 

UK10K panel (UK10K) (The UK10K Consortium, 2015) (see URLs). The UK10K contains member of the 74 

TwinsUk cohort; for the purposes of the simulation one member from each pair of monozygotic and dizygotic 75 

twins was removed leading to a pool of 7,500 haplotypes. In a first simulation strategy we sampled the 990 76 

pedigree founder haplotypes without replacement from the pool of UK10K haplotypes. In a second simulation 77 

strategy we first sampled 80 haplotypes from UK10K to approximate the founding event of roughly 37 founders 78 

in Campora and then used HapGen2 (Su, Marchini, & Donnelly, 2011) to simulate recombination events and 79 

mutations to create a pool of mosaic haplotype from which the 990 founder haplotypes of the pedigree were 80 

sampled without replacement. From hence we refer to these two simulation strategies as 'Pedigree' and 81 

'HapGen+Pedigree' respectively. Further details on HapGen2 parameters are given in Supplementary Materials. 82 

Each strategy was independently replicated 100 times with independent draws for the 990 and 80 haplotypes 83 

respectively. In each replicate we simulated variants at ARRAY positions for all 477 individuals and WGS 84 

positions for the 93 SSP individuals. We observed that the HapGen+Pedigree simulation produced simulated 85 

data with a mean pairwise genetic kinship (estimated on ARRAY genotypes) closer to the mean observed in 86 
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Campora (Supplementary Figure 3) suggesting the HapGen+Pedigree simulation better mimicked the data of 87 

Campora. 88 

Error models - Errors and sporadic missingness were simulated in the data. Both were introduced 89 

independently in the two simulated platforms (ARRAY and WGS). 90 

Missing genotypes observed in the ARRAY data in Campora were set to missing in the simulated data. 91 

Errors on the ARRAY data were simulated with a simple un-directed error model where one allele from a 92 

genotype can change to the other available allele (major or minor) at that position with an error rate of 0.001. 93 

For the WGS data, we simulated multiple reads for each genotype (including erroneous reads), from 94 

which genotype likelihoods and genotype quality scores were estimated using a similar methodology to previous 95 

studies involving next generation sequencing data simulation (Kim et al., 2011; Vieira, Albrechtsen, & Nielsen, 96 

2016). Genotypes which emerged with a quality score less than 20 were set to missing, otherwise the genotype 97 

of greatest likelihood was kept. Our error model was tuned to produce missingness rates close to the observed 98 

missingness rate in Campora (between 0.01 and 0.02) and error rates similar to those expected on the 99 

sequencing platform used in Campora (between 0.003 and 0.004). Full details of our WGS data simulation and 100 

the error model are given in Supplementary Materials and specific nucleotide error rates in Supplementary Table 101 

1. 102 

To assess the effect of genotyping errors and missingness on the performance of each phasing and 103 

imputation algorithm, we completed the same phasing and imputation steps using simulated data with both 104 

genotype errors and missingness (Imperfect data) but also without any such imperfections (Perfect data).  105 

Quality Control – No Quality control was performed on individuals. For imperfect data, all genotypes in the 106 

nuclear family were set to missing each time a Mendelian error was introduced by our error models. In all files, 107 

variants were removed for low Minor Allele Frequency (MAF), significant deviation from Hardy-Weinberg 108 

equilibrium and for high missingness in the case of imperfect data (Supplementary Materials). 109 

Phasing - Phasing algorithms can be separated into two main methodological classes: 110 

LD-based methods which rely on Hidden Markov Models (HMM) are employed by phasing algorithms 111 

SHAPEIT2 (Delaneau, Zagury, et al., 2013) and BEAGLE (Browning & Browning, 2016). Phase is estimated 112 

with respect to LD patterns and haplotype similarity and is built for each individual as a mosaic of current 113 

haplotype estimations of all other sample individuals as well as external reference haplotypes if they are made 114 
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available to the algorithm. For SHAPEIT2 we considered the use of the 'duohmm' option (O'Connell et al., 115 

2014) which harnesses parent-offspring or duo information for phasing. We also tested SHAPEIT3 (O'Connell 116 

et al., 2016), a new version of SHAPEIT2 designed for large sample sizes. 117 

In IBD-based methods, long stretches of IBD can be directly sought between pairs of individuals in 118 

order to phase directly each individual in turn in an approach named Long Range Phasing (Kong et al., 2008). 119 

We tested two software that employ Long Range Phasing: SLRP (Palin et al., 2011) and ALPHAPHASE 120 

(Hickey et al., 2011). ALPHAPHASE was developed for livestock populations and is able to use pedigree 121 

information in addition to genotypes. SLRP, which was specifically designed for population isolates, uses only 122 

the genotypes. 123 

Two releases of a new method which combines LD-based and IBD-based methods were also tested: 124 

EAGLE version 1 (EAGLE1) (Loh, Palamara, et al., 2016) and version 2 (EAGLE2) (Loh, Danecek, et al., 125 

2016). EAGLE1 was aimed at general populations and was developed to phase data with very large sample sizes 126 

It employs Long Range Phasing followed by an HMM in a second step. EAGLE2 focuses on harnessing an 127 

external reference panel. It no longer uses Long Range Phasing and instead is based on the positional Burrows-128 

Wheeler transform (Durbin, 2014) and an HMM. Yet if EAGLE2 is used without a reference panel it adds the 129 

Long Range Phasing algorithm of EAGLE1 as an initial step. 130 

 BEAGLE, SHAPEIT2, SHAPEIT3, and EAGLE2 can make inference from an external reference panel 131 

when phasing. We tested all software without an external panel and SHAPEIT2 and EAGLE2 with the 1000G 132 

panel. 133 

Switch Error Rate (SER) is the standard measure to assess the accuracy of an estimation of genetic 134 

phase. A switch error is observable between two consecutive heterozygous sites and occurs if phase at the 135 

second heterozygous site is incorrect with respect to that of the first. The SER is the fraction of pairs of 136 

heterozygous sites where a switch error has occurred out of the total number of possible pairs. A description of 137 

SER calculation in the presence of known genotype errors is given in the Supplementary Materials. We 138 

calculated SERs on the entirety of chr10: globally over all individuals and variants, for each individual, and for 139 

each variant. We compared the SER per variant to MAF calculated naively on the simulated ARRAY genotypes 140 

and the mean SER of each individual to the individual’s mean genetic kinship with all other sample members. 141 

Kinship was estimated from the simulated ARRAY genotypes using the R package ‘Gaston’ (see URLs).  142 
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Imputation – LD-based imputation methods IMPUTE2 (Howie, Donnelly, & Marchini, 2009), IMPUTE4 143 

(Bycroft et al., 2017), BEAGLE v4.1 (Browning & Browning, 2016), and MINIMAC3 (Das et al., 2016) were 144 

compared when using the 1000G as a reference panel. We included all 2,504 individuals from all populations of 145 

the 1000G for imputation as this has been shown to be the best approach (Howie, Marchini, & Stephens, 2011). 146 

We also used the HRC panel but only for MINIMAC3 due to the computational burden associated with this 147 

panel. The HRC panel used was the version made available for download through the European Genome-148 

phenome Archive, which contains 27,165 individuals, including all samples from the 1000G. As our simulations 149 

were based on the UK10K, we removed all UK10K haplotypes, leading to 23,450 individuals. We also tested 150 

the PBWT software (Durbin, 2014) on 20 of our replicates through use of the Wellcome Trust's Sanger 151 

Imputation Service and again using the 1000G as a reference panel. We did not test PBWT with the HRC panel 152 

as we could not remove the UK10K haplotypes from the panel when using this imputation service. To restrict to 153 

20 replicates per simulation strategy was a pragmatic decision based on the time required to upload data to the 154 

server. 155 

The benefits of imputation using an SSP (either alone or combined with a public reference panel) were 156 

investigated. In each simulation replicate, we first created an SSP: WGS and ARRAY data for the 93 SSP 157 

individuals were combined (setting discordant genotypes created by our error models to missing in the case of 158 

Imperfect data) and then phased. Imputation was performed with IMPUTE2 with a combination of this SSP and 159 

the 1000G panel, using the software option which allows the combination of two reference panels through cross 160 

imputation. We also tested MINIMAC3 with a combination of the SSP and the HRC panel. As MINIMAC3 161 

does not offer an option for cross imputation, the two panels were first restricted to the set of variants in 162 

common between them and then merged. We denote a phasing or imputation strategy by the name of the 163 

software added to the panels employed, for example: EAGLE2+1000G, IMPUTE2+1000G, or 164 

MINIMAC3+HRC+SSP. 165 

Imputation accuracy of software was assessed in each replicate by the squared Pearson’s correlation 166 

between imputed genotype dosages and original simulated genotypes for each biallelic SNP polymorphic in the 167 

simulated data and present in the output of every imputation software. Imputation was restricted to the telomeric 168 

region of the short arm of chr10 (20Mb in length). As imputation scenarios involving the SSP of 93 individuals 169 

were tested, imputation accuracy was measured for all scenarios on the complimenting set of 384 non-SSP 170 

individuals. Mean imputation accuracy was calculated over distinct partitions of the observed range of MAF by 171 

averaging across all variants in each MAF bin considered. MAF was estimated naively on all 7,500 UK10K 172 
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haplotypes. All imputation software were run on pre-phased data arising from the best phased data found when 173 

comparing phasing software. For general populations, it is possible that pre-phasing could lead to a loss of 174 

imputation accuracy (Roshyara, Horn, Kirsten, Ahnert, & Scholz, 2016) but this is unlikely to be significant in 175 

population isolates where highly accurate phased data is achievable (Howie, Fuchsberger, Stephens, Marchini, 176 

& Abecasis, 2012). 177 

All imputation software provided imputation quality scores per variant; the calculation of such scores 178 

varies between imputation software but the scores have been shown to be highly correlated to each other 179 

(Marchini & Howie, 2010). We investigated the consequences of post imputation quality control based on 180 

imputation quality scores in a separate analysis. 181 

Speed - Since we only concentrate on a single chromosome with a moderate number of individuals, 182 

computation time was not an issue for our simulation. However, many of the algorithms considered were 183 

designed with speed and low memory usage in mind. Indeed, EAGLE1, EAGLE2, BEAGLE, MINIMAC3, 184 

PBWT, IMPUTE4 and SHAPEIT3 are all geared towards performance when analysing very large numbers of 185 

individuals or when leveraging very large external reference panels. We measured real and computational time 186 

elapsed during a single replicate of the HapGen+Pedigree simulation. All phasing and imputation executions 187 

were completed on a 2×6 core, 2×12 thread 2.66GHz Intel Xeon Processor X5650 with 96Gb of random access 188 

memory.  189 

The options used for phasing and imputation software are discussed in the Supplementary Materials 190 

and the software versions used are detailed in the URLs. 191 

Results  192 

LD-based Phasing - For analyses of phasing performance, we present results from only the HapGen+Pedigree 193 

simulation unless otherwise indicated as the patterns of results were very similar between the two simulation 194 

strategies. Imperfect ARRAY data initially spanned 13,599 variants on chr10 and following quality control an 195 

average of 13,262 variants remained on the HapGen+Pedigree simulation strategy. Totalling over the 477 196 

individuals and across the entirety of chr10, phasing algorithms were required to phase an average of 2,150,627 197 

heterozygous sites in each simulation replicate. All LD-based phasing algorithms considered were able to phase 198 

the ARRAY data to a high degree of accuracy with global SERs below 0.002 (Figure 1). EAGLE2 delivered 199 

improved SER compared to EAGLE1 (Supplementary Figure 4) and so we only present detailed results for 200 

EAGLE2. SHAPEIT2 provided the most accurately phased data and the additions of the 'duohmm' option and 201 
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the 1000G as an external reference panel further improved its performance. SHAPEIT3 performed similarly to 202 

SHAPEIT2 and for subsequent analysis we will only present results for SHAPEIT2+duohmm+1000G. 203 

SHAPEIT2+duohmm+1000G achieved a mean SER of 1.9×10
-4 

whilst EAGLE2 achieved 3.2×10
-4

.
 
The mean 204 

global SERs for all phasing strategies considered are given in Supplementary Table 2. 205 

IBD-based Phasing - We note that EAGLE2 outperformed EAGLE2+1000G; conversely to what was observed 206 

for SHAPEIT2 (Figure 1). This result can be interpreted as evidence of the utility of the EAGLE2 Long Range 207 

Phasing routine for population isolates as this routine is irrevocably omitted from the algorithm when using an 208 

external reference panel. 209 

ALPHAPHASE and SLRP both provided added complications because they only phase sites that were 210 

found IBD between individuals. SLRP outperformed ALPHAPHASE in terms of SER even though 211 

ALPHAPHASE had access to the pedigree information (Supplementary Figure 5). ALPHAPHASE however 212 

phased more heterozygous sites than SLRP which may explain some of the difference in SER between the two. 213 

We chose to compare only SLRP to other software (Figure 2) as SLRP was clearly stronger than 214 

ALPHAPHASE. Owing to the sites left unphased by SLRP, a separate calculation of SER restricted to the set of 215 

sites phased by SLRP in each replicate was carried out. SLRP produced higher SERs than 216 

SHAPEIT2+duohmm+1000G and EAGLE2 and reducing the analysis to these sites resulted in lower SERs for 217 

all other phasing software (when compared to Figure 1). On these sites, SHAPEIT2+duohmm+1000G achieved 218 

a mean SER of 1.4×10
-4 

whilst EAGLE2 achieved 2.7×10
-4

 and so a considerable proportion of the switch errors 219 

observed in Figure 1 occurred on the small percentage (1.6% on average) of heterozygous sites left unphased by 220 

SLRP. This suggests that the sites left unphased by SLRP, which are by definition in areas where SLRP was 221 

unable to identify IBD between individuals, are precisely those sites that other software frequently phased 222 

incorrectly. 223 

Factors which impact Phasing Performance - To further explore the performance of phasing software, we 224 

performed a series of sub-analyses to identify patterns in the distributions of switch errors on chr10.  225 

Variants with low MAF had demonstrably higher SERs, whether using LD-based software or EAGLE2 226 

(Supplementary Figure 6). 227 

The levels of IBD in the simulated populations clearly affected phasing performance as all software 228 

had improved phasing accuracy in the presence of the elevated IBD in the HapGen+Pedigree simulation as 229 

compared to the Pedigree simulation strategy (Supplementary Figure 7). Similarly, SLRP and ALPHAPHASE 230 



P a g e  | 11 

 

both phased many more sites on the HapGen+Pedigree simulation (Supplementary Figures 8a-b). At the 231 

individual level, all phasing algorithms had lower performance for the individuals with the lowest mean 232 

pairwise genetic kinship to the rest of the sample (Supplementary Figures 9a-c). 233 

Phasing software returned slightly higher SERs when phasing data with errors and missingness 234 

(Supplementary Figure 10) and ALPHAPHASE and SLRP phased significantly less sites when errors and 235 

missingness were present (Supplementary Figures 8a-b). The effect of imperfections within the data was noticed 236 

particularly on the Long Range Phasing algorithms (ALPHAPHASE, SLRP, and EAGLE2).  237 

We specifically investigated the IBD status at switch errors sites in the Pedigree simulation strategy for 238 

EAGLE2 and SHAPEIT2+duohmm+1000G (Supplementary Materials and Supplementary Figure 11) as in only 239 

this simulation strategy, true IBD sharing was accessible from Genedrop. For both phasing approaches, there 240 

were a lower number of true IBD haplotypes at switch errors sites (6 IBD haplotypes on average) compared to 241 

correctly phased sites (17 IBD haplotypes on average). These true IBD haplotypes are the haplotypes that the 242 

software can use as phase informative. Hence the performance of the LD-based method SHAPEIT2 was 243 

implicitly linked to the prevalence of IBD.  244 

Accuracy of Imputation Software - Results pertain to imputation of phased Imperfect ARRAY data from both 245 

simulations strategies unless otherwise stated. Following the results from the phasing software evaluation, we 246 

phased ARRAY and WGS data with SHAPEIT2+duohmm+1000G. This phasing strategy was also found to be 247 

the most accurate for WGS data (Supplementary Figure 12). 248 

In each replicate, mean imputation accuracy was calculated across all polymorphic SNPs found within 249 

the output of every software. On average this entailed a selection of 40,989 SNPs for the Pedigree simulation 250 

and 40,407 SNPs for the HapGen+Pedigree simulation. This difference is ascribed to the presence of more 251 

monomorphic variants in the HapGen+Pedigree simulation. 252 

When using 1000G as the reference panel, MINIMAC3 provided the best imputation accuracy in both 253 

simulation strategies followed closely by IMPUTE4 and then IMPUTE2 (Figure 3). Variants with low MAF 254 

were universally harder to impute. BEAGLE and PBWT consistently delivered lower imputation accuracy than 255 

IMPUTE2, IMPUTE4, and MINIMAC3. Whilst IMPUTE4 marginally outperformed IMPUTE2, it currently 256 

does not offer the option to combine reference panels necessary for subsequent analyses in which we hence 257 

compare IMPUTE2 and MINIMAC3. 258 
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Genotype errors and missingness on the ARRAY data had minimal impact on imputation accuracy but 259 

such imperfections simulated on the WGS SSP had slightly more effect (Supplementary Figures 13 & 14). 260 

Impact of Reference Panel Choice - By comparing the two simulation strategies, we were able to identify the 261 

consequences of reference panel choice in a population isolate. When the 1000G was chosen as the external 262 

reference panel, imputation accuracy was significantly lower in the HapGen+Pedigree simulation strategy than 263 

in the Pedigree one (Figure 3). This difference in imputation accuracy may be due to differences in MAF 264 

between the simulated data and the 1000G reference panel (Supplementary Materials and Supplementary Figure 265 

15). MAFs on the HapGen+Pedigree simulation had drifted further away from the 1000G reference panel and 266 

the variants with the highest differences in MAF to the 1000G reference panel were imputed with lower 267 

accuracy than random selections of similar variants (Supplementary Figure 16a). 268 

Imputation with the SSP was an improvement upon imputation with the 1000G for both IMPUTE2 and 269 

MINIMAC3 (Figures 4 and 5). When using the SSP, the simulation strategy with the highest imputation 270 

accuracy was the HapGen+Pedigree simulation, contrary to when using only the 1000G (Figure 3). This can be 271 

ascribed the higher levels of IBD between the 93 SSP members and the 384 other individuals in this simulation 272 

strategy. Indeed, the most accurately imputed individuals were consistently those with higher values of mean 273 

pairwise kinship to the set of SSP individuals (Supplementary Figure 17).  274 

For MINIMAC3, imputation accuracy was clearly improved by using the HRC over the 1000G (Figure 275 

5). Imputation which included the SSP again produced more accurate results than imputation with only public 276 

reference panels on the HapGen+Pedigree simulation strategy. Rare variants were however imputed more 277 

accurately by MINIMAC3+HRC than by MINIMAC3+SSP on the Pedigree simulation. The results of Figures 278 

3, 4, and 5 are summarised in Supplementary Table 3. 279 

The founding event in an isolate will result in higher MAFs for certain variants as compared to general 280 

populations. Variants with a high difference in MAF compared to the 1000G were imputed as well as the 281 

random selections of comparable variants under IMPUTE2+SSP, but with lower accuracy under 282 

IMPUTE2+1000G (Supplementary Figure 16a). When changing reference panel from the 1000G to the SSP, we 283 

observed that imputation accuracy increased the most for variants with a MAF higher in the sample than the 284 

1000G (Supplementary Materials and Supplementary Figure 16b). Another consequence of using solely the 285 

1000G as a reference panel was the fact that some variants which were monomorphic in the sample were 286 
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imputed with dosages compatible with being heterozygous for many individuals, i.e. polymorphic in the sample 287 

(Supplementary Figures 16c-d). 288 

Imputation Quality Scores - Finally, we analysed the effect of applying various thresholds of the 'info' score 289 

for IMPUTE2 and the 'RSQ' score for MINIMAC3. Each successive threshold improved imputation accuracy 290 

for both IMPUTE2 and MINIMAC3 with the latter still providing higher accuracy in each MAF bin 291 

(Supplementary Materials and Supplementary Figure 18a-b). The ‘RSQ’ measure gave a better indication of 292 

imputation accuracy than ‘info’ and we also found that higher thresholds than the standard ones were arguably 293 

preferable for both rare and common variants in both simulation strategies (Supplementary Materials and 294 

Supplementary Table 4).  295 

Speed - For phasing, BEAGLE, EAGLE1 and EAGLE2 were the fastest because they allow for multiple 296 

threading. SHAPEIT2 required more computation time than other algorithms. For imputation, the quickest 297 

software were BEAGLE and IMPUTE4. MINIMAC3+1000G was quicker than IMPUTE2+1000G. We 298 

observed the additional complexity encountered by IMPUTE2 when performing cross imputation. The full list 299 

of times is given in Supplementary Table 5.  300 

Discussion 301 

Using simulated genetic data, we have rigorously tested the performance of a range of phasing and imputation 302 

software in a population isolate. EAGLE2 (without a reference panel) and SHAPEIT2 were the strongest 303 

performing phasing software with SHAPEIT2+duohmm+1000G giving the most accurately phased data. 304 

MINIMAC3, IMPUTE4, and IMPUTE2 all performed well and we observed a slight advantage for 305 

MINIMAC3. MINIMAC3 imputation was more accurate with the HRC as an external reference panel rather 306 

than the 1000G. The use of an SSP proved to be a very successful strategy, when used alone, but even more so 307 

when combined with a large external reference panel. MINIMAC3+HRC+SSP proved the most effective 308 

imputation strategy. Genotype errors and missingness were shown to have only a small effect on the 309 

performance of all phasing and imputation software considered.  310 

If we compare our phasing results to published results for outbred populations, it is clear that all 311 

methods performed with greater accuracy (SERs at least one order of magnitude smaller) on our simulated data. 312 

Indeed, for outbred populations, very large sample sizes have been required to achieve the high level of phasing 313 

accuracy observed in our population isolate study. For examples, see Bycroft et al. (2017), Loh, Danecek, et al. 314 

(2016), O'Connell et al. (2016), and Mitt et al. (2017). 315 
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IBD-based phasing methods did not prove as effective as the LD-based software SHAPEIT2 which 316 

appeared itself to directly profit from IBD in the sample. O'Connell et al. (2014) also observed SHAPEIT2 317 

benefiting from IBD. Indeed, the performance of IBD-based and LD-based software followed a similar pattern: 318 

all were less accurate when less IBD was present and all had difficulty when phasing the likely non-IBD regions 319 

of the genome and when phasing individuals with a low average kinship to the rest of the sample. IBD-based 320 

methods were the most affected by imperfections in the data. 321 

EAGLE was expected to perform strongly on population isolate data as it should combine the appeal of 322 

Long Range Phasing and the strengths of LD-based methods such as SHAPEIT2. Though the combination of 323 

IBD-based and LD-based approaches in EAGLE1 and EAGLE2 is a clear improvement over previous Long 324 

Range Phasing software, it does not provide more accurate phasing that the LD-based approach implemented in 325 

SHAPEIT2. This is in accord with the results of Mitt et al. (2017) in a cohort of intermediate size but not with 326 

those of Loh, Danecek, et al. (2016) in much larger cohorts. EAGLE2 was developed with the aim of handling 327 

large sample sizes but as gene-mapping studies in population isolates will remain by nature small-scale, 328 

SHAPEIT2 remains the optimum choice for phasing. 329 

Published results for SHAPEIT3 in outbred populations suggest that it may return less accurate phased 330 

data compared to SHAPEIT2 (O'Connell et al., 2016). Of the two, SHAPEIT2 is recommended for sample sizes 331 

less than 20,000 which would encompass the realm of population isolates. In our study, SHAPEIT2 and 332 

SHAPEIT3 performed very similarly. 333 

Our comparisons on imputation strategies agree with recent literature (Deelen et al., 2014; Mitt et al., 334 

2017; Pistis et al., 2015) in terms of the improvement in accuracy brought by a reference panel specific to the 335 

population under study. Mitt et al. (2017) concluded that for certain outbred populations, such a panel can 336 

outperform an order of magnitude larger and more diverse reference panel (the HRC). We show that for a 337 

population isolate, an SSP can be far smaller and still outperform the HRC. As discussed in Asimit and Zeggini 338 

(2012), the appropriate size of the SSP will depend on the diversity of the isolate. 339 

The HapGen+Pedigree simulation strategy gave the best representation of a true isolate with a strong 340 

founder effect producing large disparities to general populations represented in public databases. Of the two 341 

simulation strategies, imputation accuracy was significantly lower on this simulation when using only a public 342 

reference panel. This suggests that for a population isolate with a very small set of founders and high relatedness 343 

between individuals, using public reference panels alone is not a completely appropriate strategy for imputation. 344 

A better solution is to sequence a subset of the isolate to serve as an SSP. Even with a very large external 345 
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reference panel, such as the HRC (here 23,450 individuals), imputation accuracy could not match the level 346 

reached by an SSP of 93 individuals. Using an SSP was particularly effective when imputing variants with 347 

MAFs higher in the sample than in an external reference panel. As such variants are precisely those which 348 

motivate the study of population isolates, this strengthens the argument for using an SSP in a population isolate.  349 

We observed that the best results came from combining an external reference panel and our SSP 350 

together for imputation. IMPUTE2 facilitates cross-imputation of two reference panels with variants at non-351 

identical sets of positions. This is an attractive strategy for isolates as all positions from both panels can be 352 

imputed including variants specific to the isolate. 353 

The accuracy of imputation can be directly linked to the statistical power of subsequent association 354 

tests (Browning & Browning, 2009; Huang, Wang, & Rosenberg, 2009; Li, Willer, Ding, Scheet, & Abecasis, 355 

2010; Surakka et al., 2010). Indeed, if N is the number of individuals in a study and a variant is imputed with an 356 

imputation accuracy of r
2 

= α, then the statistical power of an association test using the imputed dosages is 357 

equivalent to that of a test performed on observed genotypes for αN samples. This is the intended interpretation 358 

of imputation quality scores which are estimates of the true r
2 

statistics (Marchini & Howie, 2010). To give an 359 

example, we have observed differences in imputation accuracy of around 0.2 for rare variants (MAF ≤ 0.05) and 360 

0.1 for common variants (MAF > 0.05) between MNIMAC3+1000G and MINIMAC3+HRC+SSP on the 361 

HapGen+Pedigree simulation (Supplementary Table 3). Imputation accuracy was measured on a sample of size 362 

N = 384 (non-SSP individuals), hence the observed differences in imputation accuracy would correspond to 363 

losses of power equivalent to removing around 77 or 38 of these individuals from subsequent analyses 364 

respectively. Studies in isolates typically involve unavoidably modest sample sizes. Hence, there is great 365 

importance in attaining the highest imputation accuracy possible in such studies in order to preserve power.  366 

One possible option for SHAPEIT2 that we did not consider is the PIR option which harnesses phase 367 

informative reads (Delaneau, Howie, Cox, Zagury, & Marchini, 2013). To include this in our simulation would 368 

have required the creation of the original read data which was judged to be too great a computational burden for 369 

our study. This option was tested in Mitt et al. (2017) and did not significantly improve the global performance 370 

of SHAPEIT2. Another version of SHAPEIT2, SHAPEITR (Sharp, Kretzschmar, Delaneau, & Marchini, 2016), 371 

sets out to improve phasing by concentrating on rare variants. However, as it is so far only available through the 372 

Oxford Statistics Phasing Server (see URLs), it is not suitable for an in-house simulation.  373 

One software in particular which we have not tested is PRIMAL which uses Long Range Phasing and 374 

is designed for phasing and imputation in population isolates (Livne et al., 2015). PRIMAL specifically requires 375 
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pedigree information for phasing and an SSP for imputation. We were unable to successfully setup and run 376 

PRIMAL on our simulated datasets and we have been advised by the authors to wait for a new version which is 377 

soon to be released. 378 

In this study, we have strived to create realistic isolate data to thoroughly test a range of phasing and 379 

imputation software and strategies. Our study design allowed us to observe how phasing and imputation 380 

algorithms are impacted by certain characteristics of isolate data, namely IBD between sample members and 381 

characteristics arising from isolation such as divergent MAFs compared to reference populations. We found that 382 

the best strategy for phasing in a population isolate was to use SHAPEIT2 with the ‘duohmm’ option and with 383 

an external reference panel. For imputation, if no SSP is sequenced in the isolate, it is desirable to use the largest 384 

public reference panel available which would lead to the use of MINIMAC3 or IMPUTE4 as these software can 385 

handle very large reference panels. If an SSP is available in the isolate it should be used and the option in 386 

IMPUTE2 that combines reference panels through cross imputation makes it an attractive choice of imputation 387 

software. In this case the largest available public reference panel compatible with IMPUTE2 should be used 388 

with the SSP. At the time of publication, IMPUTE4 and MINIMAC3 do not offer the option of combining two 389 

reference panels, but, if such options do become available, then a strategy which both combines the HRC and an 390 

SSP by cross imputation would likely be both fast and highly accurate in a population isolate. 391 
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 556 

Figure 1. Global switch error rates for BEAGLE, EAGLE2, SHAPEIT2, and SHAPEIT3 for the 557 

HapGen+Pedigree simulation strategy. 558 
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 559 

Figure 2. Global switch error rates for BEAGLE, SLRP, EAGLE2, and SHAPEIT2+duohmm+1000G for the 560 

HapGen+Pedigree simulation strategy on the set of variants successfully phased by SLRP in each replicate. 561 
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 562 

Figure 3. Software imputation accuracy with the 1000G as an external reference panel and for the Pedigree and 563 

HapGen+Pedigree simulation strategies. The percentages of variants in each MAF bin are displayed atop the 564 

figure. Total number of variants for each strategy: 40,989 (Pedigree) and 40,407 (HapGen+Pedigree). † PBWT 565 

was only run on 20 replicates of each simulation strategy. 566 
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 567 

Figure 4. Imputation accuracy of IMPUTE2 when using various reference panels for the Pedigree and 568 

HapGen+Pedigree simulation strategies. The set of variants used for comparison is a reduction of the set used in 569 

Figure 3 because using only the SSP as a reference panel limits the set of possible variants to compare imputed 570 

dosages and true genotypes. This depleted the number of variants in the [0,0.01) MAF category, which was 571 

therefore merged with that of [0.01,0.05) MAF. Total number of variants for each strategy: 35,058 (Pedigree) 572 

and 34,065 (HapGen+Pedigree). 573 
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 574 

Figure 5. Imputation accuracy of MINIMAC3 with various reference panels on the same set of variants as used 575 

in Figure 4. 576 


