

Comparison of inhomogeneity distortion correction methods in diffusion MRI of the spinal cord

Haykel Snoussi, Emmanuel Caruyer, Olivier Commowick, Elise Bannier, Christian Barillot

► To cite this version:

Haykel Snoussi, Emmanuel Caruyer, Olivier Commowick, Elise Bannier, Christian Barillot. Comparison of inhomogeneity distortion correction methods in diffusion MRI of the spinal cord. ESMRMB -34th Annual Scientific Meeting European Society for Magnetic Resonance in Medecine and Biology, Oct 2017, Barcelone, Spain. inserm-01579134v1

HAL Id: inserm-01579134 https://inserm.hal.science/inserm-01579134v1

Submitted on 31 Aug 2017 (v1), last revised 26 Feb 2019 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Abstract 718

Comparison of inhomogeneity distortion correction methods in diffusion MRI of the spinal cord Session

Type: Scientific Session

Topic: Preclinical Studies and Basic Science / Diffusion imaging

Authors: <u>H. SNOUSSI</u>¹, E. CARUYER², O. COMMOWICK¹, E. BANNIER³, C. BARILLOT²; ¹Rennes,FR,Inria,VisAGeS Reseach Group, ²Rennes,FR,CNRS,IRISA UMR 6074, ³Rennes,FR,Centre Hospitalier Universitaire de Rennes,Neurinfo platform

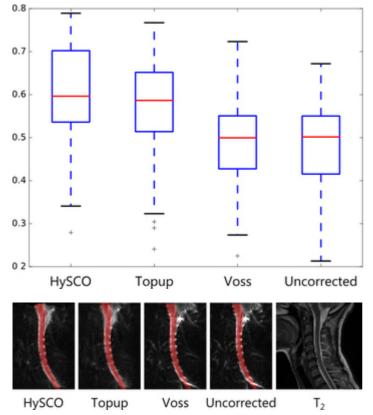
Purpose / Introduction

Diffusion MRI (dMRI) is a modality that describes the geometry of neural architecture. Diffusion images suffer from various artifacts originating from subject and physiological motion, eddy currents and B_0 -field inhomogeneity. These can severely affect image quality particularly in the spine region. However, strategies exist to correct these distortions, including co-registration, point spread function, phase field map and reversed gradient polarity method (RGPM). In this work, we focus on the comparative evaluation of correction methods using RGPM which provides best results [1]. More precisely, we compare Voss [1,2] plus two other recent methods: FSL's Topup [3] and SPM's HySCO [4].

Subjects and Methods

Data acquisition: 116 dMRI acquisitions were conducted on 61 multiple sclerosis subjects and 9 healthy volunteers (between 1 and 3 visits/subject, 6 months interval) from Rennes and Montpellier hospitals (3T Siemens Verio and Skyra, respectively) using the following parameters: sagittal orientation, TR/TE=3600/90ms, 2x2x2mm³ resolution, 6 b=0 and 30 non-collinear DWI (900 s/mm²) plus one b=0 image with reverse phase-encoding direction. After QC (see below), we kept 69 acquisitions.

Quality control: Images with too many artifacts not related to B_0 -field inhomogeneity (motion, ghosting) were eliminated, as well as acquisitions for which rigid registration between anatomical and diffusion failed (subject motion).


Comparing distortion correction methods: For evaluating the efficiency of either method, the whole spinal cord was segmented using the Spinal Cord Toolbox [5] on a T_2 -weighted scan to obtain a binary mask which is registered to the first b=0 volume. Cross-correlation was computed (Fig.1) between each corrected dMRI and the rigidly registered T_2 image (Fig.2), only within the spinal cord region.

Results

ANOVA was performed on the cross-correlation scores, and confirmed that there is a significant improvement using correction distortion (F=19.8, p= $1.27 \cdot 10^{-11}$). Further, a Tukey's test showed that both HySCO and Topup perform better than Voss and uncorrected (p< $2 \cdot 10^{-4}$). However there is no significant difference between Voss and no correction. This last result is in contradiction with [1] which included 3 datasets, while we report results on 69 acquisitions.

Another finding (data not reported) is that changing the order in which RGPM images are given as input (first F>H then H>F, or reverse) yields different results, albeit no significant difference was noted.

Discussion / Conclusion

This comparative study conducted on 69 images confirms that performing a distortion correction post-processing step is important for the accuracy of the subsequent analysis; out of the 3 methods tested, HySCO and Topup provide best results.

References

[1] Cohen-Adad, J., Henrik Lundell, and S. Rossignol. "Distortion correction in spinal cord DTI: what's the best approach." *Proceedings of the 17th Annual Meeting of ISMRM, Honolulu, USA*. Vol. 3178. 2009.

[2] Voss, Henning U., et al. "Fiber tracking in the cervical spine and inferior brain regions with reversed gradient diffusion tensor imaging." *Magnetic resonance imaging* 24.3 (2006): 231–239.

[3] Andersson, Jesper LR, Stefan Skare, and John Ashburner. "How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging." *Neuroimage* 20.2 (2003): 870-888.

[4] Ruthotto, L., et al. "Diffeomorphic susceptibility artifact correction of diffusion-weighted magnetic resonance images." *Physics in medicine and biology* 57.18 (2012): 5715.

[5] De Leener, Benjamin, et al. "SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data." *NeuroImage* 145 (2017): 24-43.

Print