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Multimodal neurofeedback estimates brain activity using information acquired with more

than one neurosignal measurement technology. In this paper we describe how to set

up and use a hybrid platform based on simultaneous electroencephalography (EEG)

and functional magnetic resonance imaging (fMRI), then we illustrate how to use it for

conducting bimodal neurofeedback experiments. The paper is intended for those willing

to build a multimodal neurofeedback system, to guide them through the different steps

of the design, setup, and experimental applications, and help them choose a suitable

hardware and software configuration. Furthermore, it reports practical information from

bimodal neurofeedback experiments conducted in our lab. The platform presented here

has a modular parallel processing architecture that promotes real-time signal processing

performance and simple future addition and/or replacement of processing modules.

Various unimodal and bimodal neurofeedback experiments conducted in our lab showed

high performance and accuracy. Currently, the platform is able to provide neurofeedback

based on electroencephalography and functional magnetic resonance imaging, but the

architecture and the working principles described here are valid for any other combination

of two or more real-time brain activity measurement technologies.

Keywords: neurofeedback, electroencephalography, functional magnetic resonance imaging, multimodal, brain

signals, real-time

1. INTRODUCTION

Neurofeedback (NFB), also called neuro-therapy or neurobiofeedback, is defined as the self-
regulated change of a particular brain activity that is reflected in the change of one or several
neurosignals captured by brain activity measurement technologies such as electroencephalography
(EEG), blood-oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI),
magnetoencephalography (MEG), or near-infrared spectroscopy (NIRS). Taking advantage of the
human brain plasticity, the aim of NFB is to treat or cure neurological and neuropsychiatric
disorders with learned self-regulation of the disordered brain regions. Commonly provided visually
or aurally, NFB achieves its goal by presenting the subject with his/her estimated brain activity in
real-time (Strehl et al., 2006; Birbaumer et al., 2013; Stoeckel et al., 2014). Various NFB studies
have been reported in both research and clinical domain (Evans and Abarbanel, 1999; Kotchoubey
et al., 2001; Christopher deCharms et al., 2005; Strehl et al., 2006; Haller et al., 2010; Subramanian
et al., 2011; Linden et al., 2012; Sitaram et al., 2012; Weiskopf, 2012; Li et al., 2013; Ruiz et al.,
2013).
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The majority of the existing studies employ only one
measurement technology to estimate the NFB. Such unimodal
NFB focusses on a single aspect of the neurophysiological
processes, such as brain electrophysiological activity for EEG or
hemodynamic activity for fMRI.

Recently, there has been a growing interest in the NFB
community to combine more than one brain activity
measurement technology (Nakano et al., 2012; Yu et al.,
2013; Jorge et al., 2014; Koo et al., 2015), where the combination
of EEG and fMRI seems to be the most notable. For instance,
fMRI has been used as the second complementary data in the
EEG inverse problem (Grech et al., 2008) to localize the origins of
the neuronal activity. Since the inverse problem is undetermined
(Vogel, 2002), fMRI has been used as a constraint to obtain a
solution to the problem. The combinational approaches can be
fMRI-constrained in which fMRI derived spatial priors are used
in EEG source identification (Bießmann et al., 2011), or they can
be the simultaneous fusion of the modalities (Valdes-Sosa et al.,
2009). Furthermore, newmathematical and statistical approaches
that use multimodal EEG-fMRI fusion and benefit from their
complementary natures, are being developed. Such methods
include joint independent component analysis (ICA) (Calhoun
et al., 2006) or ICA based group inferences from fMRI (Calhoun
et al., 2009). In another recent approach, a general framework
for the fusion of EEG and fMRI, is introduced (Karahan et al.,
2015). These multimodal observations that capture different
aspects of the neurophysiological activity have the potential to
provide additional information about the ongoing brain activity,
consequently leading to better NFB estimation. For instance, in
the case of EEG-fMRI, while the EEG measurements offer good
temporal but poor spatial information, the fMRI measurements
offer good spatial but little temporal information. Combining
the strongest aspects of each modality can potentially provide
a better estimate than any of them separately. The majority of
the existing bimodal EEG-fMRI studies estimate the real-time
NFB only from one modality (usually EEG) while still using both
modality measurements for offline analysis (Kinreich et al., 2012;
Ros et al., 2013; Meir-Hasson et al., 2014; Shtark et al., 2015;
Zich et al., 2015; Keynan et al., 2016; Zotev et al., 2016). The
only study that estimates bimodal NFB in real-time is reported
by Zotev et al. (2014). To the best of our knowledge there is no
commercial system that offers bimodal EEG-fMRI NFB.

In this paper we describe how to set up and use a bimodal
NFB platform. Furthermore, we provide a general overview of
the main technical challenges and explain how we have addressed
them during the development of our bimodal EEG and fMRI
platform at Neurinfo1.

2. GENERAL DESCRIPTION OF A HYBRID
EEG-FMRI PLATFORM FOR BIMODAL
NEUROFEEDBACK

The abstract diagram of a hybrid EEG-fMRI NFB platform is
shown in Figure 1. A hybrid platform must have a magnetic

1http://www.neurinfo.org/.

FIGURE 1 | Abstract diagram of an hybrid EEG-fMRI NFB platform. The

patient/subject is an integral part of the NFB loop. The brain activity generates

neurosignals which are read with two subsystems then forwarded to the NFB

Unit. This unit estimates the NFB and then shows the results to the patient

through the display, thus allowing self-regulation of the brain activity based on

the real-time NFB.

resonance (MR) compatible EEG and an fMRI acquisition
subsystems. Such subsystems are commercially available (see
Sections 3.1 and 3.2) and must be acquired with all the necessary
components that enable real-time acquisition.

The platform must also have an NFB Unit that is capable of:
(1) connecting and acquiring brain signals coming from each
subsystem in real-time, (2) estimating the NFB values from the
brain signals, (3) handling the configuration and execution of
the experimental protocol, (4) ensuring full synchronization, and
(5) establishing continuous communication with the subject. The
NFB Unit is rather a logical unit that can be implemented by
using different software modules deployed on one or several
computers/servers on a network.

The NFB loop is closed with the communication device (i.e.,
display or headphones) which presents the NFB to the patient.

2.1. NFB Unit
The NFB Unit should provide for each modality a real-time
processing pipeline that handles signal acquisition and all the
necessary methods/algorithms required for NFB calculation.
Furthermore, it should provide the flexibility of usingmultimodal
or unimodal NFB. The following section explains in detail the
NFB Unit components and their functions.

2.1.1. The Real-Time EEG Processing Pipeline
The exact pipeline architecture and its implementation heavily
depend on (i) the NFB application(s), (ii) the selected EEG
subsystem and (iii) the individual software engineering approach.
A generic diagram of the real-time EEG processing pipeline
for NFB is shown in Figure 2. This diagram is not a rigid
design architecture but rather a guideline for the real-time
EEG processing flow. Furthermore, its components can be
implemented as separate software modules and/or deployed on
several processing hardware. The pipeline architecture promotes
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FIGURE 2 | Generic diagram of a real-time EEG processing pipeline for NFB. The (optional) offline calibration, usually performed right before the real-time

experiments, is used to obtain initialization information for real-time processing during NFB sessions. At each stage of the pipeline there are few examples of signal

processing methods, shown inside the purple boxes. The most common types of (optional) updates from each stage are also indicated with dashed lines.

parallel computing of different signal processing steps, which
improves real-time performance.

2.1.1.1. Initialization
The initialization information is usually obtained through a
preliminary offline training or calibration session (see Section 4)
but it can also include a priori information based on
empirical knowledge about EEG and/or NFB. Depending on
the experimental protocol and the selected signal processing
techniques, the initialization might include spatial or temporal
filters, band power estimates, signal components (i.e., principal or
independent components), thresholds, features or NFB targets.

2.1.1.2. Updates
Some NFB protocols require online updates that complement
or even substitute the initialization information throughout the
duration of an experiment. These updates can be used to improve
the EEG signal filtering, reevaluate the extracted features or
change the NFB targets.

2.1.1.3. Pre-processing
This step includes various preliminary signal processing
operations (i.e., artifact and/or baseline removal, dipole
extraction, etc.) that aim at improving the signal-to-noise ratio
in EEG by minimizing the effect of local and/or global artifacts.
Indeed, there are some distinctive EEG artifacts that occur only
during simultaneous EEG and fMRI acquisition, which can
severely compromise the quality of the EEG signals.

• The gradient artifacts are caused by the scanner’s alternating

gradient magnetic field during an MR acquisition. The very

high amplitude and frequency variability range of the gradient
magnetic field causes artifacts with amplitude often more

than 100 times higher than normal EEG. During an fMRI
acquisition the gradient artifact pattern within each Time of

Repetition (TR) is ideally identical, which leads to very low

inter-volume variability generated gradient artifacts. Hence,
the EEG signals recorded within a TR window can be filtered

by subtracting the artifact as a template (Allen et al., 2000).

The template is estimated by averaging a user defined number

consecutive equally spaced intervals extracted in phase with
the artifact generation. This method causes the randomly

distributed EEG signals to be subtracted from the averaged

curve, ideally leaving only the external influence of the
scanner. For online applications, 5–15 shifting consecutive

TRs are used to build the template. The template is then

subtracted from the following TR window, thus leaving only
the filtered EEG signal. It is worth noting that the EEG

amplifiers should be very sensitive to small changes in EEG
micro currents (∼0.1µV), while also having a large dynamic

amplitude range (∼50,000µV) in order to record both the

EEG with appropriate resolution and the MR artifacts without
saturation.

• The ballistocardiogram (BCG) artifacts are caused by the

micro currents generated by the pulsatile blood flow related
movement of the EEG electrodes in the presence of the
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strong magnetic field of the scanner. Their occurrence is thus
strongly related to the subject’s heartbeat and their amplitude
range is higher than that of normal EEG. The BCG artifacts
correction method is very similar to that of gradient artifact.
Heartbeats are recorded and detected on a specific channel,
then for each channel a template is calculated using 10–20
pulse intervals. Finally, the template is removed from the
following pulse interval (Allen et al., 1998). Depending on the
subject’s heartbeat variability, the removal of the BCG artifacts
can be very challenging and give less than optimal results
during real-time applications.

• Another MR specific EEG artifact is caused by the scanner’s
internal ventilation system. The best way to avoid this artifact
is to switch off the ventilation system for the duration
the experiment, if this is allowed by the MR scanner
manufacturer’s guidelines. Otherwise, it can be removed as
shown by Nierhaus et al. (2013).

• Last, any other type of voluntary or involuntary head motion
of the patient inside the MR scanner can cause irregular EEG
artifacts that can be very hard to detect and remove. There exist
some practical methods that remove the motion artifacts not
only in EEG signals (Nakamura et al., 2006; Jorge et al., 2015;
Klovatch-Podlipsky et al., 2016), but also in fMRI by using the
motion estimation extracted from EEG signals (Zotev et al.,
2012).

After removing all the MR specific artifacts, the real-time EEG
signal processing is very similar to that of the standard EEG
acquired outside of MR.

2.1.1.4. Filtering
This step includes more elaborate signal processing operations
in the spatial and temporal domain. Commonly used spatial
filtering techniques include variants of surface Laplacian,
common spatial patterns (CSP), or beamforming (Spencer et al.,
1992; Nunez and Westdorp, 1994; Lotte and Guan, 2011).
More elaborate techniques that aim at EEG source localization
and signal decomposition use various independent component
analysis (ICA) methods, inverse modeling, etc. (Pascual-Marqui
et al., 2002; Subasi and Gursoy, 2010). Temporal filtering is
usually based on the spectral analysis of the EEG signals. The
majority of the filtering operations requires preliminary training
to build subject specific filters and/or mathematical models in
order to improve the real-time filtering results.

2.1.1.5. Feature extraction
After filtering, predefined EEG features are extracted. The choice
of features highly depends on the NFB protocol. The most
common features are extracted from the signal power analysis in
the frequency domain. The features are then used for the NFB
calculation (see Section 2.1.3).

2.1.2. The Real-Time fMRI Processing Pipeline
The diagram of a generic real-time fMRI processing pipeline for
NFB is shown in Figure 3. Similar to EEG, the fMRI pipeline
architecture also depends on the application, the fMRI subsystem
and software engineering approach.

FIGURE 3 | Generic diagram of a real-time fMRI processing pipeline for NFB. The same principles shown for EEG in Figure 2 apply also here for fMRI.

Furthermore, depending on the fMRI processing method, the spatial and temporal filtering are sometimes interchangeable.
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2.1.2.1. Initialization
The fMRI initialization information is spatial, temporal or a
combination of the two. A typical spatial information is a brain
region of interest (ROI) that can be selected a priori (i.e.,
from a brain atlas, Cox, 1996; Tzourio-Mazoyer et al., 2002),
extracted offline from previous studies or by a functional localizer
preceding the NFB session. Examples of temporal information
are the experimental design, the hemodynamic response function
as well as various temporal filters used for time-series analysis.
The fMRI activation mapping techniques yield both spatial and
temporal information. There are also some protocols that would
take into account different ROIs and their activation order
based on dynamic causal models (Penny et al., 2004; Stephan
et al., 2008; Penny et al., 2011). Initialization may also include
information used for NFB estimation like target BOLD contrast
values or thresholds.

2.1.2.2. Updates
Real-time updates can be used to improve spatial filtering by
using voxel clustering in neighboring areas or ROI shape and
size changes, to improve temporal filtering (i.e., change online
processing parameters or noise filters), or even to dynamically
change the NFB target(s).

2.1.2.3. Pre-processing
This step includes various mathematical transformations of the
fMRI volume series including registration, motion estimation
and correction, smoothing and slice-time correction. Their aim
is to improve the fMRI signal-to-noise ratio and also to account
for signal distortion due to subject’s head motion (Friston et al.,
1995; Jenkinson et al., 2002).

2.1.2.4. Spatial filtering
Global brain activity is seldom the goal of NFB. Instead, local
activities on specific ROI(s) are usually monitored. Spatial
filtering is used to extract the BOLD contrast values of the
ROI voxels. This provides focus to the hemodynamic activity
of the targeted brain region(s). Furthermore, it also reduces
significantly the online computation demand for the following
processing steps.

2.1.2.5. Temporal filtering
The fMRI signal is affected by random noise, physical artifacts
from the scanner, subject’s motion artifacts or other physiological
fluctuations (Bianciardi et al., 2009). The random noise can be
removed by using Gaussian smoothing or temporal averaging;
the scanner drift by linear trend removal, exponential moving
average (Roberts, 2000; Cui et al., 2010; Koush et al., 2012), high-
pass filtering, correlation analysis or generalized linear model
(GLM) analysis. Global and local physiological fluctuations can
also be removed by subtracting background activity, temporal
filtering, or again GLM analysis with confound predictors.
Standard offline SPM2 processing uses GLM analysis to linearly
fit the whole fMRI time series into a set of specific time-
series components pre-defined in the design matrix, followed by
an activation mapping process based on statistical and spatial

2http://www.fil.ion.ucl.ac.uk/spm/.

analysis of the GLM results. In real-time experiments, similar
modeling like online windowed GLM (Nakai et al., 2006) or the
incremental GLM (Bagarinao et al., 2003), can be done by using
the acquired signal instead of the whole fMRI time series. These
methods perform a new GLM based analysis for each new fMRI
volume. Other online fMRI methods use correlation analysis
(Cox et al., 1995; Gembris et al., 2000) or ICA (Esposito et al.,
2003; Chiew, 2013; Soldati et al., 2013a,b).

2.1.2.6. Feature extraction
Predefined features that will be used for NFB estimation,
are extracted from the filtered signal. The features, their
extraction and how they are used for the NFB estimation is
determined by the experimental protocol. Commonly, these
are statistical observations or inferences over the ROI(s),
i.e., the maximum likelihood, z-score or p-values. Some
protocols use more elaborated spatial analysis based features like
sub-clustering.

2.1.3. NFB Calculation
The bimodal NFB platform must be able to provide also
unimodal EEG or fMRI NFB by using only one modality (see
Figure 4). In this section we will consider some of the most
commonly used NFB targets for both EEG and fMRI and how
to estimate the NFB values accordingly.

The NFB target or goal is strictly related to the experimental
or clinical protocol, hence they can be quite different and used in
a variety of applications (see Section 1). Furthermore, they can be
either constant or dynamically changed throughout the duration
of the experimental session.

Generally, the NFB value is estimated using the features
extracted from their respective pipelines (see Figures 2, 3). In
unimodal NFB, only one set of features is considered, and NFB
can be estimated as a relative or normalized measure between the
current value and the target [i.e., average percent signal change
(APSC); Christopher deCharms et al., 2005; Hinds et al., 2011],

FIGURE 4 | The hybrid platform should able to provide both unimodal

and bimodal NFB based on the requirements of the NFB protocol.

Depending on the protocol, the output can be: i) unimodal EEG NFB, ii)

unimodal fMRI NFB, or iii) bimodal EEG-fMRI NFB. Switching between them

could be done with a simple initial configuration.

Frontiers in Neuroscience | www.frontiersin.org 5 March 2017 | Volume 11 | Article 140

http://www.fil.ion.ucl.ac.uk/spm/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Mano et al. Hybrid Neurofeedback Platform

a normalized statistic observations or a connectivity measure
(Koush et al., 2013; Zilverstand et al., 2014). In the case of
unimodal EEG-NFB protocols that aim at the increase (decrease)
of a certain neural oscillation at a specific frequency band and
at a specific measuring or source location, the NFB value can be
the estimation of the relative change of the EEG spectral power
related features. Similarly, for unimodal fMRI-NFB protocols
that aim the increase (decrease) of the hemodynamic activity at a
specific ROI, theNFB value can be estimated as the relative BOLD
contrast change of the ROI voxels. Other fMRI-NFB protocols
aim to reach a certain signal change at specific brain regions or
even spatial augmentation of these regions, in such cases the NFB
value can be estimated as the relative change of the ROI size (Yoo
and Jolesz, 2002). More elaborate protocols rely on the functional
connectivity of various ROIs or causal modeling (Koush et al.,
2013).

In bimodal protocols, the calculation can be done separately
for each modality and then the two NFB values are: (1) given as a
two dimensional vector [EEG-NFB, fMRI-NFB], or (2) combined
together mathematically to give a one dimensional NFB. Another
possibility is to combine the features of each modality and use
them as the input of a joint model that estimates unidimensional
NFB. There also exists the possibility to use a joint EEG-fMRI
modeling approach to extract features from both EEG and fMRI

signals simultaneously and then estimate NFB based on the joint
features.

2.1.4. Synchronization
In bimodal NFB, the simultaneous signals coming from each
modality should reflect the brain activity occurring during the
specific task indicated by the protocol with minimal delay or
drift. This demands a high level of synchronization between
both subsystems and the protocol. One strategy to achieve such
synchronization is by dividing it into two different layers. The
first layer shall be responsible for the acquisition subsystems and
the second one for the protocol (see Figure 5).

2.1.4.1. Acquisition synchronization (first layer)
The synchronization starts with the acquisition of the first fMRI
scan. At the beginning of each acquisition, the MR platform
sends a TTL pulse which marks the start of the online session
and is registered as the time reference for all the following
events. Immediately after the first pulse, the NFB Unit starts
collecting data from both subsystems using their respective
callbacks. To provide real-time acquisition with virtually no
delay, the callbacks’ frequencies should be equal or higher than
their respective subsystems’ acquisition frequencies. For example,
if EEG is digitized at 250 Hz then the callbacks should be ≥250

FIGURE 5 | The system synchronization is divided into two layers. The first layer synchronizes the acquisition subsystems by using EEG and fMRI callbacks,

and issues periodical controls for de-synchronization, all independently from the NFB protocol. The second layer relies on the synchronization of the first layer, and

uses protocol and update NFB callbacks to ensure the synchronization of the protocol with the acquisition subsystems, the NFB calculation and visualization. It uses

protocol, update and synchronization controls to detect de-synchronization.
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Hz. Similarly, for fMRI acquisitions done at 1Hz the callbacks
should be ≥1Hz. For practical reasons both callbacks can be set
to the highest acquisition frequency (i.e., EEG’s). When the NFB
protocol is not highly time sensitive, the callback frequencies can
be set lower than that of the EEG sub-system in order to allocate
more computing time and power for data processing.

In this layer, both the EEG and the fMRI signals have the
same starting time marked by the first TTL and and are collected
synchronously. To ensure continuous synchronization, periodic
checks should be implemented in the NFB Unit, such as buffer
overflow, acquisition delays or drifts.

2.1.4.2. Protocol synchronization (second layer)
This layer is necessary for the synchronization of the NFB
calculation with the acquisition subsystems, and to guarantee
that the NFB shown to the subject corresponds to the
brain activity that was measured following the experiment
protocol.

In general, a NFB experiment requires the subject to perform
a specific mental task that changes the targeted brain activity.
An example protocol would be to repeat a specific task several
times and separate those repetitions with some rest period where
the subject can reduce his/her mental activity. Depending on the
protocol, at the beginning of the experiment the task interval
duration can be either fixed or variable, whilst the rest duration is
usually fixed. Thus, the above protocol might be implemented in
the two following ways:

• Fixed task interval. The task duration is fixed and well known
before the experiment starts. For example, a task interval of 20
s duration is followed by a rest interval of 20 s duration and
this block is repeated 10–15 times throughout the session.

• Flexible task interval. The task duration is variable (i.e.,
task∈[5,60] s) with respect to the NFB result. This means that
the task will continue until a certain NFB target is achieved.
Only when this target is achieved there will be a shift into a rest
interval of known duration (i.e., rest∈[5,40] s). This procedure
can be repeated 10–15 times throughout the session.

The NFB value presented to the subject is updated periodically
(i.e., every 500 ms) by the Update NFB callbacks. To ensure
synchronization with both acquisitions, these callbacks start
simultaneously with the EEG and fMRI callbacks, right after the
first TTL pulse.

Switching between task and rest intervals is controlled
by the protocol callbacks. To ensure synchronization, the
protocol callbacks should be triggered simultaneously with their
corresponding Update callback, at the end of each interval. This
requires for the protocol callback period to be a multiple of the
Update NFB callback period. In the fixed task interval example
above the protocol callback period is invariable (20 s), thus the
Update NFB can be easily set at 500 or 200 ms. In contrast, the
second example has a variable protocol callback period. In this
case, for synchronization purposes, the protocol period duration
will be set at the end of the Update NFB callback that occurs right
after the target is achieved.

At this point, the whole system is synchronized from the
acquisition to the protocol. Periodic controls in each layer and

between layers should be implemented to ensure synchronization
throughout the session. If abnormalities occur, they should be
reported and when possible dealt with.

2.2. Neurofeedback Presentation
The choice of communication device depends on the type
of NFB that is being used. Screens or goggles are used for
visual, headphones for aural and tactile devices for tactual NFB
presentations. All these devices must be MR compatible. In this
paper we focus on visual presentations, but the same principles
can be transferred to any type of presentation and sensing
modalities.

The NFB presentation needs careful consideration. Complex
visualizations might not help the subject or even interfere with
the mental task that is being performed during the experiment,
instead, simplicity is commonly preferred. Depending on the
NFB dimensions, there can be various visualization approaches.
For example, when a two dimensional visualization is needed,
a “Sun” metaphor (see Figure 6A) can be used, where the
diameter changes based on one of the values (i.e., fMRI) and
the brightness changes based on the other (i.e., EEG). The bars
in Figure 6B can be used to represent either one (left) or two
(right) dimensional NFB. The animation that uses the motion
of the circle into the goal rectangle (see Figure 6C) is another
two dimensional example. Furthermore, all these representations
can be adapted for one dimensional scenarios, by keeping
one visualization feature constant and changing the other or
simultaneously change both features proportionally to the NFB
value.

Finally, with the display, the NFB loop introduced in Figure 1

is now closed; the NFB is sent back to the patient and the
patient is able to change its brain activity based on the received
NFB. Selecting and integrating together all the components
introduced throughout this section is a challenging technical
task. So far we have described the different parts of a bimodal
platform and their functionality. In the following section we
are going to introduce the hybrid EEG and fMRI platform that
we have built, which is currently being used for bimodal NFB
experiments.

3. ILLUSTRATIVE EXAMPLE: BIMODAL
NEUROFEEDBACK PLATFORM AT
NEURINFO

In this section we are going to describe the hybrid EEG-fMRI
NFB platform that we have developed and used in our NFB
experiments (see Figure 7).

3.1. EEG Subsystem
Our EEG subsystem is an MR compatible solution from Brain
Products3. The EEG signals are acquired with a 64-channel
cap, equipped with a drop-down electrocardiogram electrode
for heart pulse measurements. The cap is connected with two
32-channel battery powered amplifiers via two electrical cables.
During experiments, the battery and the amplifiers are placed

3http://www.brainproducts.com/.
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FIGURE 6 | Neurofeedback visualization examples: (A) Sun metaphor; the Sun’s brightness is controlled from one NFB value (EEG-NFB) whilst the radius from

the other value (fMRI-NFB). Both the brightness and the radius can be proportionally changed when only one NFB value is used. (B) Two variation of bar

representations; the addition of the normalized NFB values or any of them independently can control the height of the bar. (C) The NFB values control the x and y

positions of the disk. When only one NFB value is used, both coordinates change proportionally.

FIGURE 7 | The detailed diagram of the hybrid EEG-fMRI bimodal NFB platform at Neurinfo. The EEG (in purple) and fMRI (in orange) signal flow includes the

respective subsystems and software modules inside the NFB Unit. Both pipelines merge at Joint NFB, which calculates NFB and then sends the results to Visualize.

Recorder and Recview are the only commercial software, the rest of the NFB Unit modules are developed in-house (Matlab/C/C++/Java). The NFB Control

exchanges synchronization and control information with the rest of the hardware and software components.

inside the bore right behind the subject’s head (see Figure 8).
The amplifiers use fiber optic cables to send the digitized signal
to a USB adapter and then to the NFB Unit. The USB adapter
is also connected with the 10 MHz clock of the MR scanner’s

gradient switching system, via the SyncBox. This connection
is necessary for the phase synchronization needed for the MR
artifact correction (see Section 2.1.1). Furthermore, theNFB Unit
communicates with the USB adapter via parallel connection. The
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FIGURE 8 | System installation pictures. (A) Placement of amplifiers, battery and LCD display. (B) Placement of the rear view mirror on the top of the head coil.

parallel connection is used to send triggers that timely mark the
EEG data, for online synchronization control and for offline data
analysis. It is worth noting that the installation of the EEG system
is done according to the manufacturer recommendation and that
different manufacturers might provide different guidelines.

3.2. fMRI Subsystem
Our fMRI subsystem is a Nordic-Neurolab (NNL) solution with
a Siemens 3T MR scanner. The MR imaging is performed
on a Siemens MR scanner (Magnetom 3T Verio, Siemens
Healthineers, Erlangen, Germany, VB17) with a 12-ch head coil
allowing secure installation of the EEG cap and connection of
the bundle to the amplifiers. The NNL hardware solution is
used for visual stimulation and synchronization between the MR
console and the NFB Unit. Furthermore, our platform relies
on its Trigger Unit for the TTL trigger that is sent during MR
acquisition.

3.3. NFB Unit
All the software modules of the NFB Unit are deployed on two
PCs connected on the same LANwith theMR console. Generally,
brain activity measurement systems have their corresponding
commercial acquisition software. The usage of manufacturer’s
software inmost cases is not only obligatory but also a convenient
way to achieve optimal real-time signal acquisition.

3.3.1. Acquiring Real-Time EEG Data Into the NFB

Unit
In our experiments, Recorder is used before the experimental
session to configure and setup the EEG acquisition (i.e.,
channel montages, impedance measurement). Then during the
experiments it receives data from the USB adapter (see Section
3.1), pre-filters it and then forwards it for further real-time
processing to RecView (or similar platforms like Matlab4 or
OpenViBE5) using the built-in TCP/IP based Remote Data
Access (RDA) feature. Simultaneously, it saves the raw EEG data,
the acquisition parameters and the setup information.

4https://fr.mathworks.com/products/matlab/.
5http://openvibe.inria.fr/.

RecView has specific filters to remove the gradient and the
BCG artifacts from the EEG signals and an additional RDA
interface to transfer the data to other EEG processing software.
The NFB Unit, collects the data using Matlab (i.e., the EEG
object), but we have also successfully tested the interface to
send real-time EEG data to OpenViBE. The EEG object uses
the TCP/UDP/IP Matlab Toolbox (pnet6) to communicate with
RecView. The communication protocol is straightforward. At the
beginning the RDA server sends the header with the “START”
message and the setup information (i.e., number of channels,
channel labels, sampling interval). Then, it continuously sends
the EEG signals with their event markers, and finally the “STOP”
message when the acquisition is stopped.

3.3.2. Acquiring Real-Time fMRI Data into the NFB

Unit
The fMRI acquisition is done by certified MR technicians using
the MR console software (see Section 3.2). Few sequences are
used for imaging depending on the experimental protocols and
EEG-fMRI acquisition safety guidelines. All the fMRI series are
stored in the console’s hard drive at the end of each acquisition.

To the best of our knowledge there does not exist a universal
way to acquire real-time fMRI data from all types of scanners,
thus it is highly recommended to contact directly the scanner
vendor for any available options and/or configurations that could
be used. Two ways for real-time fMRI acquisition that were
investigated and tested with our Siemens system, are described
here.

• The scanner’s software can be configured (using
“ideacmdtool”) to sequentially export single fMRI scans
in “dicom” format at a predefined folder using FTP protocol.
Then an acquisition software can monitor for new files (i.e.,
using FileSystemWatcher7 library). In our observations we
have noticed jitter in file export, which was more significant
for sequences with TR below 2 s.

6http://www.mathworks.com/matlabcentral/fileexchange/345-tcp-udp-ip-

toolbox-2-0-6.
7https://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher(v=vs.

110).aspx.
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• During an fMRI acquisition, each newly acquired volume’s raw
data is saved in the console’s hard drive. To retrieve these raw
data we use a TCP/IP buffer solution from FieldTrip8. In brief,
this solution consists of an executable server, deployed into the
scanner host, and a client running on theNFBUnit. The server
reads each new file and sends it to the client buffer that can be
accessed fromMatlab.

In our platform, the later method is employed to transfer the
fMRI data over TCP/IP into the NFB Unit (i.e., the fMRI object).

3.3.3. Processing the EEG and the fMRI Data
The EEG signal processing is handled by the EEG object. This
object is created at the beginning of each experiment and contains
all the necessary members to store the signals, events, setup
information together with the initialization information and
updates. Furthermore, it has additional methods that perform
various signal pre-processing, spatial and temporal filtering, and
feature extraction (see Section 2.1.1). Similarly, the fMRI data is
handled by the fMRI object.

In both objects, the extracted features are assigned to
respective object’s public members in order to be accessible by
the Joint NFB. The Joint NFB contains calculation methods (i.e.,
percent signal change, z-Score) for either unimodal or bimodal
scenarios. Furthermore, it is equipped with various configuration
variables that simplify the optimization of the existing models
and templates for the implementation of new ones.

The estimated NFB values are used byVisualize (see Figure 7),
which controls the display that communicates with the subject.
Visualize has a collection of visual objects, developed in
Psychtoolbox9, for: explaining the NFB tasks (i.e., texts), showing
cues and for animating the NFB representation (i.e., 2D/3D
objects). It also contains additional audio and visual objects used
to communicate with the subject throughout the experiment for
various instructions and notifications.

3.3.4. Control and Synchronization
The last part of the system, the NFB Control, is a class object
developed in Matlab and Java10. This object is responsible for
starting/stopping the experiment, controlling all other objects’
behavior throughout the experiment, synchronization, and
finally saving all the experiment data.

The NFB Control constructor is initialized with protocol
information (i.e., tasks or conditions, duration, repetition). The
input can be given through a GUI for few standard protocols
or with custom scripts for more specific ones. The NFB Control
initializes all the objects necessary for the experiment based
on the requirements of the input protocol. Thus for unimodal
NFB only one of the EEG and fMRI objects will be initialized,
whereas for bimodal NFB an EEG objects and an fMRI objects
will be initialized with their respective initialization information.
Furthermore, it also defines the method used in Joint NFB and
initializes the Visualize objects that are going to be used for
presentation.

8http://www.fieldtriptoolbox.org/development/realtime/fmri.
9http://psychtoolbox.org/.
10http://www.java.com/.

NFB Control receives synchronization information from both
subsystems, from the Trigger Unit of the fMRI subsystem and
through RecView from the USB adaptor of the EEG subsystem
(see Figure 7). At each fMRI volume acquisition the scanner
sends a TTL signal from the Trigger Unit. When NFB Control
receives the first TTL signal, it starts the acquisition callback
function(s) (see Figure 5). After the “Begin” period which is
predefined by the protocol, it starts the rest of the callback
functions and when the session is over, it stops all the callback
functions and saves the data.

The EEG subsystem records scanner’s TTL signals to correct
the MR artifact in RecView, thus the EEG data coming
from RecView already contains the fMRI volume markers.
Furthermore, the NFB Control uses a parallel connection to the
USB adapter to send markers to the EEG signals at each protocol
callback. These protocol markers are then resent together with
the rest of the EEG data to the EEG object, with a pre-measured
delay that in our implementation is 38–40 ms.

All the EEG markers including protocol markers and TTL
pulses coming from the scanner are used to periodically control
for delays in both layers of synchronization (see Section 2.1.4).
The TTL markers are used to check for fMRI acquisition delays
or jitter. The same markers, which are recorded on the EEG data
for MR correction (see Section 3.1), are used to check for delays
in the EEG acquisition and that both subsystems are acquiring
data synchronously. The protocol callback markers are used to
control the synchronization of theNFB updates, and tomake sure
that the data that is used for the NFB update was acquired while
the subject was performing the task required by the protocol.
When a de-synchronization occurs, the NFB Control reports it
and tries to re-synchronize. If the re-synchronization attempt is
unsuccessful the current session is stopped and the stack data is
saved.

3.4. Display
The communication with the subject lying on the back in the MR
bore, is done via an LCD Screen and a rear-facing mirror fixed
on the top of the head coil (see Figures 8A,B). The 32-inch LCD
screen is part of the NNL solution (see Section 3.2); it has a 60 Hz
input refresh rate and is connected with the NFB Unit via fiber
optic using a DVI to fiber optic converter and powered by an MR
compatible power supply.

3.5. Real-Time Performance
Real-time tests and experiments have shown very good
performance with various pre-processing, filtering, NFB
calculation and visualization methods. The entire fMRI process
from acquisition to NFB update takes ≃150 ms, well below
the TR of regular EPI sequences (see Figure 9). The NFB
visualization is very fast (1–2 ms) and it is done within one
screen refresh (i.e., 16, 7 ms for a 60 Hz screen). The screen
inside the scanner is connected to the NFB Unit via optic
fiber which minimizes the delay at 80 ms (according to the
manufacturer’s recommendation). Thus the fMRI NFB is shown
to the subject with a total delay of ≃250 ms. For EEG this delay
is≃200 ms.
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FIGURE 9 | Timeline description of all the hardware and software delays for EEG and fMRI. The values include the manufacturer’s descriptions and/or the

results of the measurements performed in our lab.

Furthermore, at the end of every rest interval the baseline is
updated in both EEG and fMRI. These updates take on average
less than 20 ms for EEG and less than 100 ms for fMRI, which
is lower than their respective NFB update cycles. These delays do
not affect each other because: (1) the model updates are done in
parallel with the processing of the respective signals and, (2) the
EEG and the fMRI pipelines work in parallel.

4. SETUP AND NEUROFEEDBACK
EXPERIMENTS

The hybrid EEG and fMRI platform has been already successfully
used to conduct several unimodal and bimodal NFB studies.
The goal of the used NFB protocols has been to maximize the
brain activity measured by EEG and fMRI while performing
Motor Imagery (MI) tasks. This section briefly describes all the
steps followed to prepare and then to perform bimodal NFB
experiment with our platform.

4.1. Preparation
At the beginning of each experiment, outside the MR room, a 64
channel EEG cap with adequate size was fitted on the subject’s
head and conductive gel was applied until electrode impedances
were below 10 k�. Next, the recording configuration was set up
and tested until the acquisition was working properly. Then, the
system was disconnected and placed inside the scanner room
(see Figure 10). Meanwhile the subject was also put inside the
scanner. At this stage, a secondary test was done to control
whether the acquisition was still working and that electrodes’
impedances had not changed due to the subjects’ movements.
This procedure was repeated until the acquisition was working,
the impedances were within range, and the subject was ready for
MRI scanning.

4.2. Structural Scan
A high resolution structural 3D T1 was acquired with an
MPRAGE sequence with TR/TI/TE = 1,900/900/2.26 ms,
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FIGURE 10 | Subject’s preparation and subsystem installation before the experiment. (A) EEG subsystem installation and impedance check outside the MR

room, (B) installation of the MR coil and EEG impedance recheck.

GRAPPA 2, 256× 256 mm2 Field of View and 176 slabs, 1× 1×
1 mm3 voxel size. This scan was later used for offline analysis.

4.3. Initialization
The NFB initialization (see Sections 2.1.1 and 2.1.2) was done
on a non-NFB session with block-design task with 20 s alternate
periods of “Rest” (the subject is asked to try to minimize brain
activity) and “Task” (the subject is asked to perform motor
imagery) that was performed prior to the online NFB sessions.

4.4. Non-NFB Session
This is basically a calibration session for NFB. The task-related
EPI acquisitions were taken with TR/TE = 2,000/23 ms, 210 ×

210 mm2 field of view, 2 × 2 × 4 mm3 voxel size and 16 (or 32)
slices. This fMRI series underwent a GLM analysis to extract the
activation maps and then to localize a brain ROI with the highest
protocol related activity. Such GLM analysis can be performed by
the MR software (Syngo MR) by pre-specifying the paradigm on
the console or externally on a separate computer (i.e., using SPM,
FSL 11or AFNI 12). The later method usually gives more accurate
results but it is far more time consuming; hence, a trade-off shall
be made between time and accuracy when the subjects are inside
the scanner. Furthermore, an initial baseline as a relative change
to the BOLD contrast likelihood inside the ROI was established
based on the statistical analysis of the calibration data of all the
“Rest” intervals’ volumes. To account for global changes in the
brain activity, a background region (i.e., the upper slice of the
fMRI volume) is also taken into consideration. Its baseline was
also calculated offline.

Simultaneously, the EEG signals were recorded during the
calibration session. After artifact removal and filtering the data
was segmented into 20 s “Task” and “Rest” epochs. Then all
epochs were re-segmented into 2 s windows with 95% overlap
and used to train spatial filters via CSP algorithm. Similar to
fMRI, an initial NFB baseline target was calculated by averaging
the EEG features extracted with CSP filters from all the rest
intervals. This baseline was used at the very beginning of the

11https://fsl.fmrib.ox.ac.uk/fsl/fslwiki.
12https://afni.nimh.nih.gov/afni/.

NFB sessions and then updated later online after each 20 s “Rest”
period.

4.5. NFB Sessions
We have successfully used our platform to conduct two
experimental studies with more than 100 NFB sessions and more
than 30 subjects. Preliminary experimental results are shown by
Perronnet et al. (2016). In the first study we compare the usage
of bimodal NFB vs. unimodal NFB for self-regulation of brain
activity of 8 subjects. The second study aims to quantify the ability
to improve self-regulation of the brain activity when performing
repeated bimodal NFB sessions in 24 healthy subjects. Overall,
the performance of the platform has been very satisfactory and
the experiments have shown that the subjects were able to
regulate their brain activity using visual NFB (see Figure 11).

The fMRI-NFB was calculated for every new volume. For pre-
processing we have used spatial smoothing, motion correction
and slice-time correction. The initialization ROI was used to
spatially filter the fMRI volumes and the baselines were used to
estimate the average percent signal change (APSC).

The EEG-NFB was calculated every 250 ms over the most
recent 2 s window. The gradient and BCG artifacts were removed
with online updated templates. Then the signals were spatially
filtered with CSP and band pass filtered in [8, 30] Hz. The band
power estimation was used to compute the NFB value using
APSC. During the NFB session all the baseline values for both
EEG and fMRI were updated at the end of each “Rest” block.

To conclude, the experimental studies conducted with our
platform have shown that it is possible to build and use such
hybrid systems for bimodal NFB experiments. The technical
difficulties associated with the field can be addressed and it
is possible in the future to perform experiments with various
unimodal or bimodal NFB protocols for both research and
clinical studies.

5. DISCUSSION

Multimodal brain activity monitoring has the potential to not
only improve NFB but to also provide a better understanding
of the brain functionality. But, the simultaneous acquisition
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FIGURE 11 | Snapshot of the subject’s display during a bimodal NFB

session. The brain activity measured with EEG and fMRI is represented by the

white disk movement inside the blue square. The goal is to position the disk

over the little green square, which in this case is achieved when the normalized

NFB values coming from both EEG and fMRI are simultaneously maximized

with respect to their NFB targets.

and processing of two or more types of neurosignals in real-
time can be very challenging. From a technological and safety
point of view the challenges of the simultaneous EEG and fMRI
acquisition have been addressed before (Ullsperger and Debener,
2010; Neuner et al., 2014; Bannier et al., 2015), instead the focus
of this paper is on the utilization of the existing EEG and fMRI
subsystems in order to build a platform that is capable to perform
real-time bimodal NFB experiments.

The design and implementation of a hybrid EEG and
fMRI platform that is capable of acquiring signals, processing,
modeling, estimating NFB and then communicating with the
subjects in real-time has to be carefully considered. Two very
different hardware and software subsystems need to work
together, fully synchronized and without compromising
real-time performance. Throughout the paper we have
particularly emphasized the need for real-time performance and
synchronization. We have chosen a two-layer synchronization
approach in order to simplify the implementation and to allow
flexibility to use the platform for both unimodal and bimodal
NFB protocols.

Our platform relies on network communication and its
modular architecture offers the possibility of distributing the
system on different processing units. Inevitably, slow network
connection or network congestionmight introduce delays in data
transmission and for highly time sensitive protocols networking
and data transmission aspects need careful consideration. In our
implementation, the networking delays, which include the signal
acquisition and processing delays (see Figure 9), rely mainly on
the manufacturers’ guidelines. Few non-exhaustive tests that we
have conducted in general confirmed the manufacturers’ claims.

A similar platform for bimodal EEG and fMRI NFB
was reported by Zotev et al. (2014). Beyond the choice of
subsystem’ manufacturers, operating environment and custom

software packages, their platform architecture, components
and functionality with respect to the NFB process flow, are
very similar to the platform introduced here. Their real-time
processing pipelines use also similar methods to calculate the
respective NFB values. The NFB is also presented visually, but in
contrast with our platform is shown separately for each modality.

A very important future goal in the field of bimodal brain
activity monitoring and multimodal NFB is the development
of good coupling models. Such models have the potential
to maximize the information that is extracted from each
modality and put it in the context of better understanding the
underlying physiological brain activities. This can be particularly
advantageous in the study of neuronal source localization from
the EEG inverse problem, which recently is being combined with
fMRI data in a bimodal framework. Its main applications are the
localization of epileptic foci, the analysis of sources in selected
frequency bands in psychology, or any other application where
a precise spatio-temporal detection can be the point of interest.
A major limitation for these studies has been the experimental
setup aspects of simultaneous EEG and fMRI recording. Due
to these difficulties, some researchers have opted to record
the data in separate sessions, or use experimental techniques
which lead to data with very low signal-to-noise ratio. Different
applications develop models for EEG and fMRI integration that
are only evaluated on the synthetic data due to the lack of real
synchronous data. Our platform addresses the above problems
by providing fully synchronized simultaneous acquisition and
by offering easy integration of both modalities at all processing
stages. For this reason, the EEG and fMRI objects provide public
members to store the results of each processing step that can be
accessed and used in future implementations of coupling models.
Furthermore, the initialization information can be customized
to input specific modeling information that might be needed for
future developments.

There exist also applications that might require additional
non neural bio-signals that indirectly represent an estimation of
brain activity. For example the galvanic skin response can be
used to monitor the stress level of a NFB subject. Furthermore,
auxiliary sensors can be used to provide additional information
for NFB or even for monitoring other aspects of the experiments.
For example electromyography can be used to monitor the
subject’s muscular activity when and if a NFB protocol requires
it. Motion cameras or sensors can be used to better measure the
subject’s head motion, which currently is estimated by a least
squares approach based on the 6 parameter (rigid body) spatial
transformation (Friston et al., 1995).

The addition of any new real-time signals needs to be carefully
considered in terms of synchronization and computing power.
In the current state of the platform the synchronization is
solved by using two hierarchical layers. A major advantage of
this approach is the possibility to synchronize additional signals
with minimum effort, by using the existing layers’ infrastructure
for acquisition and protocol synchronization. On the other
hand, the additional computational power need to be estimated
carefully before choosing the hardware/software configuration.
In our implementation, the real-time fMRI processing is the
most computationally demanding. With the current hardware
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configuration there are limitations in the analysis that can be
performed in real-time. In the near future, we intend to use a
GPU cluster and take advantage of its parallel processing power
to perform standard GLM and ICA analysis on full volume fMRI
series, or even recent more advanced local multivariate detection
methods such as a contrario (Maumet et al., 2016), in real-time.

As we showed in this section, there is still remaining
challenges and difficulties for improving real-time multimodal
brain activity measurement but although not yet very common,
the increasing research interest will provide a wide range of
applications for multimodal brain research, and many more
similar or even more capable platforms should emerge in the
following years.

6. CONCLUSION

We described a general method for setting up a hybrid EEG
and fMRI platform for bimodal NFB experiments. Our scope is
to help researchers build faster and robust platforms, and also
provide some minimal technical requirements or features to look
for in future commercial systems. Based on guidelines described
here, we have implemented a hybrid EEG and fMRI bimodal
platform. So far, our platform has been successfully used in two
experimental trials with more than 100 NFB sessions and more
than 30 subjects.
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