

On the turning away

A B S B PARIS

de Brevern, Alexandre G.1

¹INSERM, UMR_S 1134, DSIMB, Univ Paris Diderot, Sorbonne Paris Cité, INTS, laboratoire d'excellence GR-Ex, Paris.

<u>contact:</u> alexandre.debrevern@univ-paris-diderot.fr

Abstract

The functional properties of a protein depend mainly on its three-dimensional (3D) structure. They are classically assigned, visualized and analysed through the prism of classical secondary structures composed of repetitive parts (α-helices for $1/3^{rd}$ of the residues and β-strands for $1/5^{th}$, resp.) connected by coil. Two other repetitive structures also exist, namely the PolyProline II and the β-turns. The β-turns have been characterized by a hydrogen bond between N-H and C=O of residues i and i+3 by Venkatachalam [1]. He also characterized the first β-turn types. Later novel turns were defined, some being discarded, leading to a final collection of type I, I', II, II', IV, VIa1, VIa2, VIb, and VIII β-turns. Types VIa1, VIa2 and VIb are characterized by the presence of a cis-Proline at residue i+2. Turns that do not fit any of the above criteria are classified as type IV [2].

β-turn IV, *i.e.* the miscellaneous category, represents near $1/3^{rd}$ of β-turn residues in protein structure, and is the second most frequent β-turn. 25 years have passed since the last proposition of an extension of the classical definition of β-turns. Over all we have known, it seems a good moment to dig them and to see if some new recurrent conformations are not hidden into this miscellaneous type. An automatic clustering approach based on the rules of β-turn type assignment was designed to search for recurrent new turns inside this miscellaneous type. The four most occurring clusters defined the new β-turn types. Surprisingly, these types, named IV₁, IV₂, IV₃ and IV₄, represent half of the type IV β-turns, and are more frequent that many established ones. Type IV₁, is in the neighbourhood of type II but with very different amino acid composition, while IV₂ is close to type VIII with related amino acid content. Types IV₃ and IV₄ are in the same dihedral angle region than frequent β-turn type I, but with distinct dihedral angle values [3].

In silico protocol

A specific clustering approach was designed to cluster type IV β -turns by using the classical rule, allowing +/- 30° for all angles, with the exception of one at +/-45° for the defined values. The clustering derived from Self-Organizing Maps (SOM, without diffusion between the clusters). The training was carried out in 2 successive parts; the first one limited the potential bias of initialization, and the second refined the clustering by using the specific rules for β -turn types.

Amino acid analyses

		i	i+1	i+2	<i>i</i> +3
β-turn I	(+)	cPghStND	PSEK	whSTNDe	wcGn
	(-)	IVLmAfywQERK	IVLmFywcqGhtn	IVLmAPG	ivlmqPErk
β-turn II	(+)	qP	Pek	GN	mcqSt
	(-)	sD	ivLywcGst	IVLmAFywqPSTdERK	ilPgn
β-turn VIII	(+)	acPGs	PDek	IVFyhNd	ivP
	(-)	Ivlmqerk	ilfycGh	lAPG	lafGe
β-turn I'	(+)	Fst	GNd	Gn	yqr
	(-)	Q	ivpt	ivlapsterk	р
β-turn II'	(+)	St	G	stN	mg
	(-)	Vlafqpter	p	ivlp	
β-turn VI _{a1}	(+)	Vp	afYp	P	fyg
	(-)		ilt		ip
β-turn VI _{a2}	(+)	N	ne	P	h
β-turn VI _b	(-)	P	У	P	pr
	(-)	G	ivlagstderk		-
β-turn IV ^{ori}	(+)	CPGStnD	PGsndk	gHtND	PGTn
•	(-)	IVlaqerk	IVLmAc	IVLaqP	ivLAdek
β-turn IV ₁	(+)	cG	hnek	GhND	cpG
, 1	(-)	Ve	g	ivlaptk	d
β -turn IV $_2$	(+)	PgS	pstDk	hND	P
	(-)	Ivlmrk	ivafg	ivlPG	vladek
β-turn IV ₃	(+)	CsnD	aP	vmt	fystn
	(-)	Ivak	cq	pg	iqe
β -turn IV $_4$	(+)	Cpgsnd	fptnD	whtNd	fGh
·	(-)	Vle	ivag	lpg	pek
β -turn IV $_{misc}$	(+)	cPgnd	PGn	GhtNd	pgTn
	(-)	Ivlar	iVLmAfc	ivLay	vla

The four new turns

New β-turn representation. (a-d) Type IV_1 , (e-h) type IV_2 , (i-l) type IV_3 , and (m-p) type IV_4 . A turn close to the ideal values of its type (a, e, i, m) within a protein and (b, f, j, n) a close-up of the turn. (c, g, k, o) Ramachandran plot (φ , ψ) of residue i+1 and (d, h, l, p) of residue i+2; red dots are the ideal values. The number of observations of both residues is strictly identical.

Ramachandran plot of the different β -turn types. An arrow connects the dihedral angle values of residue i+1 to residue i+2. (a) Classical β -turns, (b) new β -turns, (c) a close-up of type II and IV₁ β -turns, and (d) on type VIII and IV₂ β -turns, the first square corresponds to the +/- 30° rule, and the second one to the +/- 45° rule.

$\beta\text{-turn IV}^{\text{ori}}$ $\beta\text{-turn IV}_{\text{misc}}$ $\beta\text{-turn IV}_{3}$ $\beta\text{-turn IV}_{4}$ $\beta\text{-turn IV}_{1}$ $\beta\text{-turn VI}_{1}$ $\beta\text{-turn VI}_{1}$ $\beta\text{-turn VI}_{1}$ $\beta\text{-turn VI}_{1}$

Sammon map of amino acid behaviours of the different β turns. Classical turns are in green while new turns are in red.

Amino acid's Z-score of β -turn types. Colors underline the difference of new turns and the original type IV^{ori} (in green new over- or under representation, in blue inversion of over- or under representation,

Conclusion

From an unsupervised classification, based exclusively on dihedral angles, four new types were defined. The two most occurring, type IV_1 and IV_2 β -turns, are linked to existing type II and VIII β -turns, but with very distinct features. On the one hand, type IV_2 and VIII β -turns shared striking amino acid compositional features with minor differences;

1	I	38.21
2	<i>IV</i> ori	31.72
2	IV_{misc}	16.44
3	II	11.81
4	VIII	9.84
5	IV_1	5.10
6	Ι'	4.10
7	IV_2	3.95
8	IV_3	3.53
9	IV_4	2.70
10	Π'	2.51
11	VI_b	0.88
12	VI_{a1}	0.73
13	VI_{a2}	0.20

β-turn type

(%)

although type IV_2 β -turn can be associated with stabilizing hydrogen bonds contrary to type VIII β -turn. While on the other hand, type IV_1 and II β -turns are very close in terms of dihedral angles but are very distinct in terms of amino acids content. It is clear depicted that type II β -turn is highly specific while type IV_1 β -turn has more classical propensities, being closer to type I' β -turn than type II β -turn.

References

- [1] Venkatachalam CM (1968) Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units. Biopolymers 6:1425-1436.
- [2] Hutchinson EG, Thornton JM (1996) PROMOTIF--a program to identify and analyze structural motifs in proteins. Protein Sci 5:212-220.
- [3] de Brevern AG (2016) Extension of the classical classification of β-turns. Sci Rep. 6:33191.

Acknowledgments

This work was supported by grants from the French Ministry of Research, University of Paris Diderot – Paris 7, French National Institute for Blood Transfusion (INTS), French Institute for Health and Medical Research (INSERM). AdB also acknowledges the Indo-French Centre for the Promotion of Advanced Research / CEFIPRA for collaborative grants (numbers 3903-E and 5302-2). This study was supported by grants from the Laboratory of Excellence GR-Ex, reference ANR-11-LABX-0051. The labex GR-Ex is funded by the programme "Investissements d'avenir" of the French National Research Agency, reference ANR-11-IDEX-0005-02. Calculations were performed on an SGI cluster granted by Conseil Régional Ile de France and INTS (SESAME Grant).