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Abstract 

About half of the globular proteins are composed of regular secondary structures, α-

helices and β-sheets while the rest are constituted of irregular secondary structures such as 

turns or coil conformations. Other regular secondary structures are often ignored, despite their 

importance in biological processes. Among such structures, the polyproline II helix (PPII) has 

interesting behaviours. PPIIs are not usually associated with conventional stabilizing 

interactions and recent studies have observed that PPIIs are more frequent than anticipated. In 

addition, it is suggested that they may have an important functional role, particularly in 

protein-protein or protein-nucleic acid interactions and recognition.  

Residues associated to PPII conformations represent nearly 5% of the total residues, but 

the lack of PPII assignment approaches prevents their systematic analysis. This short review 

will present current knowledge and recent research in PPII area. In a first step, the different 

methodologies able to assign PPII are presented. In the second step, recent studies that have 

shown new perspectives in PPII analysis in term of structure and function are underlined with 

three cases: (i) PPII in protein structures. For instance, the first crystal structure of an 

oligoproline adopting an all-trans polyproline II (PPII) helix had been presented, (ii) the 

involvement of PPII in different diseases and drug design, and (iii) an interesting extension of 

PPII study in the protein dynamics. For instance, PPII are often linked to disorder region 

analysis and the precise analysis of a potential PPII helix in hypogonadism shows 

unanticipated PPII formations in the patient mutation while it is not observed in the wild type 

form of KISSR1 protein. 

 

Key words: secondary structure / sequence structure relationship / structural alphabet / local 
protein conformations / frameworks.  
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Introduction 

Protein sequences encompass the information needed to provide the right protein folding 

pathways to the biologically active protein fold. Nonetheless, it is the protein functions at 

atomistic level that direct their structures, i.e. the biological functions need to find the proper 

set of local protein conformations to perform its activity. Three-dimensional structure 

information is usually described as a simple succession of repetitive structures (see Figure 1), 

namely the α-helix and the β-sheet, connected by “random” coil (Eisenberg 2003; Pauling and 

Corey 1950). Helical structures are locally stabilized by hydrogen bond patterns of backbone 

atoms (between residue i and i+4) (Pauling et al. 1951), while extended structures are 

maintained also by hydrogen bonds but at longer distances (Pauling and Corey 1951a). They 

represent 1/3rd and 1/5th of the total residues, respectively. A third defined state, called β-

turns, is characterized by the reversal of polypeptide chain and is stabilized by a hydrogen 

bond between the first and the last residue (Richardson 1981; Rose 1978; Venkatachalam 

1968). 25% of the residues are associated to such structures (Bornot and de Brevern 2006).  

However, another common repetitive conformation exists, characterized before the β-

turns in the 1950s, but often forgotten, namely Poly-L-proline-II helices II (PPII) helix 

(Cowan et al. 1955; Pauling and Corey 1951b) (see Figure 1B). It can be characterized as a 

left-handed helical structure with dihedral angles characteristic to that of β-strands and with 

an overall shape resembling a triangular prism (Arnott and Dover 1968; Sasisekharan 1959) 

(see Figure 2 for a comparison with other local structure conformations). The PPII helix has 

distinct trans isomers of peptide bonds with dihedral angles of  [-750, +1500]. The rise per 

residue of PPII helix is 3.1 Å with 3 residues per turn. Thus, this distinct helical structure rises 

at 9.3 Å per turn compared 6.0 Å pitch of a 310 helix. The primary reason for such open and 
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relatively elongated geometry of PPII is absence of H-donor atoms due to the cyclic side 

chain of proline residues. Therefore, the PPII conformation is highly acceptable of H-donor 

atoms from its environment or third party moieties enhancing its solvation energy. PPII is 

observed commonly in the collagen triple helix and hence was deemed confined to fibrous 

proteins (Bochicchio and Tamburro 2002; Soman and Ramakrishnan 1983; Sreerama and 

Woody 1994; Sreerama and Woody 2003). It would be found through circular dichroïsm 

studies that PPII is present in folded proteins and in other structural folding contexts as well. 

Later, Creamer et al (Whittington et al. 2005) demonstrated the existence of PPII in denatured 

proteins while NMR studies (Toal and Schweitzer-Stenner 2014) established PPII as a 

favoured local structure over α−helices in denatured states. Interestingly, presence of proline 

residues is not a strict requirement for a PPII and that indeed establishes PPII as a distinct 

class in secondary structures. Rather, it has been advocated since 1993 (Adzhubei and 

Sternberg 1993) to include PPII in mainstream secondary structures like α−helices and β-

sheets. A striking fact is that residues associated to PPII conformations represent nearly 5% of 

the total residues in a structure (Mansiaux et al. 2011), but the lack of popular PPII 

assignment approaches prevents their systematic analysis.  

The structural properties of PPII make it highly suitable for partnered interactions. Since 

the backbone of PPII lacks any intra-hydrogen bonding it requires external partners for 

hydration. This unique property is a reason for PPII conformation to interact with SH3 

domain and thus playing a regulating role in crucial signalling pathways and cell recognition 

involving SH3. The distinctive structural properties like open, elongated structure suggests 

PPII to be involved in interaction with nucleic acids. PPII has also been observed to be 

involved in amyloid fibrillar pathologies like, Parkinson’s. Since the PPII helix is relatively 

small and flexible, it is highly useful in design of cell penetrating peptides (CPP). The current 
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review aims at covering the different definitions of PPII based on contexts and the various 

methodologies that assign PPII helix. Later it also reviews the role of PPII in protein-protein 

and protein-DNA interactions, involvement of PPII conformation in pathologies and recent 

advances made in PPII scaffold applications. 

 

Developments in PPII Structural Assignment. 

PPII dihedral angles are quite particular. The most classical way to analyse them is to 

use Ramachandran map (Ramachandran et al. 1963) as seen in Figure 3. The map is based on 

calculations of dihedral angles between the two adjacent planes of protein backbone, hinged 

at Cα atoms. The dihedral rotation of the planes is restricted by the steric clashes that define 

the disallowed regions on the map. Therefore, the map is a very powerful tool to assess the 

stability of a structure based on the local analysis of degrees of freedom for dihedral planes. 

Further evolution of the map lead to the marking of areas for specific secondary structures 

namely α-helix, β-strands and later β-turns (see Figure 3A). Lately, allowed region for PPII 

was assigned from the north-western quadrant of the map, allowed for β-strands (see Figure 

3B). A recent review catalogues the evolution of Ramachandran map very efficiently (Carugo 

and Djinovic-Carugo 2013). It is however, very distinctive observation that Prof 

Ramachandran incepted the idea based on the collagen hydrogen bonding argument (Bella et 

al. 1994; Rich and Crick 1955), which arose due to presence of Hydroxyproline. 

More than 20 secondary structure assignment methods (SSAM) had been published in 

30 years (Aksianov and Alexeevski 2012; Cao et al. 2016; Carter et al. 2003; Cubellis et al. 

2005b; Dupuis et al. 2004; Fodje and Al-Karadaghi 2002; Frishman and Argos 1995; 

Hosseini et al. 2008; Hutchinson and Thornton 1996; Kabsch and Sander 1983; King and 

Johnson 1999; Kneller and Hinsen 2015; Labesse et al. 1997; Law et al. 2014; Majumdar et 
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al. 2005; Martin et al. 2005; Oluwatobi Salawu 2016; Parisien and Major 2005; Park et al. 

2011; Richards and Kundrot 1988; Sklenar et al. 1989; Zacharias and Knapp 2014). They 

have been defined with various criteria (Offmann et al. 2007): the most popular SSAM use 

backbone hydrogen bonding pattern-based methods (Carter et al. 2003; Fodje and Al-

Karadaghi 2002; Frishman and Argos 1995; Kabsch and Sander 1983; Zhang and Sagui 

2015). 

Nonetheless, very few SSAM assign PPII to the protein coordinates. Only 5 SSAMs, to 

be more precise, include the assignment of PPII conformations. The first available approach 

was XTLSSTR (King and Johnson 1999) where a structure is assigned based on a simple 

approach similar to the visual inspection of secondary structures. It calculates three distances 

and two angles based on the backbone geometry and then searches for amide-amide 

interactions. It successfully assigns α-Helix, 310 Helix, Extended β−strand, hydrogen bonded 

and non-hydrogen bonded turns and Polyproline (type-II) helices.  

SEGNO (Cubellis et al. 2005b) makes assignment based on distance and torsion angles 

calculation. For assigning PPII, it uses dihedral angles between the two-peptide planes 

separated by one and two residues, respectively named diheco and diheco2. An important 

observation is that PPII is assigned when a residue is not defined as β-strand by SEGNO and 

lies within predefined values of Φ and Ψ angles. Later, taking into account the range of the 

four diheco angles (220-270 and 100-140), the PPII helical conformation is assigned to the 

residue. These thresholds are relaxed for the termini of PPII with a minimum length of the 

helix to be 3 residues and the overall shape of PPII is deemed to be like a triangular prism.  

PROSS (Srinivasan and Rose 1999) uses the concept of mesostates from a torsional grid 

for the assignments. The grid is described as the unit squares covering all areas in a 

Ramachandran plot. The grids are of two kinds based on their unit area, smaller unit square: 
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Fine-grid, broader unit square: coarse grid. Based on the type, each unit grid is referred to as a 

coarse/fine mesostate. Therefore, in principle, the Ramachandran plot is converted into a Φ/Ψ 

grid with marked regions (allowed, favourable, disallowed) covering more than one 

mesostates. In a very similar approach related to SEGNO, PROSS also does not directly 

assign PPII conformation rather resolute it out after β-strand leftovers. 

DSSP-PPII (Mansiaux et al. 2011) is an extension of DSSP with included dihedral 

angles parameters for PPII assignment, thus isolating PPII from coils. Kabsch and Sander's 

DSSP (Kabsch and Sander 1983) has been the most widely used method. It is based on 

detection of hydrogen bonds defined under an electrostatic criterion. It makes an elaborate 8 

state SSA: α-Helix, 310 Helix, π-helix, β-turn, bend, extended strand, β-bridge and coil. DSSP 

has been implemented in numerous databases and softwares, e.g. PDB (Berman et al. 2000; 

Bernstein et al. 1977) and GROMACS (Pronk et al. 2013; Van Der Spoel et al. 2005). 

Although being widely used and treated as a gold standard methodology, DSSP does not 

assign PPII. DSSP-PPII (Mansiaux et al. 2011) uses dihedral space (Φ and Ψ, −75° and 

+145°) to define the core of PPII while increasing by ε radiating out at 1 degree. The value of 

ε is chosen as an equilibrium between the number of amino acids assigned as PPII by the 

three previous approaches (with an extra constraints, two consecutive dihedral angles should 

be assigned as PPII. One of the major features of this method is to use DSSP that is already an 

established and trusted method for other secondary structure elements (SSE). Therefore, the 

code can be adapted to apparently any other assignment method, if and when required. A 

specific database had been proposed to the scientific community (Chebrek et al. 2014).  

ASSP (Kumar and Bansal 2015), an extension of helical geometry calculation program, 

HELANAL-plus (Bansal et al. 2000) that is used to calculate the local helical structure 

parameters: twist, rise, virtual torsion and radii. ASSP uses the difference between these 
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parameters calculated over two or more adjacent Cα windows of 4 residues. Later in the 

protocol, the overlaps are resolved based on the established minimum lengths of helices, α(4), 

310(3), π(5) and PPII(3). Therefore, PPII conformations are assigned based on the helical 

geometry of the local region. Since it uses HELANAL, which further is based on Sugeta & 

Miyazawa, and Shakarji methods for helical geometry, ASSP tends to assign β-sheets with 

less efficiency (Shakarji ; Sugeta and Miyazawa 1967). They applied their SSAM to analyse 

in details the PPII (Kumar and Bansal 2016) and found that near 3/4 of PPIIs occur in 

conjunction with α-helices and β-strands, and serve as linkers as well. They also underline a 

large number of CH…O H-bonds.  

All these methods are well designed for PPII assignments. However, the number of 

PPII assignment approaches is still limited compared to SSAM for other secondary structure 

elements, and remains a limitation for the use by scientific community.  

 

Survey of amino acids in PPII conformation 

The Adzhubei and Sternberg paper in 1993 (Adzhubei and Sternberg 1993) had 

refreshed the interest in PPII as a mainstream secondary structures like α−helices and β-

sheets, but also underlined the non-obligation of PPII to be constituted with only Proline 

residues. Numerous mutational studies, e.g. SH3 domain - PPII peptide binding analysis 

provided a desired assertion that PPII conformations are favourable in denatured space 

(Creamer 1998; Ferreon and Hilser 2003). Impact of residue level mutations on PPII 

concludes that PPII conformation is retained even after successive changes of proline with 

alanine or glycine residues, implying that PPII are not constituted by a succession of proline 

residues alone. Therefore, PPII should rather be understood as a structural conformation 

found with different residue propensities in folded and unfolded state. Others experiments 
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further establish PPII as a separate structural class (Adzhubei et al. 2013; Stapley and 

Creamer 1999). 

Apart from these studies, restricted coiled library analysis performed by Jha et al, 

explores the influence of neighbours on the residues having favourable PPII propensities (Jha 

et al. 2005). Examination of bias-free coiled library sets reveals dominant PPII conformation 

for ten of amino acid residues (Pro, Ala, Met, Glu, Leu, Asn, Cys, Gln, Lys, Gly and Tyr). 

Another proposal of similar propensities comes from Cubellis and coworkers which analyse 

position specific propensities in 5700 PPII helices and classified data with peptide lengths 

(Cubellis et al. 2005a). Thus, residues like Ala, Met, Lys, Thr and Leu favour PPII 

conformation in longer peptides while Asp, Ile, Glu adopts the conformation in shorter 

peptides (< 3 res). Trp, Phe and Gly do not favour PPII, however interestingly Gly is present 

in a repetitive motif in Collagen triple helix while Trp and Phe have been crystallized in 

interaction with PPII-hydrophobic motif interactions. Thus supposedly these residues could 

stabilize and mark the terminus of a PPII helix (Cubellis et al. 2005a). In the most recent 

survey, Kumar and Bansal show that 40% of PPIIs contain no Pro residues. Besides, aromatic 

amino acids are avoided within the helix, while Gly, Asn and Asp residues are preferred in the 

proximal flanking regions (Kumar and Bansal 2016).  

Based on hard-sphere Monte-Carlo simulations, the propagation of the PPII helix is 

logically explained by the interaction between the prolyl ring and the backbone (Cβ) of 

previous residue. However, this logic breaks when a poly-Alanine adopts a PPII conformation 

and therefore a better explanation could be the neighbouring environment and presence of 

polar residues (Creamer 1998). PPII does not have characteristic main chain H-bonding 

pattern, thus arguably, Ser, Thr, Gln and other polar residues can stabilize the PPII helix by 

non-local hydrogen bonding with the backbone (Creamer 1998; Cubellis et al. 2005a). The 
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overall survey of amino acid propensities reveals that propensities of amino acids in PPII are 

highly context based. They seem to deviate according to the presence of PPII in fibrous or 

globular protein context.  

 

Role of PPII in protein-protein (PPI) and DNA-protein interactions 

The distinct feature of polyproline helices is that unlike other SSE they do not have 

intra-hydrogen bonding, making the backbone, as well as the side chains, highly solvent 

accessible. Such conformations would be hankering for finding partners for hydrogen bonding 

and stabilization. Therefore, the sequence and structural characteristics of PPII makes it worth 

to be probed for partnered interactions. One of the important tools to study the PPII role in 

protein-protein and DNA-protein interactions are the SH3 domain models. SH3 (Src 

homology 3) domains are small yet important structural domains in proteins involved in cell 

signalling and regulation, e.g. Tyrosine kinases. SH3 domains are also well known to interact 

with PPII conformations (Agrawal and Kishan 2002). Hence, host-pathogen models designed 

with SH3 domains are critical to understand interaction space of PPII conformation with 

respect to proteins and/or nucleic acids. Many such studies focusing on signal transduction, 

cell-cell recognition have been explored for potential PPII-protein and PPII-Nucleic acid 

interactions (Hicks and Hsu 2004; Williamson 1994). For instance, C-terminus of Synapsin-I, 

a protein regulating synaptic vesicle transport in neurons, is proline rich region. Synapsin-I 

interacts with the cytoplasmic Polyproline region of membrane protein, Vesicle-associated 

membrane protein 1(VAMP-I) (Williamson 1994). Phosphorylation of a serine residue 

upstream of C-terminus PPII helix regulates the secretion of a synaptic vesicle while VAMP-I 

helps in recognition. Similarly, in Ras-GTP signalling pathway the SH3 domains of the 
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adaptor protein binds to the polyproline region of SoS protein (xPxxPPPψxPx) leading to 

exchange of GTP. Another set of interactions (Booker et al. 1992) is in vacuolar sorting 

where SH3 domain of phosphatidylinositol-3 kinase binds to the GTP-binding protein 

dynamin. Structurally, it is acknowledged that the PPII helix-binding region of SH3 domain is 

a smooth hydrophobic surface flanked by conserved charged residues (Booker et al. 1992). 

The PPII interactions also have a significant structural-functional role in transcription, as 

many transcription factors have proline rich terminals (Koleske et al. 1992). This could also 

indicate points to the role of PPII interactions in multimeric complex formation during 

transcription. A well-characterized case of PPII-protein interaction is the RNA polymerase II 

(RNApolII). C-terminus of RNApolII has multiple copies of conserved motif YSPTSPS, 

which further is a two fold SPXX motif. SPXX is a DNA binding motif found in DNA 

binding domains (Suzuki 1989; Suzuki et al. 1990). Further, Hicks and Hsu (2004) 

investigated the structural aspects of PPII in DNA binding and recognition (Hicks and Hsu 

2004). Exemplifying with three DNA interacting proteins; viz. third K homology domain of 

NOVA-2 (see Figure 4 (Lewis et al. 2000)), the Epstein-Barr nuclear antigen-1, and the 

Drosophila paired protein homeodomain, they quantify the binding of PPII to the nucleotides’ 

minor groove and underline the specificity and non-specificity of recognition. The optimal 

size and specific recognition offered by PPII backbone residues strongly advocate to 

recognize PPII as a nucleic acid binding motif (Hicks and Hsu 2004). 

 

Functional role of Polyproline in diseases 

Role of PPII in protein-protein, DNA-protein interactions and role in sorting and 

transport mechanisms has been investigated for its involvement in pathologies and diseases. 

KISS-1 Receptor (KISS1R) has in its intracellular domain three triplets of Proline - Arginine -
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Arginine (PRR). The addition of a fourth triplet induces the formation of a PPII, and inhibits 

KISS1R presentation on cell membrane. The retention of KISS1R in cytoplasm ceases the 

interaction with Kisspeptin and thus abolishes the secretion of GnRH leading to 

Hypogonadotropic hypogonadism (Chevrier et al. 2013). Besides, several studies using 

including ROA (Raman Optical Activity) and VBD (Vibrational Circular Dichroism) 

structural visualization techniques, confirm the presence of PPII conformation in pathological 

fibrillar aggregates (Adzhubei et al. 2013; Blanch et al. 2000; Bochicchio and Tamburro 

2002). Conversion of PPII to β-sheet conformation in amyloidogenic precursor of human 

lysozyme may indicate a highly potential role of PPII in numerous amyloid-based 

conformational disorders (Blanch et al. 2000). For instance, phosphorylation of a Threonine 

flanked by a PPII in Tau protein leads to the misfolding and aggregation of microtubular 

proteins in Alzheimer's disease (Syme et al. 2002). A similar role of PPII has been found in α-

Synuclein, responsible for aggregation in Alzheimer's and Parkinson's pathologies (Adzhubei 

et al. 2013). Taken together, this emphasizes a deeper understanding of its structural features 

(Adzhubei et al. 2016). 

 

Recent Advances in Polyproline Research 

The growing interest in physico-chemical and structural properties of PPII, especially 

their short extended-helical structure attracted the attention of pharmaceutical companies. 

Very recently, cell-penetrating vector approaches are designed based on PPII scaffold 

(Eiriksdottir et al. 2010; Foged and Nielsen 2008; Franz et al. 2016; Geisler and Chmielewski 

2009; Ruzza et al. 2004; Yamashita et al. 2016). As explained above, PPII backbone has a 

high solvent accessibility and thus is highly hydrated in solvents. Therefore, use of PPII for 

cell penetration poses a challenge for hydrating the PPII based moiety and their convenient 
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uptake in hydrophobic membranes (Franz et al. 2016). Chmielewski’s group (Fillon et al. 

2005) addressed this by designing and introducing cationic and hydrophobic moieties on the 

PPII backbone and observe no structural change. The compactness and inherent flexibility of 

the PPII conformation is the key to their adaptability and accompanied by cationic and 

hydrophobic moieties, they becomes highly suitable for a cell-penetrating vector (Foged and 

Nielsen 2008). The study observes a tremendous increase in PPII based Cell-Penetrating 

Peptide (CPP) uptake compared to the traditional ones. Another important difference is the 

claimed reduction in toxicity. This is based on the observations that PPII scaffold based CPP: 

Sweet Arrow Peptides- SAP(E) obtains a net negative charge unlike the traditional CPP 

which are positively charged (Franz et al. 2016; Geisler and Chmielewski 2009; Li et al. 

2010). 

 

Conclusion and Perspectives 

Polyproline II helix is arguably a distinct member in secondary structure elements, based on 

its geometry, sequence and structure. PPII has a left-handed geometry compared to right-

handedness of popular protein helices (see Figure 2). Its sequence composition varies based 

on the presence in a globular or fibrous protein environment. It is quite an interesting 

observation that proline, a major α-helix breaker/kink, when in succession adapts a distinct 

helical form itself. Moreover, it dominates the α-helical form in denatured space. Such 

examples can be appreciated in light of the expanse of 2nd structural space. Although PPII 

conformation represents only 5% of the conformational space we highly advocate for it to be 

considered in regular secondary structures. Besides, its representation is equivalent if not 

more than the 310 helices. The involvement of PPII-protein and PPII-nucleic acid interactions 

in different pathologies, structural applications and drug carriers makes it even more viable 
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candidate to be included in the main regular secondary structures. Its potential role in 

Alzheimer's and Parkinson's could not be ignored, given recent publications on the subject. 

The presence of PPII in regular, ordered and disordered regions while establishes its 

distinctiveness is not sufficient to seize the complete structural space of PPII conformations. 

Therefore, more assignment approaches and coiled library experiments are needed to explore 

such conformations. This review addresses the neglect on conformations like PPII and bias 

towards "regular" secondary structures. Figure 5 shows the number of publications about PPII 

since 1968. The increase is clear, but remains limited. The number of papers had never been 

higher than 100 papers/per year. In regards to the interest of this “lost” secondary structure, 

we can expect a better representation in the future. 
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Legends 

 
Figure 1. The structural characteristics of three secondary structures. A) Right handed α-

helix, B) Left handed PPII, C) Three β-strands forming sheet. The cartoon representation 

highlights the structural geometry while ball and stick represents the atomic arrangements of 

the three secondary structures. The proline rings can be observed in (B) and the comparison of 

oxygen (red) and nitrogen (blue) clearly indicates the absence of intra H-bonding in PPII. In 

(A) and (C), the close proximity of oxygen and nitrogen atoms makes it favourable for intra 

H-bonding. High helical rise of the PPII and lack of intra H-bonding makes its backbone 

highly solvent accessible. Visualisation done with PyMOL software (Delano 2013). 
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Figure 2. Orientation and structural organization of the different helices. A) α-helix: Right 

handed with a spherical coiling. B) 310
 -helix C) π-helix D) Polyproline Helix: Left handed 

with a triangular prism coiling. Proline residues are marked in yellow. E) A PPII helix with 

minimum residues possible. Only 3 residues can adopt a PPII conformation. In this example, 

none of the residue is proline. The proline rings can be observed in (D) High helical rise of the 

PPII can be clearly seen. Visualisation done with PyMOL software (Delano 2013). 
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Figure 3. Ramachandran plot. A) From a non-redundant dataset of the Protein DataBank. B) 

Shows the allowed region for PPII helix assigned using modified DSSP approach (Chebrek et 

al. 2014; Mansiaux et al. 2011). Visualisation done with R software (R Core Team 2013). 
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Figure 4. Interaction of Nova protein K homology domain with RNA hairpin (PDB id: 

1ec6_A (Lewis et al. 2000)). The conserved motif of the variable loop is colour in yellow. The 

two PPII helices are coloured in magenta. The occurrence of C-term helix is reported to be the 

difference between RNA bound and unbound form. Visualisation done with PyMOL software 

(Delano 2013). 
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Figure 5. Year-wise Publications Trends on Polyproline II helices. The bars depict the 

number of publications corresponding the year on x-axis. An exponential function is 

represented in blue curve. Dark bars show the sudden surge in publications compared to 

previous year. Visualisation done with R software (R Core Team 2013).  
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