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Abstract. Diffusion multi-compartment models (MCM) allow for a fine
and comprehensive study of the white matter microstructure. Non linear
registration of MCM images may provide valuable information on the
brain e.g. through population comparison. State-of-the-art MCM regis-
tration however relies on pairing-based similarity measures where the
one-to-one mapping of MCM compartments is required. This approach
leads to non differentiabilties or discontinuities, which may turn into
poorer registration. Moreover, these measures are often specific to one
MCM compartment model. We propose two new MCM similarity mea-
sures based on the space of square integrable functions, applied to MCM
characteristic functions. These measures are pairing-free and agnostic to
compartment types. We derive their analytic expressions for multi-tensor
models and propose a spherical approximation for more complex mod-
els. Evaluation is performed on synthetic deformations and inter-subject
registration, demonstrating the robustness of the proposed measures.

1 Introduction

Diffusion weighted imaging (DWI) enables the in vivo study of the brain white
matter (WM) microstructure. For this, the diffusion tensor (DT) has long been
the model of choice for its simplicity and ability to provide quantitative scalar
parameters (fractional anisotropy - FA, mean diffusivity - MD...) that correlate
with pathology stages. However, the DT suffers from some limits when dealing
with crossing fibers or since FA and MD encompass multiple microstructure
properties that cannot be disentangled. In contrast, diffusion multi-compartment
models (MCM) [10], i.e. a linear sum of diffusion compartments each modeling
a fiber bundle, provide a more specific microstructure characterization.

Population studies enable the comprehension at the group level of a disease
progression and severity. Typical population studies require the construction of
atlases or the registration of all images to an atlas, on which the comparison is
performed. For this task, using as much information as possible from the DWI,
e.g. using the full MCM, enables a finer disease characterization [12]. With this
objective, several methods have been explored for diffusion images registration.

Most approaches have focused on DT or DT-derived scalar images registra-
tion [7, 13]. However, they do not use the whole diffusion information especially in
crossing regions where the DT is limited. On the other end, some approaches [8]
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consider DWI registration. However, these algorithms are yet limited to single-
shell DWI while the complete study of WM microstructure requires multiple
b-values [11]. Moreover, adapted re-orientation in q-space is needed [6] and re-
quires an underlying diffusion model making the registration model dependent.

MCM image registration has also been studied in [12] using a multi-tensor
correlation coefficient showing better alignment of WM structures and improved
abnormality detection compared to DT registration. However, their algorithm is
centered on multi-tensors, while many other diffusion models are available [10].
Furthermore, their measure requires the one-to-one mapping of the compared
MCMs tensors. This task is time-consuming and may lead to discontinuities of
the similarity measure and its derivative as illustrated in Section 3.2. This map-
ping is also harder to define when models with different number of compartments
are compared, as it happens if model selection [11] is part of MCM estimation.
As an alternative, Cheng et al. [4] proposed to use the `2 norm ; their approach
is however limited to multi-tensors and to a sum of squared differences (SSD).

We propose in Section 2 new similarity measures for MCM images registra-
tion, considering distances between MCM characteristic functions (CF), i.e. the
Fourier transforms of the MCM probability density functions (PDF). The first
measure extends the SSD to MCM ; the second measure proposes a surrogate on
MCM to the scalar correlation coefficient (CC) to account for variability across
patients and acquisition parameters. Both measures are agnostic to individual
compartment types, i.e. we assume that their CF describe the microstructure
well for registration, and only require to derive the generic expression of the in-
ner product of two compartments to get an analytical form. For complex models,
we propose a discrete spherical approximation to both measures. We evaluate the
proposed measures in Section 3 using simulated and in-vivo data showing their
smoother evolution and improved performance for matching WM structures.

2 Methods

2.1 Diffusion Multi-Compartment Models

We define a diffusion MCM M as a weighted sum of N compartments, each
depicting water diffusion in a specific environment. For example, an MCM may
contain an isotropic free water compartment and several directional compart-
ments, each describing diffusion in a fiber bundle with a given orientation. The
MCM admits a PDF pM (x) =

∑N
i=1 wM,ipM,i(x), where pM,i is the PDF of the

i-th compartment (Mi) of the model and wM,i is the weight of compartment
Mi (

∑
i wM,i = 1). pM,i can take one of many different forms [10]. M also ad-

mits a unique CF ϕM (t) =
∑N
i=1 wM,iϕM,i(t), where ϕM,i is the CF of Mi. As

compartments are usually antipodally symmetric, ϕM takes its values in R.

2.2 `2 Space of Square Integrable Functions

We consider the Hilbert space L of real-valued square integrable functions f
such that f : R3 → R and

∫
R3 f

2(x)dx < ∞. The inner product on L is de-
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fined as 〈f, g〉L =
∫
R3 f(x)g(x)dx and is associated to a distance dL. dL can be

used to compare MCM PDFs since most fascicle model PDFs are square inte-
grable. However we define our similarity measures on MCM CFs, i.e. the Fourier
transforms of the PDFs, since: 1- the CF is usually simpler than the PDF and
is directly related to DWI signal formation, 2- distances on CFs or PDFs are
equivalent since dL computed on CFs or PDFs are equal (Plancherel theorem).
The distance between two MCM CFs ϕX and ϕY is written as follows:

d2L(ϕX , ϕY ) = wX
TAX,XwX + wY

TAY,YwY − 2wX
TAX,YwY (1)

where wX, respectively wY, represents the vector of compartment weights for
model X, respectively for model Y . AX,Y denotes the NX × NY matrix of all
pairwise inner products between the individual compartments of X and Y . As
a consequence, dL can be computed analytically if 〈., .〉L can be.

2.3 MCM Similarity Measures

We consider measures computed over a set of voxels that have been paired be-
tween two images, respectively R = {R1, · · · , RN} and F = {F1, · · · , FN}, where
Rk and Fk denote the k-th paired MCMs.

MCM Sum of Squared Differences The first measure is the direct extension
of SSD to MCMs relying on the direct comparison of the MCM paired between
R and F using the distance defined in Eq. (1):

SSDL(R,F) =

N∑
k=1

d2L(ϕRk
, ϕFk

) (2)

where ϕRk
, respectively ϕFk

is the CF of the k-th MCM in R, respectively in
F. Assuming all compartments are tensors, this measure admits a closed-form
solution based on an inner product of the form: 〈ϕi, ϕj〉L = (2π)3/2|Σi+Σj |−1/2.

MCM Correlation Surrogate Similarly to the scalar SSD, SSDL may suffer
from changes due to inter-patient brain variability or DWI acquisition differences.
We therefore present a second measure aimed at being an “equivalent”, in the L
space, to the scalar squared CC. Going back to the scalar case, the squared CC
can be seen as a measure of the linear relationship between two sets of scalars.
Another way of measuring this relationship has been proposed by Alpert et al. [2]
as the squared residual of the linear regression between these sets. We propose
an MCM correlation surrogate in L following a similar idea:

CL = min
θ

N∑
k=1

d2L(ϕRk
, HθϕFk

) (3)
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where Hθ : R3 → R denotes a kernel function with parameters θ, such that it
preserves the square integrability of ϕFk

. CL is the residual of the minimization
of Eq. (3) with respect to θ. Interestingly, if Hθ is a CF, Eq. (3) is equivalent to
the convolution of pFk

with Hθ PDF. Following this, we choose Hθ as the CF of
the centered Gaussian PDF with parameter σ: Hθ(t) = exp

(
−σtT t/2

)
, which

results in a Gaussian smoothing of the MCMs PDF.
Developing further Eq. (3) leads to the computation of three different inner

products of the form: 〈ϕi, Hα
θ ϕj〉L for α ∈ {0, 1, 2}. Similarly to SSDL, when

considering tensor MCM compartments, these inner products admit an analytical
form 〈ϕi, Hα

θ ϕj〉L = (2π)3/2|Σi + Σj + ασId|−1/2 (where Id denotes the 3 × 3
identity matrix). In this specific case, optimization over θ is carried out using
gradient-based optimization algorithm as analytical derivatives are available.

Similarity Metrics Spherical Approximation For some non Gaussian com-
partment types, the inner products cannot be computed analytically. We there-
fore propose a discrete approximation 〈., .〉aL to the inner product 〈., .〉L using
the fact that CFs decrease fast to infinity and are linked to DWI signal formation
as: Sk = S0ϕ

(√
2bkgk

)
where S0 is the nominal signal without diffusion weight-

ing and Sk the diffusion weighted signal with b-value bk along gradient gk. CFs
are used to estimate MCM parameters through a least squares minimization.
We construct 〈ϕi, ϕj〉aL by sampling values of ϕi and ϕj on DWI acquisition
spheres, on a reasonable number of points (in our experiments we sampled a
total of 169 gradients on 5 spheres ranging from b = 500 to 3000s.mm−2):

〈ϕi, ϕj〉aL =
∑
k

∆kϕi

(√
2bkgk

)
ϕj

(√
2bkgk

)
(4)

where ∆k is the volume of a subpart of a sphere around point
√

2bkgk. Plugging
this approximation in Eqs. (2) and (3) defines two measures: SSDaL and CaL.

2.4 Pairing-based MCM Similarity Measure

As a comparison point to the proposed measures, we also recall the definition of
a pairing-based SSD, denoted SSDP . The distance between two MCM Rk and
Fk is defined through pairings between the MCM compartments Rk,i and Fk,j .
Then, assuming that NRk

= NFk
, the pairing-based distance dP is defined as:

d2P (Rk, Fk) = min
a1...aNRk

NRk∑
i=1

wRk,i
wFk,ai

d2I(pRk,i
, pFk,ai

) (5)

where ai are elements of an association vector a mapping each element of Rk
to an element of Fk, dI is a distance between MCM compartment PDFs: for
multi-tensors the log-Euclidean distance [3]. As a is unknown, all permutations
are tested and dP is the minimum over those associations. The sum of d2P over
k defines SSDP . An additional difficulty appears when NRk

< NFk
when model

selection was performed, making a more complicated to define. We chose to pair
each element of Rk to a single element of Fk, extraneous elements being left out.
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3 Experiments and Results

3.1 Image Database and Registration Algorithm

We have used in vivo data from 10 pre-processed healthy subjects from the Hu-
man Connectome Project (HCP)1. Each DWI acquisition includes 270 gradient
directions on three different b-values (from b = 1000 to 3000 s.mm−2). The im-
age size is 145×174×145 and voxel size 1.25×1.25×1.25 mm3. From the DWI,
multi-tensor models were estimated so that the approximate and analytical mea-
sures can be compared. Estimation was performed using Scherrer et al. method
with model selection [11]. Each multi-tensor model was composed of 2 isotropic
compartments (free water and restricted water) and a maximum of 3 tensors.

As a fair evaluation framework, we have integrated all measures (SSDP ,
SSDL, SSDaL, CL, CaL) in a generic MCM non linear registration algorithm.
This algorithm is an extension of a block-matching scalar image registration [5].
Two essential components were specified for MCM registration. First interpola-
tion for image resampling was performed using state-of-the-art MCM interpo-
lation techniques [12]. The second major brick is the re-orientation technique
for resampling. We used the preservation of principal direction technique [1] on
each compartment of the interpolated MCM. We used this framework in our
experiments with the same parameters, changing only the similarity measure.

3.2 Similarity Measures Qualitative Evaluation

We evaluated the behavior of each similarity measure when translating or ro-
tating a block (close to the ventricles, see Fig. 1.a) where the number of com-
partments is known to change. The selected block had a resolution of 5×5×5
voxels and was either translated along the Y-axis (vertical axis in Fig. 1.a) or
rotated around the Z-axis (transverse axis in Fig. 1.a). For each case, we com-
puted the similarity measure between the transformed block and the original
one. We report in Fig. 1 the five evaluated similarity measures, as a function of
the transformation parameters, scaled so that their maximum is equal.

When rotating the block around its center (Fig. 1.b), all measures perform
well and indicate one clear global minimum although SSDP suffers from some
irregularities. The main variations appear in the translation case due to the
change of explored region with the increasing translation. In Fig. 1.c, SSDP

appears more sensitive to interpolation than the proposed measures. The value of
SSDP may vary abruptly when the MCM compartment pairings change, leading
to non differentiability. The mapping function a also maps one compartment to
one and only one other compartment. However, the number of compartments is
different when translation occurs. Some compartments are thus left out, leading
to part of one MCM not being considered in the measure.

Measures based on the L space compare MCMs as a whole and therefore
adopt much smoother and regular shapes. Moreover, the shapes of the approxi-
mations are very similar (the green and blue curves are overlapping in Fig. 1 as

1 http://www.humanconnectome.org
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(a) Block position (b) Z axis rotation (degrees) (c) Y axis translation (mm)

Fig. 1. Similarity measures evolution around the corpus callosum for (b): rotation and
(c): translation. Legend: red: SSDP , green: SSDL, blue: SSDaL, cyan: CL, black: CaL.

well as the cyan and black curves in Fig. 1.b), suggesting the discrete approx-
imation is well fit for MCM registration. CL and CaL adopt a different shape
from the SSD measures, allowing for more possibilities in matching one block
with other regions while keeping the true matching as the global optimum.

3.3 Quantitative Evaluation on HCP Data

Simulated Deformations We simulated deformations by generating for each
HCP subject a set of 5 poly-rigid transformations [5] by randomly seeding 15
local rigid transformations (rotations between [−π/6;π/6] radians around each
axis and translations between [−10; 10] mm in each direction) inside the brain
and extrapolating a dense deformation. These transformations were then applied
to their corresponding subject, generating two images to register: I ◦ T−1/2 and
I ◦ T 1/2. The ground truth transformation is then T . We present in Fig. 2 the
voxelwise transformation errors for the registration with each measure.

All L space measures outperform SSDP . This is particularly visible around
the ventricles (arrows on Fig. 2). This confirms previous results where SSDP

shape was irregular and thus more difficult to optimize in this region. The re-
sults obtained by the spherical approximations of the measures are close to their
analytical counterparts. All L space measures appear to perform equally well,
only displaying subtle error differences. We also computed the average transfor-
mation error over the whole image and averaged those across all experiments.
All measures improve over the initial error (2.704). The SSDP error (0.587) is
however significantly higher (paired t-test, p < 0.05) than the L space measures:
SSDL, SSDaL and CL reach an average error of 0.577 and CaL reaches 0.578. All
proposed measures are not significantly different from each other (paired t-test,
p > 0.05). The absence of difference between MCM correlation and SSD may be
explained by the fact that each couple of images comes from the same subject
and SSDL is enough in that case to recover the deformation.

Inter-subject registration We quantitatively evaluated inter-subject registra-
tion by registering all couples of HCP images (total of 90 registrations) and ap-
plying the deformation to WM segmentations. These parcellations were obtained
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(a) Reference image (b) SSDaL (c) CaL

(d) SSDP (e) SSDL (f) CL

Fig. 2. Transformation errors after registration on a representative HCP subject: fixed
MCM image (a), error using SSDP (d), SSDL (e), SSDaL (b), CL (f), CaL (c).

by the HCP pipelines using FreeSurfer and contain a total of 182 structures. We
report in Fig. 3 the averaged total overlaps (TO) [9] between the transformed
parcellations and the true ones for each method.

The average TO are relatively low for all methods. This comes from inter-
subject variability of the reference parcellations. The overlap scores however
confirm previous findings: the L space measures all outperform SSDP (average
TO: 47.23%), itself being better than global affine registration on B0 images (all
results significant: paired t-test, p < 0.05). This confirms that the pairing based
measure, although good overall, encounters more difficulties. CL performs the
best over all other measures (average TO: 50.73%, paired t-test, p < 0.05), while
both SSDL and SSDaL perform equally well (average TO: 50.53%). Introducing
a more flexible similarity measure than SSD may thus help MCM image regis-
tration. CaL performs a little lower than other L space measures (average TO:

Fig. 3. White matter parcella-
tion total overlaps after registra-
tion of MCM images from HCP
data, using either global affine
registration, or non linear regis-
tration with respectively SSDP ,
SSDL, SSDaL, MCM correlation
surrogate CL and CaL.
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49.73%), especially compared to CL. This suggests that the selected approxima-
tion points may have an influence on the approximation quality.

4 Conclusion

We have proposed a new framework to define MCM similarity measures based
on the fact that most MCM CF belong to the Hilbert space of square integrable
functions L. Defining distances between MCM in L has two main advantages:
1- no pairing is needed between the individual MCM compartments thereby
alleviating the complex computation of a mapping function; 2- the measures
are generic as they are agnostic to the compartments models. We defined two
similarity measures (and their analytical expressions for multi-tensors): an MCM
SSD and an MCM surrogate to the scalar CC. In addition, we defined a numerical
approximation applicable to all L space based measures for complex models. We
have evaluated these new similarity measures on both simulated transformations
and real data from HCP, showing the better behavior of L space measures and
the potential of the MCM correlation surrogate.
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