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Introduction

Diffusion weighted imaging (DWI) enables the in vivo study of the brain white matter (WM) microstructure. For this, the diffusion tensor (DT) has long been the model of choice for its simplicity and ability to provide quantitative scalar parameters (fractional anisotropy -FA, mean diffusivity -MD...) that correlate with pathology stages. However, the DT suffers from some limits when dealing with crossing fibers or since FA and MD encompass multiple microstructure properties that cannot be disentangled. In contrast, diffusion multi-compartment models (MCM) [START_REF] Panagiotaki | Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison[END_REF], i.e. a linear sum of diffusion compartments each modeling a fiber bundle, provide a more specific microstructure characterization.

Population studies enable the comprehension at the group level of a disease progression and severity. Typical population studies require the construction of atlases or the registration of all images to an atlas, on which the comparison is performed. For this task, using as much information as possible from the DWI, e.g. using the full MCM, enables a finer disease characterization [START_REF] Taquet | A mathematical framework for the registration and analysis of multi-fascicle models for population studies of the brain microstructure[END_REF]. With this objective, several methods have been explored for diffusion images registration.

Most approaches have focused on DT or DT-derived scalar images registration [START_REF] Goodlett | Group analysis of DTI fiber tract statistics with application to neurodevelopment[END_REF][START_REF] Yeo | DT-REFinD: Diffusion tensor registration with exact finite-strain differential[END_REF]. However, they do not use the whole diffusion information especially in crossing regions where the DT is limited. On the other end, some approaches [START_REF] Jensen | Locally orderless registration for diffusion weighted images[END_REF] consider DWI registration. However, these algorithms are yet limited to singleshell DWI while the complete study of WM microstructure requires multiple b-values [START_REF] Scherrer | Parametric representation of multiple white matter fascicles from cube and sphere diffusion MRI[END_REF]. Moreover, adapted re-orientation in q-space is needed [START_REF] Dhollander | Spatial transformations of high angular resolution diffusion imaging data in Q-space[END_REF] and requires an underlying diffusion model making the registration model dependent.

MCM image registration has also been studied in [START_REF] Taquet | A mathematical framework for the registration and analysis of multi-fascicle models for population studies of the brain microstructure[END_REF] using a multi-tensor correlation coefficient showing better alignment of WM structures and improved abnormality detection compared to DT registration. However, their algorithm is centered on multi-tensors, while many other diffusion models are available [START_REF] Panagiotaki | Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison[END_REF]. Furthermore, their measure requires the one-to-one mapping of the compared MCMs tensors. This task is time-consuming and may lead to discontinuities of the similarity measure and its derivative as illustrated in Section 3.2. This mapping is also harder to define when models with different number of compartments are compared, as it happens if model selection [START_REF] Scherrer | Parametric representation of multiple white matter fascicles from cube and sphere diffusion MRI[END_REF] is part of MCM estimation. As an alternative, Cheng et al. [START_REF] Cheng | Non-rigid registration of hardi represented by Gaussian mixture fields[END_REF] proposed to use the 2 norm ; their approach is however limited to multi-tensors and to a sum of squared differences (SSD).

We propose in Section 2 new similarity measures for MCM images registration, considering distances between MCM characteristic functions (CF), i.e. the Fourier transforms of the MCM probability density functions (PDF). The first measure extends the SSD to MCM ; the second measure proposes a surrogate on MCM to the scalar correlation coefficient (CC) to account for variability across patients and acquisition parameters. Both measures are agnostic to individual compartment types, i.e. we assume that their CF describe the microstructure well for registration, and only require to derive the generic expression of the inner product of two compartments to get an analytical form. For complex models, we propose a discrete spherical approximation to both measures. We evaluate the proposed measures in Section 3 using simulated and in-vivo data showing their smoother evolution and improved performance for matching WM structures.

Methods

Diffusion Multi-Compartment Models

We define a diffusion MCM M as a weighted sum of N compartments, each depicting water diffusion in a specific environment. For example, an MCM may contain an isotropic free water compartment and several directional compartments, each describing diffusion in a fiber bundle with a given orientation. The MCM admits a PDF p M (x) = N i=1 w M,i p M,i (x), where p M,i is the PDF of the i-th compartment (M i ) of the model and w M,i is the weight of compartment M i ( i w M,i = 1). p M,i can take one of many different forms [START_REF] Panagiotaki | Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison[END_REF]. M also admits a unique CF ϕ M (t) = N i=1 w M,i ϕ M,i (t), where ϕ M,i is the CF of M i . As compartments are usually antipodally symmetric, ϕ M takes its values in R.

2.2

2 Space of Square Integrable Functions We consider the Hilbert space L of real-valued square integrable functions f such that f : R 3 → R and

R 3 f 2 (x)dx < ∞. The inner product on L is de- fined as f, g L = R 3 f (x)g(x)
dx and is associated to a distance d L . d L can be used to compare MCM PDFs since most fascicle model PDFs are square integrable. However we define our similarity measures on MCM CFs, i.e. the Fourier transforms of the PDFs, since: 1-the CF is usually simpler than the PDF and is directly related to DWI signal formation, 2-distances on CFs or PDFs are equivalent since d L computed on CFs or PDFs are equal (Plancherel theorem). The distance between two MCM CFs ϕ X and ϕ Y is written as follows:

d 2 L (ϕ X , ϕ Y ) = w X T A X,X w X + w Y T A Y,Y w Y -2w X T A X,Y w Y (1)
where w X , respectively w Y , represents the vector of compartment weights for model X, respectively for model Y . A X,Y denotes the N X × N Y matrix of all pairwise inner products between the individual compartments of X and Y . As a consequence, d L can be computed analytically if ., . L can be.

MCM Similarity Measures

We consider measures computed over a set of voxels that have been paired between two images, respectively

R = {R 1 , • • • , R N } and F = {F 1 , • • • , F N }, where R k and F k denote the k-th paired MCMs.

MCM Sum of Squared Differences

The first measure is the direct extension of SSD to MCMs relying on the direct comparison of the MCM paired between R and F using the distance defined in Eq. ( 1):

SSD L (R, F) = N k=1 d 2 L (ϕ R k , ϕ F k ) (2) 
where ϕ R k , respectively ϕ F k is the CF of the k-th MCM in R, respectively in F. Assuming all compartments are tensors, this measure admits a closed-form solution based on an inner product of the form:

ϕ i , ϕ j L = (2π) 3/2 |Σ i +Σ j | -1/2 .

MCM Correlation Surrogate

Similarly to the scalar SSD, SSD L may suffer from changes due to inter-patient brain variability or DWI acquisition differences. We therefore present a second measure aimed at being an "equivalent", in the L space, to the scalar squared CC. Going back to the scalar case, the squared CC can be seen as a measure of the linear relationship between two sets of scalars. Another way of measuring this relationship has been proposed by Alpert et al. [START_REF] Alpert | Improved methods for image registration[END_REF] as the squared residual of the linear regression between these sets. We propose an MCM correlation surrogate in L following a similar idea:

C L = min θ N k=1 d 2 L (ϕ R k , H θ ϕ F k ) (3) 
where H θ : R 3 → R denotes a kernel function with parameters θ, such that it preserves the square integrability of ϕ F k . C L is the residual of the minimization of Eq. ( 3) with respect to θ. Interestingly, if H θ is a CF, Eq. ( 3) is equivalent to the convolution of p F k with H θ PDF. Following this, we choose H θ as the CF of the centered Gaussian PDF with parameter σ: H θ (t) = exp -σt T t/2 , which results in a Gaussian smoothing of the MCMs PDF.

Developing further Eq. ( 3) leads to the computation of three different inner products of the form: ϕ i , H α θ ϕ j L for α ∈ {0, 1, 2}. Similarly to SSD L , when considering tensor MCM compartments, these inner products admit an analytical form ϕ i , H α θ ϕ j L = (2π) 3/2 |Σ i + Σ j + ασId| -1/2 (where Id denotes the 3 × 3 identity matrix). In this specific case, optimization over θ is carried out using gradient-based optimization algorithm as analytical derivatives are available.

Similarity Metrics Spherical Approximation For some non Gaussian compartment types, the inner products cannot be computed analytically. We therefore propose a discrete approximation ., . aL to the inner product ., . L using the fact that CFs decrease fast to infinity and are linked to DWI signal formation as: S k = S 0 ϕ √ 2b k g k where S 0 is the nominal signal without diffusion weighting and S k the diffusion weighted signal with b-value b k along gradient g k . CFs are used to estimate MCM parameters through a least squares minimization. We construct ϕ i , ϕ j aL by sampling values of ϕ i and ϕ j on DWI acquisition spheres, on a reasonable number of points (in our experiments we sampled a total of 169 gradients on 5 spheres ranging from b = 500 to 3000s.mm -2 ):

ϕ i , ϕ j aL = k ∆ k ϕ i 2b k g k ϕ j 2b k g k (4)
where ∆ k is the volume of a subpart of a sphere around point √ 2b k g k . Plugging this approximation in Eqs. ( 2) and (3) defines two measures: SSD aL and C aL .

Pairing-based MCM Similarity Measure

As a comparison point to the proposed measures, we also recall the definition of a pairing-based SSD, denoted SSD P . The distance between two MCM R k and F k is defined through pairings between the MCM compartments R k,i and F k,j . Then, assuming that N R k = N F k , the pairing-based distance d P is defined as:

d 2 P (R k , F k ) = min a1...a N R k N R k i=1 w R k,i w F k,a i d 2 I (p R k,i , p F k,a i ) (5) 
where a i are elements of an association vector a mapping each element of R k to an element of F k , d I is a distance between MCM compartment PDFs: for multi-tensors the log-Euclidean distance [START_REF] Arsigny | Log-Euclidean metrics for fast and simple calculus on diffusion tensors[END_REF]. As a is unknown, all permutations are tested and d P is the minimum over those associations. The sum of d 2 P over k defines SSD P . An additional difficulty appears when N R k < N F k when model selection was performed, making a more complicated to define. We chose to pair each element of R k to a single element of F k , extraneous elements being left out.

Experiments and Results

Image Database and Registration Algorithm

We have used in vivo data from 10 pre-processed healthy subjects from the Human Connectome Project (HCP) 1 . Each DWI acquisition includes 270 gradient directions on three different b-values (from b = 1000 to 3000 s.mm -2 ). The image size is 145×174×145 and voxel size 1.25×1.25×1.25 mm 3 . From the DWI, multi-tensor models were estimated so that the approximate and analytical measures can be compared. Estimation was performed using Scherrer et al. method with model selection [START_REF] Scherrer | Parametric representation of multiple white matter fascicles from cube and sphere diffusion MRI[END_REF]. Each multi-tensor model was composed of 2 isotropic compartments (free water and restricted water) and a maximum of 3 tensors.

As a fair evaluation framework, we have integrated all measures (SSD P , SSD L , SSD aL , C L , C aL ) in a generic MCM non linear registration algorithm. This algorithm is an extension of a block-matching scalar image registration [START_REF] Commowick | Automated diffeomorphic registration of anatomical structures with rigid parts: application to dynamic cervical MRI[END_REF]. Two essential components were specified for MCM registration. First interpolation for image resampling was performed using state-of-the-art MCM interpolation techniques [START_REF] Taquet | A mathematical framework for the registration and analysis of multi-fascicle models for population studies of the brain microstructure[END_REF]. The second major brick is the re-orientation technique for resampling. We used the preservation of principal direction technique [START_REF] Alexander | Spatial transformations of diffusion tensor magnetic resonance images[END_REF] on each compartment of the interpolated MCM. We used this framework in our experiments with the same parameters, changing only the similarity measure.

Similarity Measures Qualitative Evaluation

We evaluated the behavior of each similarity measure when translating or rotating a block (close to the ventricles, see Fig. 1.a) where the number of compartments is known to change. The selected block had a resolution of 5×5×5 voxels and was either translated along the Y-axis (vertical axis in Fig. 1.a) or rotated around the Z-axis (transverse axis in Fig. 1.a). For each case, we computed the similarity measure between the transformed block and the original one. We report in Fig. 1 the five evaluated similarity measures, as a function of the transformation parameters, scaled so that their maximum is equal.

When rotating the block around its center (Fig. 1.b), all measures perform well and indicate one clear global minimum although SSD P suffers from some irregularities. The main variations appear in the translation case due to the change of explored region with the increasing translation. In Fig. 1.c, SSD P appears more sensitive to interpolation than the proposed measures. The value of SSD P may vary abruptly when the MCM compartment pairings change, leading to non differentiability. The mapping function a also maps one compartment to one and only one other compartment. However, the number of compartments is different when translation occurs. Some compartments are thus left out, leading to part of one MCM not being considered in the measure.

Measures based on the L space compare MCMs as a whole and therefore adopt much smoother and regular shapes. Moreover, the shapes of the approximations are very similar (the green and blue curves are overlapping in Fig. 1 as well as the cyan and black curves in Fig. 1.b), suggesting the discrete approximation is well fit for MCM registration. C L and C aL adopt a different shape from the SSD measures, allowing for more possibilities in matching one block with other regions while keeping the true matching as the global optimum.

Quantitative Evaluation on HCP Data

Simulated Deformations We simulated deformations by generating for each HCP subject a set of 5 poly-rigid transformations [START_REF] Commowick | Automated diffeomorphic registration of anatomical structures with rigid parts: application to dynamic cervical MRI[END_REF] by randomly seeding 15 local rigid transformations (rotations between [-π/6; π/6] radians around each axis and translations between [-10; 10] mm in each direction) inside the brain and extrapolating a dense deformation. These transformations were then applied to their corresponding subject, generating two images to register: I • T -1/2 and I • T 1/2 . The ground truth transformation is then T . We present in Fig. 2 the voxelwise transformation errors for the registration with each measure. All L space measures outperform SSD P . This is particularly visible around the ventricles (arrows on Fig. 2). This confirms previous results where SSD P shape was irregular and thus more difficult to optimize in this region. The results obtained by the spherical approximations of the measures are close to their analytical counterparts. All L space measures appear to perform equally well, only displaying subtle error differences. We also computed the average transformation error over the whole image and averaged those across all experiments. All measures improve over the initial error (2.704). The SSD P error (0.587) is however significantly higher (paired t-test, p < 0.05) than the L space measures: SSD L , SSD aL and C L reach an average error of 0.577 and C aL reaches 0.578. All proposed measures are not significantly different from each other (paired t-test, p > 0.05). The absence of difference between MCM correlation and SSD may be explained by the fact that each couple of images comes from the same subject and SSD L is enough in that case to recover the deformation.

Inter-subject registration We quantitatively evaluated inter-subject registration by registering all couples of HCP images (total of 90 registrations) and applying the deformation to WM segmentations. These parcellations were obtained by the HCP pipelines using FreeSurfer and contain a total of 182 structures. We report in Fig. 3 the averaged total overlaps (TO) [START_REF] Klein | Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration[END_REF] between the transformed parcellations and the true ones for each method. The average TO are relatively low for all methods. This comes from intersubject variability of the reference parcellations. The overlap scores however confirm previous findings: the L space measures all outperform SSD P (average TO: 47.23%), itself being better than global affine registration on B0 images (all results significant: paired t-test, p < 0.05). This confirms that the pairing based measure, although good overall, encounters more difficulties. C L performs the best over all other measures (average TO: 50.73%, paired t-test, p < 0.05), while both SSD L and SSD aL perform equally well (average TO: 50.53%). Introducing a more flexible similarity measure than SSD may thus help MCM image registration. C aL performs a little lower than other L space measures (average TO: 49.73%), especially compared to C L . This suggests that the selected approximation points may have an influence on the approximation quality.

Conclusion

We have proposed a new framework to define MCM similarity measures based on the fact that most MCM CF belong to the Hilbert space of square integrable functions L. Defining distances between MCM in L has two main advantages: 1-no pairing is needed between the individual MCM compartments thereby alleviating the complex computation of a mapping function; 2-the measures are generic as they are agnostic to the compartments models. We defined two similarity measures (and their analytical expressions for multi-tensors): an MCM SSD and an MCM surrogate to the scalar CC. In addition, we defined a numerical approximation applicable to all L space based measures for complex models. We have evaluated these new similarity measures on both simulated transformations and real data from HCP, showing the better behavior of L space measures and the potential of the MCM correlation surrogate.
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 1 Fig. 1. Similarity measures evolution around the corpus callosum for (b): rotation and (c): translation. Legend: red: SSDP , green: SSDL, blue: SSDaL, cyan: CL, black: CaL.

Fig. 2 .

 2 Fig. 2. Transformation errors after registration on a representative HCP subject: fixed MCM image (a), error using SSDP (d), SSDL (e), SSDaL (b), CL (f), CaL (c).

Fig. 3 .

 3 Fig. 3. White matter parcellation total overlaps after registration of MCM images from HCP data, using either global affine registration, or non linear registration with respectively SSDP , SSDL, SSDaL, MCM correlation surrogate CL and CaL.
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