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ABSTRACT 

Purpose: In mixed models, the relative standard errors (RSE) and shrinkage of 

individual parameters can be predicted from the individual Bayesian information matrix (MBF). 

We proposed an approach accounting for data below the limit of quantification (LOQ) in MBF. 

Methods: MBF is the sum of the expectation of the individual Fisher information (MIF) 

which can be evaluated by First-Order linearization and the inverse of random effect variance. 

We expressed the individual information as a weighted sum of predicted MIF for every possible 

design composing of measurements above and/or below LOQ. When evaluating MIF, we 

derived the likelihood expressed as the product of the likelihood of observed data and the 
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probability for data to be below LOQ. The relevance of RSE and shrinkage predicted by MBF 

in absence or presence of data below LOQ were evaluated by simulations, using a 

pharmacokinetic/viral kinetic model defined by differential equations.  

Results: Simulations showed good agreement between predicted and observed RSE and 

shrinkage in absence or presence of data below LOQ. We found that RSE and shrinkage 

increased with sparser designs and with data below LOQ. 

Conclusions: The proposed method based on MBF adequately predicted individual RSE 

and shrinkage, allowing for evaluation of a large number of scenarios without extensive 

simulations. 

 

KEYWORDS: Bayesian Fisher information matrix; Data below the limit of quantification; 

Nonlinear mixed effect models; Optimal design; Shrinkage. 

ABBREVIATIONS: 

FO First-order linearization 

LOQ Limit of quantification 

MAP Maximum A Posteriori 

MF Fisher information matrix 

MBF Bayesian Fisher information matrix 

MIF Individual Fisher information matrix 

MPF Population Fisher information matrix 

NLMEM Nonlinear mixed effect models 

ODE Ordinary differential equation 

Peg-IFN Pegylated-Interferon 

PK Pharmacokinetic 

PD Pharmacodynamic 

RSE Relative standard error 

VK Viral kinetic 
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INTRODUCTION 

Since their first development in early 1970, NonLinear Mixed Effect Models (NLMEM) have 

rapidly gained popularity and now are widely used to analyze 

pharmacokinetic/pharmacodynamic (PK/PD) longitudinal data [1–3]. NLMEM can 

compensate for the lack of individual information by borrowing the strength from the data in 

the whole population. Therefore, they allow for more precise parameter estimation even with 

limited individual design. PK/PD parameters obtained in population analysis are useful to 

characterize or predict the PK/PD response of a population, to simulate clinical trials [1–3]. 

These population parameters are usually obtained by Maximum Likelihood approach [4]. Once 

population parameters are estimated, individual parameters can then be derived, using Bayesian 

approach which combines ‘a priori’ information of population parameters estimated previously 

and the individual data. Individual parameter estimates in NLMEM are often obtained as the 

maximum a posteriori (MAP), i.e., the mode of the posterior distribution. A good precision of 

individual parameter estimates is needed for screening covariate effect, for sequential PK/PD 

analysis, for individualized treatment, etc.  

The precision of parameter estimates depends on the quantity and quality of the available data, 

which in turns, depends on the study design (i.e. the number and timing of the samples). To 

evaluate and optimize a design, two approaches have been proposed. The first approach, based 

on clinical trial simulation, is very time-consuming and therefore, is limited in term of designs 

that can be evaluated. Alternatively, one can use methods based on mathematical derivation of 

the Fisher information Matrix (MF) [5]. This approach relies on the Cramer-Rao inequality, 

which states that the inverse of the MF is the lower bound of the variance-covariance matrix of 

any unbiased estimator of the parameters. Expressions of the expected individual (MIF) and 

population Fisher information matrix (MPF) using first-order (FO) approximation [5,6] have 

been developed and implemented in several software programs [7,8] to evaluate and optimize 
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designs for standard individual regression or population analysis, respectively. Beside MIF and 

MPF, the expected Bayesian Fisher information matrix (MBF) was also developed to evaluate 

the estimation error of individual parameters obtained by MAP [9,10]. In addition to the 

estimation error, MBF can also be used to predict the shrinkage [10,11] a metric quantifying the 

informativeness of the individual data and the reliability of individual parameter estimates [12–

14]. These developments on MBF were recently implemented in PFIM, an R program for design 

evaluation and optimization [15]. 

Data below the limit of quantification (LOQ) are frequently observed in PK/PD studies. While 

these data can be limited in well-designed PK/PD studies, they are present at large proportion 

in several situations, in particular when they are used as a marker of treatment effectiveness. 

For instance, the efficacy of the treatment of hepatitis virus or human immunodeficiency virus 

is evaluated as the ability of the treatment to clear the virus or to maintain the viral load under 

the detection levels. In such case, data below the LOQ cannot be avoided and can have 

significant impact on the estimation error and shrinkage of individual parameters [16] and 

therefore, by the methods used to account for these data.  

Several approaches have been proposed to handle data below LOQ in parameter estimation 

[17–20] and model evaluation [21].  At the study design step, the impact of these censored data 

can be taken into account in clinical trial simulation approach but this method is time-

consuming. When using the MF-based approach, some methods have been proposed to handle 

data below LOQ in MPF [22,23] but to our knowledge, no such approach has been proposed for 

MBF.  

The main objective of this work was to propose and evaluate a method to account for data below 

LOQ in MIF and MBF. Relative standard error (RSE) and/or shrinkage of individual parameters 

were predicted from MIF or MBF in absence or presence of data below LOQ and compared with 
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those obtained in a simulation study. In the second part of this work, we studied the influence 

of design, different levels of inter-individual and residual variability on the precision of 

individual parameter estimates using the prediction of MBF and MIF. A pharmacokinetic/viral 

kinetic (PK-VK) model describing the concentration of pegylated-Interferon (peg-IFN) and the 

decline of viral load of hepatitis C virus (HCV) under treatment, inspired from previous PK-

VK models [24,25],  was used as an illustrative example throughout the paper.  

 

METHODS 

Model and notation 

For a given individual i (i = 1,…, N), we denote yi the ni-vector of measures obtained with the 

elementary sampling design ),,,( 21 iiniii ttt   and f the known function describing the 

nonlinear structural model. The NLMEM links yi to the design i  as follows 

iiii fy   ),(  (1) 

where i  is the vector of p individual parameters in individual i. i  is the random error which 

follows a normal distribution with mean 0 and variance-covariance matrix 

 
injijiii tdiag ,,1

2),(),(    denoted   for simplicity in the followings, with 

),(),(  slopeinter ijiiji tft    where inter  is the parameter for the additive part and slope  for 

the proportional part of the error model. Of note, 
inI2

inter in case of an additive error variance 

model and )),(( 22

slope iji tfdiag  in case of a proportional error variance model. 

The vector of individual parameters i  can be defined as ),( ii g   where  is the vector of 

p fixed effects and i is the vector of p random effects for individual i. We assumed in this work 

a model without covariate. The random effect vector i  accounts for the inter-individual 
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variability and its distribution is denoted )( ip  , which is a normal distribution of mean 0 and 

variance-covariance matrix  . Here we assume that   is a pp  diagonal matrix of variances 

of random effects ),...,( 22

1 pdiag  . The function g can be additive, iig  ),( , if i  

follows a normal distribution or exponential, )exp(),( iig   , if i  follows a log-normal 

distribution. It is assumed as usual that εi|ηi are independent between individuals and i  and i  

are independent within individual.  

When using standard nonlinear regression, the vector of parameters to be estimated for each 

individual i is 
TTT

i ),(    where ),( slopeinter  T  is a vector of length r = 1 (in the case 

of additive or proportional error variance model) or of length r = 2 (combined error). When 

using nonlinear mixed effect modelling, the vector of population parameters to be estimated is 

TT

p

T ),,...,,( 22

1  . In this work we focused on individual parameter estimation, Ψ was 

supposed to be known or previously estimated. Maximum a posteriori (MAP) approach can 

overcome limitations of standard nonlinear regression in sparse designs by combining prior 

information from the whole population with available data of each individual to estimate i . 

Knowing  , estimating i is similar to estimating i . Using Bayes theorem, the posteriori 

distribution ) y|( iip   can be written as
)(

)() |(
) y|(

i

iii
ii

yp

pyp
p


   where ) |( iiyp   is the 

probability density of the observations given i . The MAP estimate of i  is  

    )(log) |(logargmax )) y|((argmax ˆ
iiiiii pypp    (2) 

Then the MAP estimate of i is )ˆ,(ˆ
ii g   . 
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Individual and Bayesian Fisher information matrix 

The expected individual Fisher information in standard nonlinear models is defined by  
























T

yIF

ypyp
EM










) |(log)|(log
),(  (3) 

where ) |( yp  is the probability density of the observations y given the parameters 

TTT

i ),(    . From now on, for simplicity, subscript i is omitted for individual. By deriving 

the following expression 

))),(()),(((
2

1
-||log

2
)2log(

2
) |(log 1  fyfytr

nn
yp T    (4) 

each term of the Fisher information matrix can be obtained as  


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

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



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  (5) 

where u = 1,…, (p+r) and v = 1,…, (p+r).  

For Bayesian estimation of the random effects, the expected Bayesian Fisher information taking 

into account the prior information on   is defined by 





























































T

y

T

BF

ypyp
EE

ypyp
EM
















 

) |(log) |(log) |(log) |(log
)(  |

, (6) 

therefore     
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 (7) 

We recognized in the first term of expression (7) the expectation of the predicted individual 

Fisher information matrix for parameter   over the distribution of the random effects. As   

follows a Gaussian distribution, the second term is the inverse of the variance of the random 

effects. Therefore we can write  

  1)),,(()(    gMEM IFBF  (8) 
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The expectation  )),,((  gME IF  can be evaluated by first order linearization of the model 

around the expectation of random effects (i.e., 0) in the expression of the likelihood.  It has been 

shown that )(BFM  is then approximated as 

1),()(  MMMM IF

T

BF   (9) 

where M is the pp identity matrix I if the individual parameters follow a normal distribution  

or the pp diagonal matrix ),...,( 1 pdiag   if the individual parameters follow a log-normal 

distribution  [10]. 

The standard error (SE) for individual and Bayesian estimation can be derived from the 

square root of the diagonal terms of MIF
-1 and MBF

-1 respectively. The shrinkage (Sh) for MAP 

estimation is quantified by the ratio of the estimation variance predicted by MBF
-1 and the 

variance-covariance matrix of the random effects  , and can be calculated as the diagonal 

elements of the matrix 
11)()(    BFMWI [10,11]. These developments were 

implemented in the R tool PFIM 4.0 [26]  and its interface version PFIM Interface 4.0 

(www.pfim.biostat.fr). 

Extension to account for data below LOQ  

Data below LOQ can be taken into account in maximum likelihood estimation for nonlinear 

models as left-censored observations [17–21]. To account for these data in the expected 

individual Fisher information matrix as well, we first wrote the probability density of the data 

y given the parameters   as 





n

j

jypyp
1

)|() |(   (10) 

as the observations in each individual are assumed to be independent. When jy  is above LOQ, 

its value obs

jy  can be observed. When jy is below LOQ, we can only observe the censored value 
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LOQ and we denote by cens

jy  the unknown value of jy . Then the probability ) |( yp  for an 

individual can be written as 





LOQyj

cens

j

LOQyj

obs

j

jj

ypypyp
 | |

)|()|() |(   
(11) 

where 
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 
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),(

),(
)|()|(

j

j

j

cens

j
t

tfLOQ
LOQyPyp




 , 

with   and    being the probability density function and the cumulative density function 

respectively of the standard normal distribution. 

Thus we can write the log-likelihood of the individual data as  





LOQy

cens

j

LOQj

obs

j

j

ypypyp )|(log)|(log) |(log
 j y|

  
(12) 

The contribution of all censored observations to the Fisher information is given by 



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To calculate ),(
 j y| LOQjIF

cens

M  , we derived the log-probability of a measurement yj to be below 

LOQ with respect to each element p  of the individual parameter vector, using 
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Thus              
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 (15) 

where )(/)()( zzz  .  

 

The number of sampling times j at which yj are above LOQ, denoted k, can vary from 0 to n, 

Therefore, ),( IFM  accounting for data below LOQ is a weighted sum of the expected 
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information for a design composed of a set 
obsk )( of k measurements above LOQ and a set 

censkn )(   of (n-k) measurements below LOQ. For each value of k (k = 0,…,n), there are 








k

n
 

possible designs with (n-k) censored values 



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)(k

l is given by 
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l j
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j
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j

k

l ypypP
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)|()|()( )(



  (16) 

Consequently, the expected individual Fisher information matrix for design   taking into 

account possible data below LOQ can be written as 

  




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(17) 

In the case of a decreasing function f, then for a given k, there is only one possible protocol 
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l tt :)1(:1
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
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above LOQ while all measurements from tk+1 to tn are censored. It can be shown that  
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and the expected Fisher information matrix can be written as 
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By using this extension of MIF in the formulae of MBF  in equation (10), we obtain the expression 

of the expected Bayesian Fisher information matrix taking into account data below LOQ. These 

developments were implemented in R. 
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SIMULATION STUDY 

PK-VK models and studied scenarios 

A simulation study was conducted to evaluate the relevance of MIF and MBF in terms of 

predicted RSE and shrinkage of individual parameters. For this purpose, we considered a PK-

VK model inspired from [24,25], describing the concentration of peg-IFN and the viral kinetics 

during a four-week treatment. Peg-IFN was given subcutaneously once weekly at the dose of 

180 µg/L. The model was written in ordinary differential equation (ODE) system as follows: 

( )
( )

a

a e

dA
k A

dt

dQ
k A k Q

dt

Q t
C t

V

 

 



 

50

0

( )
( )

( )

(1 ( ))

I

I
I I

C t
E t

C t EC

dI
V T I

dt

dV
E t p I cV

dt

 




 

  

 (20) 

where A is the quantity of peg-IFN at the site of absorption, Q and C are respectively the 

quantity and concentration of peg-IFN in the central compartment. Peg-IFN is absorbed into 

central compartment with a first order absorption constant ka and eliminated from this 

compartment with an elimination constant ke. V is the distribution volume of the central 

compartment. The VK model considers two populations of hepatocytes, the target cells, 

0

I

c
T

p




 , and the infected cells, I. Infected cells are cleared with a rate . The free virions VI 

are released from the infected cells at a rate pI per cell per day and are cleared from the 

circulation with a rate c. In this model, peg-IFN blocks the production of new virus with an 

effectiveness E(t). The relationship between peg-IFN concentration and effectiveness is 

described by an Emax model. The initial conditions for this system are defined as (A(0) = Dose, 

C(0) = 0, I(0) = cVL0/pI, VI(0)= VL0), where VL0 is the baseline viral load.  

For this PK-VK model, fixed effect parameters were chosen basing on a previous PK-VK model 

[25]. As only short-term viral load data were considered, pI and  cannot be identified and 
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therefore, were fixed at 10 day-1 and 5.7 10-6 day-1.virion-1, respectively. The vector µ of fixed 

effect parameters includes 7 parameters µ=(ka, ke, V, EC50, VL0, , c)= (0.9 day-1, 0.15 day-1, 

12 L, 0.15 µg/L, 106 copies/mL, 0.2 day-1, 6 day-1).  

For the random effect model, we considered an exponential model, i.e., a log-normal 

distribution of individual parameters, with the same standard deviation  for all parameters (ka, 

ke, V, EC50, VL0, , c) and no correlation between random effects. An additive error model on 

the concentrations for PK response and on the log10-scale of the VK response  = (PK ,VK) 

was used in the simulation. Our standard scenario was defined with moderate inter-individual 

variability (=0.3) and residual error (PK = 0.5 µg/L, VK = 0.15 log10 copies/mL).  

Three designs were considered: a rich design 5-7, with PK = (1, 3, 5, 7, 14 days) and VK = (0, 

1, 3, 5, 7, 14, 28 days), a sparse design 3-5 with PK = (1, 3, 7 days) and VK = (0, 1, 3, 7, 28 

days) and a very sparse design 2-3 with PK = (3, 7 days) and VK = (0, 7, 28 days). We set the 

limit of quantification (LOQ) at 100 copies/mL on the viral kinetic response.  

Evaluation of MIF and MBF  

To evaluate the prediction of MIF without or with data below LOQ, we predicted the RSE of 

individual parameter estimates using MIF then we compared these predictions with the RSE 

obtained using simulation. For the simulation study, we evaluated the typical individual profile 

using the fixed effect parameters and the model. We then simulated 1000 vectors of residual 

errors and added them to the typical profile to obtain 1000 datasets. Individual parameters were 

estimated for each dataset by standard nonlinear regression using R. Data below LOQ were 

kept at the simulated values in the “absence of data below LOQ” scenarios and were censored 

at LOQ values in the “presence of data below LOQ” scenarios. The likelihood for the studied 

multiple response model (PK and VK) written using differential equations was implemented in 

an R function (Supplementary material 1). This function allowed us to evaluate the 
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contributions of observed and censored data respectively in the likelihood as given in Eq. 11 & 

12. The package marqLevAlg was used for likelihood maximization [27]. To calculate the RSE 

for each parameter in the simulation study, we computed the standard deviation of the 1000 

individual parameter estimates and divided them by the value of the corresponding fixed effect 

parameter that was used to simulate data.  

Similarly, for the evaluation of MBF without or with of data below LOQ, we predicted RSE and 

shrinkage using MBF and then compared these predictions with those obtained by simulation. 

For this evaluation, 1000 profiles of 1000 individuals were simulated as follows: first, we 

simulated 1000 individual parameters using the fixed effect parameters and the inter-individual 

variability. Second, we added simulated residual errors to the individual profiles obtained from 

the simulated individual parameters and the model. Data below LOQ were kept at the simulated 

values in the “absence of data below LOQ” scenarios and were censored at LOQ values in the 

“presence of data below LOQ” scenarios. Each individual parameters pi ,̂  and random effects 

pi ,̂ for each simulated individual i (i = 1,…, 1000) were estimated as MAP [28] by fixing the 

population parameters at the values used for simulation. MAP estimation was performed using 

MONOLIX 4.3.3 (http://www.lixoft.eu/). The observed RSE of each individual parameter 

estimate was calculated by dividing the standard deviation of the posterior distribution 

))ˆ(( , piSE   by the estimated value ( pi ,̂ ). The observed shrinkage for parameter p was 

calculated from the empirical variance of 1000 estimated random effects pi ,̂  and the simulated 

inter-individual variance [13] as 
2

, )ˆvar(
1

p

pi

pSh



 .  

Data simulation as well as calculation of MIF and MBF were performed using R 3.2.  
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Influence of designs, inter-individual and residual variability on individual parameter 

estimation 

To evaluate the influence of designs and of different levels of variability on the shrinkage and 

RSE of individual parameters, we considered additional scenarios with higher inter-individual 

variability (=0.5) and/or residual errors (=(1,0.3)). In this part of the study, we presented the 

results for the scenarios without data below LOQ as the same trends would be observed in 

presence of data below LOQ. 

 

RESULTS 

Data simulation 

The typical PK and VK profiles and the sampling times of different designs were shown in 

Figure 1. The percentages of data below LOQ for the VK response observed at day 28 were 

88.6 and 57.6 % in the datasets simulated for the evaluation of MIF (no inter-individual 

variability) and for the evaluation of MBF (with inter-individual variability), respectively. The 

percentage of viral loads below LOQ when considering inter-individual variability is 

comparable with values obtained in literature (between 26%–68% depending on the LOQ level 

[29]).  

Evaluation of MIF via simulation 

The predicted RSE by MIF and those obtained from simulation are reported for all parameters 

in Figure 2. Of note, convergence was obtained for 959/1000 and 912/1000 datasets in absence 

or presence of data below LOQ, respectively, and 903/1000 datasets in both cases. Overall, MIF 

correctly predicted RSE which were close to those obtained with simulation, except for the 

parameter c, where the RSE provided by MIF and simulation were 42% and 55%, respectively 
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in absence of data below LOQ and were 44 and 66%, respectively in presence of data below 

LOQ. MIF tended to under-predict the RSE, especially for parameters associated with large 

RSE. MIF predicted an increase of RSE of the parameter  from 9% to 16% due to the presence 

of data below LOQ, which was in agreement with the results observed in simulation: 9% vs 

14% in absence and in presence of data below LOQ, respectively.  

Evaluation of MBF via simulation 

RSE predicted from MBF using population parameters or obtained using clinical trial simulation 

are reported for all parameters in Figure 3. Based on expression of MBF (Eq. 9), the highest 

RSE predicted by MBF for each parameter cannot exceed the inter-individual variability, which 

was equal to 30%, even for very sparse design 2-3 or for the most difficultly identifiable 

parameters such as c. These predictions of MBF were very close to those obtained with clinical 

trial simulation for most scenarios and parameters. MBF also tended to under-predict the RSE 

for scenarios and parameters associated with largest RSE (close to 30%). For instance, the 

predicted RSE was lower than the first quartile of RSE obtained via simulation for the parameter 

ka in the design 2-3 and for the parameter c in all designs. Similarly, the shrinkage was well 

predicted from MBF for most parameters and scenarios (Figure 4). As expected, the RSE and 

shrinkage increased with the decrease of the quantity and quality of individual information, i.e., 

when the number of samples per subject was reduced or when data below LOQ appeared in the 

samples. Taking into account these censored data by the new approach adequately predicted 

the increase of RSE and shrinkage due to the presence of data below LOQ for , the parameter 

the most sensitive to data below LOQ.  

Influence of designs, inter-individual and residual variability 

Figure 5-A and 5-B show the RSE predicted from the MIF and MBF, respectively for all 

parameters in different scenarios without data below LOQ. Of note, for the very sparse design, 
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MIF was not invertible, meaning that individual parameters were numerically non-identifiable 

with this design. Overall, with sparser design or higher residual errors, the RSE predicted either 

by MBF or MIF increased. As expected, the influence of losing informativeness, either by 

reducing the number of samples or increasing the error levels (), on the RSE was much lower 

for MBF. With higher inter-individual variability (ω), the RSE obtained with MBF increased but 

those predicted by MIF remained unchanged as expected. Figure 5-C shows the shrinkage of 

all the parameters predicted from MBF for different scenarios. As expected, the shrinkage 

increased with the loss of information, i.e., as the design became sparser or residual errors 

increased. On the contrary, as shrinkage quantifies ratio between individual information and 

the prior information (ω), it decreased when ω increased.  

 

DISCUSSION 

With several approaches accounting for data below LOQ in parameter estimation of NLMEM 

[17–20], these data can be easily handled in clinical trial simulation approach. However, as this 

approach is time-consuming, we proposed in this article a method to take into account data 

below LOQ in the expected individual Fisher information matrix (MIF) and individual Bayesian 

information matrix (MBF) evaluated using FO approximation. Extension of MIF and MBF taking 

into account possible data below LOQ was proposed by deriving a full likelihood distinguishing 

the contribution of the “observed” data and the probability of the “censored” data (data below 

LOQ). Such approaches are important in PK-PD studies, particularly in infectious diseases 

where data below LOQ are common and often used as the marker of treatment efficacy and 

outcome. A PK-VK model was used to evaluate the relevance and illustrate the use of these 

developments.  
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The illustrative example was a complex PK-VK model defined by an ODE system with two 

responses, one describing the PK of peg-IFN and the other describing VK of hepatitis C virus 

in response to treatment. To our knowledge, this was the first time that MIF and MBF were used 

to predict the RSE and shrinkage for individual parameters of a complex ODE model, without 

and with data below LOQ. In this model, the presence of data below LOQ influences in 

particular the estimation of the parameter  because this parameter defines the second phase 

decline of the viral kinetics. As it represents the long-term decline rate of viral load, a good 

estimation of this parameter was shown to be important to predict treatment outcome or 

treatment duration needed to achieve viral eradication, at least under peg-IFN based treatment 

[16,30,31]. Of note, in our example, data below LOQ only appeared at the end of the kinetics, 

which is a common case in viral kinetic data. However, there are also situations that data below 

LOQ appear in the early phase or in the middle of the studied kinetics. Such situations can be 

handled with this method, as described in equations (16) and (17). 

In the simulation study, we showed that the proposed extension of MIF and MBF correctly 

predicted the increase of RSE and/or shrinkage, especially of the parameter δ, in presence of 

data below LOQ. Although the RSE of this parameter remains quite satisfactory in this 

simulation, the increase of RSE will be more dramatically influenced by larger proportion of 

data below LOQ. Because of correlations in the estimates, the estimation of c and EC50 would 

also be influenced by data below LOQ. 

In this example, MIF and MBF tended to slightly under-predict RSE, especially for 

parameters or designs that were associated with high estimation errors. For instance, MIF 

predicted the RSE for the parameter c with 15 to 20 points lower than the RSE obtained by 

simulation, in absence or presence of data below LOQ, respectively. However, even in the case 

of under-prediction, the RSE were still predicted at high values (for instance, higher than 40% 

for the parameter c) which were able to indicate the imprecision of estimation for these 
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parameters. MBF also under-predicted the RSE of the parameters ka and EC50 in the very sparse 

design and of the parameter c in all three designs. Although the RSE and shrinkages were 

slightly underpredicted for some parameters or scenarios, in general, MIF and MBF computed 

by FO approximation performed quite well as the predicted RSE and shrinkage were close to 

those obtained by simulation for several parameters. However, in this simulation, we only 

considered a moderate variance for random effects (30%). It was already shown that increase 

of inter-individual variability could deteriorate the predictions of RSE and shrinkage predicted 

from MBF obtained with FO approximation [10]. In such case as well as for more complex 

nonlinear models or studies with discrete data, alternatives to FO approximation are needed. A 

perspective of this work is to use Markov Chains Monte Carlo approach to evaluate the 

expectation  ( ( , ), )IFE M g     over the distribution of the random effects, which may help 

to obtain better evaluation of MBF and therefore more accurate predictions of RSE and 

shrinkage. Moreover, calculation of the contribution of data below LOQ to MIF and MBF could 

be extended to the population Fisher information matrix by using Markov Chains Monte Carlo 

to integrate the derivatives of log-likelihood over the random effects and Monte Carlo 

simulation to evaluate its expectation [32]. It would also be useful to combine both population 

FIM (MPF) and Bayesian FIM (MBF) using a compound optimality criterion [33,34] to set a 

balance between the two matrices and optimize individual and population parameters at the 

same time. 

Finally, we illustrated the influence of different types of variability on the shrinkage and 

RSE of individual parameters, for the first time in an ODE multiple response model. In 

accordance with previous results for single response PK models [10,14], we found that 

shrinkage had a direct relationship with the residual variability and an inverse relationship with 

the inter-individual variability: an increase of residual errors led to higher shrinkage but a larger 

inter-individual variability would lead to a reduced shrinkage. On the contrary, RSE always had 
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a direct relationship with the two types of variability and hence, would increase with residual 

errors and inter-individual variability. This result once again illustrated that shrinkage was a 

relative measurement of the ratio between individual information and prior information 

contained in the population model. Therefore, a shrinkage value of a parameter should be 

interpreted in regard of its inter-individual variability and a common level defining a high or 

low shrinkage may not exist. RSE may be a better criterion to evaluate the quality of individual 

parameter estimation. 

In conclusion, MBF obtained by FO linearization is a useful and rapid method to predict standard 

errors and shrinkages of individual parameters, in absence or presence of data below the 

quantification limit. It allows for evaluation of a large number of scenarios without extensive 

simulations. These developments will be implemented in the next version of PFIM. 
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Legend to Figures 

Figure 1. Typical PK-VK profiles with the illustrative model and sampling times corresponding 

to three evaluated designs5-6, 3-5, 2-3. 

Figure 2. Relative standard errors (RSE) predicted from MIF (diamond points) and obtained 

from clinical trial simulation using standard nonlinear regression (bar plot) for the rich design 

5-7 and the scenario in which =0.3 and =(0.5,0.15). Dark green and light green represent the 

results obtained in absence and in presence of data below LOQ, respectively. 

Figure 3. Relative standard errors (RSE) predicted from MBF (diamond points) and obtained 

from clinical trial simulation (boxplot) for all the parameters for different designs and the 

scenario in which =0.3 and =(0.5,0.15). The designs 5-7, 3-5, 2-3 are presented in green, 

blue and red, respectively. For the same design, dark and light color represent the results 

obtained in absence and in presence of data below LOQ, respectively.   

Figure 4. Shrinkages predicted from MBF (diamond points) and obtained from clinical trial 

simulation (barplot) for all the parameters for different designs and the scenario in which =0.3 

and =(0.5,0.15). The designs 5-7, 3-5, 2-3 are presented in green, blue and red, respectively. 

For the same design, dark and light color represent the results obtained in absence and in 

presence of data below LOQ, respectively.  

Figure 5. Influence of designs, inter-individual variability and residual errors on the relative 

standard errors (RSE) and shrinkage of individual parameters for different designs: 5-7, 3-5, 

2-3 (presented in green, blue and red, respectively) and different scenarios: =0.3,=(0.5,0.15) 

(no fill pattern bar); =0.3,=(1,0.3) (vertical hatched bar); =0.5,=(0.5,0.15) (left hatched 

bar); =0.5,=(1,0.3) (right hatched bar). (A) RSE predicted from MIF, (B) RSE predicted from 

MBF, (C) Shrinkage predicted from MBF. 
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Figure 1. Typical PK-VK profiles with the illustrative model and sampling times corresponding to three evaluated designs5-

6, 3-5, 2-3 
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Figure 2. Relative standard errors (RSE) predicted from MIF (diamond points) and obtained from clinical trial simulation using 

standard nonlinear regression (bar plot) for the rich design 5-7 and the scenario in which =0.3 and =(0.5,0.15). Dark green 

and light green represent the results obtained in absence and in presence of data below LOQ, respectively. 
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Figure 3. Relative standard errors (RSE) predicted from MBF (diamond points) and obtained from clinical trial simulation 

(boxplot) for all the parameters for different designs and the scenario in which =0.3 and =(0.5,0.15). The designs 5-7, 3-

5, 2-3 are presented in green, blue and red, respectively. For the same design, dark and light color represent the results obtained 

in absence and in presence of data below LOQ, respectively.   
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Figure 4. Shrinkages predicted from MBF (diamond points) and obtained from clinical trial simulation (barplot) for all the 

parameters for different designs and the scenario in which =0.3 and =(0.5,0.15). The designs 5-7, 3-5, 2-3 are presented 

in green, blue and red, respectively. For the same design, dark and light color represent the results obtained in absence and in 

presence of data below LOQ, respectively. 
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Figure 5. .Influence of designs, inter-individual variability and residual errors on the relative standard errors (RSE) and 

shrinkage of individual parameters for different designs: 5-7, 3-5, 2-3 (presented in green, blue and red, respectively) and 

different scenarios: =0.3,=(0.5,0.15) (no fill pattern bar); =0.3,=(1,0.3) (vertical hatched bar); =0.5,=(0.5,0.15) 

(left hatched bar); =0.5,=(1,0.3) (right hatched bar). (A) RSE predicted from MIF, (B) RSE predicted from MBF, (C) 

Shrinkage predicted from MBF. 


