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Jan J Cornelissen6, Patrice Chevallier7, Guillermo Sanz8, Eefke Petersen9, Bipin N Savani10, Eliane Gluckman11

and Arnon Nagler4,12

Abstract

Background: The feasibility of cord blood transplantation (CBT) in adults is limited by the relatively low
number of hematopoietic stem/progenitor cells contained in one single CB unit. The infusion of two CB units
from different partially HLA-matched donors (double CBT) is frequently performed in patients who lack a
sufficiently rich single CB unit.

Methods: We compared CBT outcomes in patients given single or double CBT following reduced-intensity
conditioning (RIC) in a retrospective multicenter registry-based study. Inclusion criteria included adult
(≥18 years) patients, acute myeloid leukemia (AML) or acute lymphoblastic leukemia (ALL), complete remission
(CR) at the time of transplantation, first single (with a cryopreserved TNC ≥ 2.5 × 107/kg) or double CBT
between 2004 and 2014, and RIC conditioning.

Results: Data from 534 patients with AML (n = 408) or ALL (n = 126) receiving a first single (n = 172) or
double (n = 362) CBT were included in the analyses. In univariate analysis, in comparison to patients
transplanted with a single CB, double CB recipients had a similar incidence of neutrophil engraftment but a
suggestion for a higher incidence of grade II–IV acute GVHD (36 versus 28%, P = 0.08). In multivariate analyses,
in comparison to single CBT recipients, double CBT patients had a comparable incidence of relapse (HR = 0.9,
P = 0.5) and of nonrelapse mortality (HR = 0.8, P = 0.3), as well as comparable overall (HR = 0.8, P = 0.17),
leukemia-free (HR = 0.8, P = 0.2) and GVHD-free, relapse-free (HR = 1.0, P = 0.3) survival.

Conclusions: These data failed to demonstrate better transplantation outcomes in adult patients receiving
double CBT in comparison to those receiving single CBT with adequate TNC after RIC.

Keywords: Unrelated cord blood, UCB, Single, Double, AML, ALL, Reduced-intensity, Transplantation

Background
Allogeneic umbilical cord blood transplantation (CBT) is
a treatment option for many patients with acute myeloid
(AML) or acute lymphoblastic (ALL) leukemia who lack
an HLA-matched donor [1–4]. In the last two decades,
the development of reduced-intensity conditioning (RIC)

regimens for CBT has allowed extending its use to
patients who were deemed ineligible for myeloablative
(MAC) conditioning because of older age or medical
comorbidities [5–11]. We recently compared outcomes
of AML or ALL patients given CBT after RIC (n = 415)
versus MAC (n = 479) regimens. We observed that, in
comparison to MAC patients, RIC recipients had a
higher incidence of disease relapse and a lower nonre-
lapse mortality (NRM), translating to comparable
leukemia-free (LFS), GVHD-free, relapse-free survival
(GRFS), and overall (OS) survival [11].
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Previous studies have demonstrated poor outcomes in
patients receiving CB graft containing <2.5 × 107 total
nucleated cells (TNC) per kilogram at cryopreservation,
particularly in the presence of human leukocyte antigen
(HLA)-mismatches [12]. Unfortunately, many adult pa-
tients lack a sufficiently rich CB unit to allow safe CBT.
Based on these observations, the Minnesota group
pioneered the infusion of two CB units from different
partially HLA-matched donors (dCBT) for patients who
lack a sufficiently rich single CB unit [13]. Based on pre-
liminary encouraging results, this approach has been ex-
tended to patients who had a single CB unit containing
>2.5 × 107 total nucleated cells (TNC) per kilogram at
cryopreservation [14]. This has been particularly the case
in the setting of RIC-CBT since it was hypothesized that in
comparison with single CBT, double CBT might promote
engraftment and increase graft-versus-leukemia effects [15].
The later might be due at least in part via graft-versus-graft
alloreactivity as recently demonstrated [16].
In a previous study, we compared transplantation out-

comes of adult AML or ALL patients transplanted with
one single CB or two CB units after myeloablative con-
ditioning regimen (n = 239) [17]. Among patients trans-
planted with one single CB unit (sCBT), those receiving
a thiotepa, busulfan, and fludarabine (TBF) regimen had
better LFS than those transplanted with busulfan- or
total body irradiation (TBI)-based regimens. When the
sCBT group was restricted to patients given TBF-based
conditioning, transplantation outcomes were comparable
between patients receiving sCBT or dCBT, with the ex-
ception for a higher incidence of grade II–IV acute
GVHD in dCBT recipients. Similarly, two recent pro-
spective randomized studies demonstrated that dCBT
following myeloablative conditioning failed to improve
transplantation outcomes in comparison to sCBT in
children and/or young adult patients who had a suffi-
ciently rich single CB unit [18, 19].
In the current registry study, we investigated whether

these observations remained true in the setting of adults
after RIC CBT, which depends primarily on engraftment
of donor immune cells and on graft-versus-leukemia
effects for disease eradication.

Methods
Data collection
This survey is a retrospective, multicenter registry-
based study performed by the Acute Leukemia Work-
ing Party (ALWP) of the European Society for Blood
and Marrow Transplantation (EBMT) and by Euro-
cord. EBMT registry is a voluntary working group of
more than 500 transplant centers, participants of
which are required once a year to report all consecu-
tive stem cell transplantations and follow-up. Audits
are routinely performed to determine the accuracy of

the data. Eurocord collects data on CBT performed in
>50 countries worldwide and >500 transplant centers,
mainly EBMT centers. Inclusion criteria were adult
(≥18 years) patients, AML or ALL, complete remis-
sion (CR) at the time of transplantation, first single
(with a cryopreserved TNC ≥2.5 × 107/kg) or double
CBT between 2004 and 2014, and RIC conditioning.
RIC was defined as use of fludarabine associated with
<6 Gy TBI, or busulfan ≤8 mg/kg, melphalan
≤140 mg/m2 or other nonmyeloablative drugs, as pre-
viously reported [11, 20, 21]. HLA-compatibility re-
quirements followed the current practice of antigen
level typing for HLA-A and -B and allele level typing
of HLA-DRB1. CB units were 4–6/6 HLA-A, -B, and
-DRB1 matched to the recipient and to the other unit
in case of dCBT in most patients. However, more re-
cently, some centers are no longer matching the CB
units between them with regard to HLA based on the
study by Avery et al. [22]. HLA disparities between
each unit and the recipient and between the two
units were not necessarily at the same loci. Grading
of acute and chronic GVHD was performed using
established criteria [23].
For the purpose of this study, all necessary data were

collected according to EBMT and Eurocord guidelines.

Statistical analyses
Data from all patients meeting the inclusion/exclusion
criteria were included in the analyses. Start time was
date of transplant for all endpoints. Neutrophil en-
graftment was defined as first of three consecutive
days with a neutrophil count of at least 0.5 × 109/L.
Platelet engraftment was defined as the first of seven
consecutive days of an unsupported platelet count of
at least 20 × 109/L [2].
To evaluate the relapse incidence, patients dying either

from direct toxicity of the procedure or from any other
cause not related to leukemia were censored. NRM was
defined as death without experiencing disease recur-
rence. Patients were censored at the time of relapse or
of the last follow-up. Cumulative incidence functions
were used for relapse incidence and NRM in a compet-
ing risk setting since death and relapse were competing
together.
For estimating the cumulative incidence of chronic

GVHD, death was considered as a competing event. OS
and LFS were estimated using the Kaplan-Meier esti-
mates. GRFS was defined as being alive with neither
grade III–IV acute GVHD, severe chronic GVHD nor
disease relapse [24]. Univariate analyses were done using
Gray’s test for cumulative incidence function and log
rank test for OS and LFS. Associations between single or
double CBT and transplantation outcomes (chronic
GVHD, relapse, NRM, LFS, and OS) were evaluated in

Baron et al. Journal of Hematology & Oncology  (2017) 10:128 Page 2 of 11



Table 1 Patient and transplant characteristics
sCBT (n = 172) dCBT (n = 362) P valuea

Median patient age, months (range) 50 (18–68) 52 (18–76) 0.17

Median follow-up, months (range) 54 (1–118) 34 (2–98) <0.001

Year of transplantation, median (range) 2008 (2004–2014) 2010 (2005–2014) <0.001

Recipient sex M, no. (%) 71 (41) 201 (56) 0.002

Recipient weight, median (range) 64 70 <0.001

Time from diagnosis to CBT (months), median (range)

CR1 6 (3–70) 6 (2–147) 0. 7

CR2 22 (4–95) 22 (6–209) 0.7

Disease, no. (%)

Acute myeloid leukemia 131 (76) 277 (76) 0.9

Acute lymphoblastic leukemia 41 (24) 85 (24)

Donor CMV seropositive, no. (%) 107 (65) 222 (64) 0.92

Status at transplantation, no. (%)

CR1 91 (53) 207 (57) 0.6

CR2 72 (42) 139 (38)

CR3 9 (5) 16 (4)

Cytogenetics, no. (%) 0.85

Acute myeloid leukemia

Good riskb 7 (5) 21 (8)

Intermediate riskc 82 (62) 172 (62)

High riskd 20 (15) 33 (12)

Not reported/failed 22 (17) 51 (18)

Acute lymphoblastic leukemia

Intermediate riske 15 (37) 31 (36)

High riskf 18 (44) 38 (45)

Not reported/failed 8 (19) 16 (19)

Conditioning regimen, no. (%) <0.001

TCF 113 (66) 300 (83)

TBF 19 (11) 5 (1)

TTBF 9 (5) 0

FM+/−C 3 (2) 12 (3)

CF+/−T 9 (5) 5 (1)

Other 19 (11) 38 (10)

Missing 0 2 (0.5)

Recipient CMV-seronegative, no. (%) 57 (35) 123 (36) 0.9

ATG, no. (%) 61 (37) 51 (16) <0.001

Postgrafting immunosuppression, no. (%)

CNI + MMF 121 (70) 327 (90) <0.001

CNI + Pred 21 (12) 4 (1)

CNI + Mtx 10 (6) 9 (2)

CNI alone 10 (6) 11 (3)

Other 10 (6) 11 (3)

M male; CR complete remission; no. number of patients; ATG anti-thymocyte globulins; TNC total nucleated cells; TCF total body irradiation (TBI), cyclophosphamide and
fludarabine; TBF Thiotepa, busulfan, and fludarabine; TTBF TBI, Thiotepa, busulfan, and fludarabine; FM+/-C fludarbine, melphalan with or without cyclophosphamide; CF
+/-T cyclophosphamide, fludarabine with or without thiothepa; CNI calcineurin inhibitor (cyclosporine A or tacrolimus); MMF mycophenolate mofetil; MTX methotrexate;
Pred predisolone
aCalculated with χ2 statistics for categorical variables and Mann-Whitney test for continuous variables
bDefined as t(8;21), t(15;17), inv or del (16), or acute promyelocyticleukemia, these abnormalities only or combined with others
cDefined as all cytogenetics not belonging to the good or high risk (including trisomias)
dDefined as 11q23 abnormalities, complex caryotype, and abnormalities of chromosomes 5 and 7
eDefined as t(9;22), t(4;11), t(8;14), t(14;18), low hypodiploidy (30–39 chromosomes)/near triploidy (60–78 chromosomes), and complex karyotype
fAll others
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multivariable analyses, using Cox proportional hazards.
Variables introduced in the Cox models included recipi-
ent age (in decades), disease type (AML versus ALL),
disease status at CBT, type of conditioning regimen
(TBI, fludarabine, and cyclophosphamide (TCF) versus
other), cytogenetic risk, and the use of ATG or not. Ex-
ploratory analyses of the heterogeneity of sCBT versus
dCBT among pre-transplant subgroups for relapse,
NRM, OS, LFS, and GRFS were performed using Cox
models. The results of these Cox models were presented
graphically using forest plots [25].
All tests were two sided. The type I error rate was

fixed at 0.05 for determination of factors associated with
time to event outcomes. Statistical analyses were
performed with SPSS 19 (SPSS Inc., Chicago, IL), and R
2.13.2 (R Development Core Team, Vienna, Austria)
software packages.

Results
Patient, disease, and transplant characteristics
Patients and disease characteristics are described in
Table 1. Briefly, data from 534 patients with AML (n =
408) or ALL (n = 126) receiving a first single (n = 172) or
double (n = 362) CBT were included in the analyses.
Among dCBT recipients, 47 received two CB units con-
taining less than 2.5 × 107 TNC/kg each. In comparison
to sCBT patients, dCBT recipients had a shorter follow-
up (34 versus 54 months, P = 0.0005), were more
frequently male (56 versus 41%, P = 0.002), received a
conditioning combining TBI, cyclophosphamide and Flu
(TCF regimen, 83 versus 66%, P < 0.001) more fre-
quently, and received ATG less frequently (16 versus
37%, P < 0.001). The two groups were not different for
recipient age at transplantation (52 versus 50 years, P =
0.17) as well as for other important factors such as dis-
ease type (76% of the patients with AML in both group),
disease status at transplantation (CR1 in 57 versus 53%
of the patients, P = 0.6), time from diagnosis to trans-
plantation (9.4 versus 9.5 months, P = 0.8) and cytogen-
etic risks (P = 0.85). Finally, as expected, TNC (median
5.1 versus 3.8 × 107 TNC/kg, P < 0.001) and CD34+ cell
(median 4.0 versus 3.1 × 105 cell/kg, P = 0.003) doses at
cryopreservation were significantly higher in dCBT than
in sCBT recipients (Table 2).

Engraftment and GVHD
Overall, the cumulative incidence of neutrophil engraft-
ment at day 60 was not different in sCBT (median 77%;
95% CI 70–83%) and dCBT (median 83%; 95% CI 78–
86%) recipients (P = 0.4). The median time to neutrophil
engraftment was 19 and 24 days, for sCBT and dCBT,
respectively, (P < 0.001) (Additional file 1: Figure S1).
Similarly, the cumulative incidence of platelet engraft-
ment at 6 months was not different in sCBT (median

65%; 95% CI 57–73%) and dCBT (median 71%; 95% CI
65–76%) recipients (P = 0.9).
There was a trend for a lower incidence of grade II–IV

acute GVHD (28 versus 36%, P = 0.08) in sCBT recipi-
ents, but this was no longer the case after adjusting for
confounding factors (HR = 1.1, P = 0.22). In contrast, in-
cidences of grade III–IV acute (11 versus 13%, P = 0.6),
chronic (28 versus 36% at 2 years, P = 0.2) and extensive
chronic (10.6 versus 12% at 2 years, P = 0.69) GVHD
were comparable in sCBT and dCBT recipients.

Relapse, NRM, GRFS LFS, and OS
At 2 year, in comparison to sCBT recipients, dCBT
had a similar cumulative incidence of relapse (32 ver-
sus 35%, P = 0.5) and of NRM (22 versus 29%, P =
0.2). GRFS (37 versus 31%, P = 0.13), and LFS (46 ver-
sus 36%, P = 0.06) were similar according to the type
of graft. DCBT showed a significantly better OS (51
versus 41%, P = 0.03) (Additional file 1: Table S1 and
Figure S2). Of note, outcomes of the 47 patients
given 2 CB units containing <2.5 × 107 TNC/kg each
were at least as good as those observed in sCBT re-
cipients with 2-year OS and LFS of 56.4 and 42.9%,
respectively, (Additional file 1: Figure S3).
After adjusting for potential confounding factors in

multivariate analyses, dCBT and sCBT recipients had a
similar risk of relapse (HR = 0.9; 95% CI 0.6–1.3, P = 0.5)
and NRM (HR = 0.8; 95% CI 0.5–1.2, P = 0.3), and simi-
lar GRFS (HR = 1.0; 95% CI 0.9–1.0, P = 0.3), LFS (HR =

Table 2 Graft characteristics

sCBT
(n = 172)

dCBT
(n = 362)

P value1

Number of HLA disparities, no. (%)

0–1 Mismatch 55 (32) 79 (22) 0.13

2 Mismatches 99 (58) 192 (53)

3–4 Mismatches 9 (5) 24 (7)

Missing data 9 (5) 67 (18)

ABO group, no. (%) 0.08

Compatible or minor mismatch 89 (52) 159 (44)

Major mismatch 53 (31) 139 (38)

Missing data 30 (17) 64 (18)

TNC at collection × 107/kg

Median (range) 3.8 (2.5–9.0) 5.1 (1.5–13.7)a <0.001

CD34+ cell at collection × 105/kg

Median (range) 3.1 (0.6–6.8) 4.0 (0.4–10.4) 0.003

TNC at infusion × 107/kg

Median (range) 3.1 (0.6–6.8) 4 (0.4–10.4) <0.001

CD34+ cell at infusion × 105/kg

Median (range) 1.2 (0.2–4.9) 1.2 (0.1–8.5) 0.5
a2 Patients had <2.5 × 107 TNC/kg
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0.8; 95% CI 0.7–1.1, P = 0.2), and OS (HR = 0.8; 95% CI,
0.6–1.1 P = 0.17) (Fig. 1) (Table 3). The only factor asso-
ciated with lower OS in multivariate analysis was the use
of ATG (HR = 1.8; 95% CI 1.2–2.8, P = 0.01). This was
due to a significantly higher NRM in ATG in compari-
son with non-ATG recipients (HR = 2.4; 95% CI 1.3–4.3,
P < 0.001) while relapse incidence was not affected by
ATG (HR = 1.0, 95% CI 0.6–1.9, P = 1.0).
As shown in the Table 4 and in the Additional file 1:

Table S2, causes of death were not statistically different
between sCBT and dCBT recipients. However, there was
a suggestion for more deaths from GVHD (13/362
(3.5%) versus 3/172 (1.7%)) in dCBT than in sCBT

recipients in the first 100 days after transplantation,
while the incidence of death from infection in the first
100 days after CBT was comparable between the 2
groups (22/362 (6.1%) in dCBT versus 13/172 (7.6%) in
sCBT recipients, respectively).

Table 3 Outcomes in dCBT versus sCBT in multivariate analyses
(adjusted for patient age, disease status, ALL versus AML,
conditioning regimen, cytogenetic risk, and ATG)

Hazard
ratio

95% confidence interval P value

Lower limit Upper limit

Relapse 0.90 0.63 1.27 0.54

Nonrelapse mortality 0.81 0.54 1.22 0.32

Leukemia-free survival 0.84 0.65 1.10 0.20

GVHD-free relapse-free
survival

1.0 0.9 1.0 0.34

Overall survival 0.83 0.63 1.09 0.17

Fig. 1 CBT outcomes in acute leukemia patients transplanted following RIC with one (sCBT, n = 172) or a two (dCBT, 362) CB unit(s). The figures
show the unadjusted curves for sCBT patients and the adjusted curves for dCBT recipients. Curves were adjusted for age at transplantation (in
decades), CR2 versus CR1, AML versus ALL, TCF conditioning versus other, ATG, cytogenetic poor versus good/intermediate, and cytogenetic
missing versus good/intermediate. GRFS GVHD-free relapse-free survival, OS overall survival, RI relapse incidence, and NRM nonrelapse mortality

Table 4 Causes of death the first 100 days after CBT (P = 0.41)

sCBT (n = 29) dCBT (n = 59)

Relapse or disease progression 6 (20.7) 13 (22.4)

GvHD 3 (10.3) 13 (22.4)

Idiopathic pneumonia syndrome 1 (3.4) 2 (3.4)

Hemorrhage 1 (3.4) 1 (1.7)

Rejection 0 (0.0) 1 (1.7)

Bacterial infection 3 (10.3) 8 (13.8)

Viral infection 0 (0.0) 3 (5.2)

Fungal infection 1 (3.4) 4 (6.9)

Unknown infection 9 (31.0) 7 (12.1)

Cardiac toxicity 0 (0.0) 1 (1.7)

ARDS 1 (3.4) 0 (0.0)

Secondary malignancy 1 (3.4) 0 (0.0)

Multiorgan failure 0 (0.0) 1 (1.7)

LPTD EBV 0 (0.0) 0 (0.0)

Other 3 (10.3) 4 (6.9)

Missing 0 1
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Subgroup analyses
To further dissect the impact of sCBT versus dCBT, we
performed additional (univariate) Cox analyses separately
for various pre-transplant/transplant variables. The results
of these analyses are presented graphically using Forest
plots in Figs. 2 and 3. There were no interactions between

patient age at transplantation, patient gender, number of
cells infused, disease type, disease status, HLA-matching
and conditioning type (TCF versus other), and the associ-
ation between sCBT versus dCBT and GRFS or OS. Further
multivariate Cox models assessing possible interactions be-
tween ATG and sCBT versus dCBT demonstrated the

Fig. 2 Forest plot analysis of cumulative relapse a and nonrelapse mortality b. HR and 95% confidence intervals were computed using univariate Cox analyses
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absence of statistically significant interactions for relapse in-
cidence (P = 0.27), NRM (P = 0.37), LFS (P = 0.97), and OS
(P = 0.59). Similarly, there was no interaction between dis-
ease status (CR1 versus other) and the impact of sCBT ver-
sus dCBT on GRFS (P = 0.61).

Impact of cell dose
We finally assessed what was the combined impact
of cell dose and sCBT versus dCBT. In order to ad-
dress this issue, we performed multivariate Cox
models including four graft type groups: sCBT and

Fig. 3 Forest plot analysis of GVHD-free relapse-free survival a and overall survival b. HR and 95% confidence intervals were computed using
univariate Cox analyses
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TNC above median, dCBT and TNC above median,
sCBT and TNC below median, and dCBT and TNC
below median. As observed in the Table 5, in com-
parison to the reference group (sCBT and TNC
above median), patients given sCBT with TNC below
the median had a higher risk of relapse (HR = 2.0,
95% CI 1.0–3.9, P = 0.04) and a suggestion for a worse
LFS (HR = 1.5, 95% CI 0.9–2.3, P = 0.11), while outcomes
were comparable between patients receiving sCBT and
TNC above median and those given dCBT (irrespective of
the cell dose received).

Discussion
Umbilical CB units contain a limited number of
hematopoietic cells. This is unfortunate given that cell dose
is one of the main predictive factors for CBT outcomes
[26–28]. Transplantation of two CB units has been intro-
duced by investigators from the university of Minnesota to
increase the cell dose infused [13, 29]. Preliminary studies

have demonstrated that this strategy allowed safe CBT in
adult patients who lacked a sufficiently rich CB unit [30].
Further studies observed that dCBT induced graft-versus-
graft reactions that could increase alloreactivity and perhaps
graft-versus-leukemia effects [15]. This prompted us to
compare post-transplantation outcomes in patients with
acute leukemia receiving sCBT or dCBT after RIC, a trans-
plantation approach that depends mainly on graft-versus-
leukemia effects for tumor eradication [31, 32]. Several ob-
servations were made.
A first observation was that indeed, dCBT allowed safe

CBT in adult patients who lacked a CB unit containing
at least 2.5 × 107 TNC/kg since OS and LFS were at least
as good in these patients than in those transplanted with
a single CB unit containing ≥2.5 × 107 TNC/kg. This is
in concordance with the observations reported by the
University of Minnesota [30].
A second observation was that patients who received

dCBT had a similar incidence of relapse than those given
sCBT. This was also true when comparing the relapse
incidence in patients receiving sCBT with TNC >median
to those receiving dCBT with TNC >median. These
observations suggest that graft-versus-leukemia effects
are comparable after sCBT or dCBT. A comparable inci-
dence of relapse in patients receiving sCBT or dCBT has
also been observed in recent registry [17, 30, 33] or
prospective randomized [18, 19] studies including
patients given CBT after myeloablative conditioning.
Other approaches to decrease relapse incidence after
CBT might include post-transplant administration of
disease-targeted medications [34–36] or of chimeric
antigen receptor T cells [37].
In multivariate analyses, sCBT and dCBT patients

had comparable NRM, LFS, GRFS, and OS. These ob-
servations are also in accordance with those made in
patients receiving CBT after myeloablative condition-
ing [17–19, 30, 33, 38]. Subgroup analyses revealed
no interaction between patient age at transplantation,
patient gender, number of cells infused, disease type,
disease status, HLA-matching, use of ATG and condi-
tioning type (TCF versus other), and the associations
between sCBT versus dCBT and GRFS or OS.
The current study also confirmed a detrimental impact

of ATG on NRM (leading to a significantly inferior OS)
as recently reported in a study including data from pat-
ents given CBT after myeloablative conditioning [39] or
RIC dCBT [40]. Further, despite ATG not only induces
in vivo T cell depletion of the graft but also promotes
the generation of regulatory T cells [41, 42], ATG failed
to prevent chronic GVHD in the current study, in con-
trast to what has been observed in peripheral blood stem
cell recipients [43–45]. These results are also in accord-
ance with those reported by Admiraal et al. who demon-
strated that reducing the exposure of ATG after CBT

Table 5 Outcomes in dCBT versus sCBT according to cell dose
in multivariate analyses (adjusted for patient age, disease status,
ALL versus AML, conditioning regimen, cytogenetic risk, and
ATG)

Hazard
ratio

95% confidence interval P value

Lower
limit

Upper
limit

Relapse

sCBT and TNC >median
(ref)

– – – –

dCBT and TNC >median 1.32 0.67 2.58 0.42

sCBT and TNC <median 1.99 1.02 3.89 0.04

dCBT and TNC <median 1.74 0.88 3.43 0.11

Nonrelapse mortality

sCBT and TNC >median
(ref)

– – – –

dCBT and TNC >median 0.69 0.35 1.36 0.29

sCBT and TNC <median 1.01 0.53 1.93 0.97

dCBT and TNC <median 0.93 0.47 1.83 0.84

Leukemia-free survival

sCBT and TNC >median
(ref)

– – – –

dCBT and TNC >median 0.97 0.61 1.55 0.89

sCBT and TNC <median 1.46 0.92 2.30 0.11

dCBT and TNC <median 1.27 0.79 2.03 0.33

Overall survival

sCBT and TNC >median
(ref)

– – – –

dCBT and TNC >median 0.97 0.60 1.58 0.91

sCBT and TNC <median 1.39 0.86 2.23 0.18

dCBT and TNC <median 1.07 0.65 1.77 0.78
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(allowing early CD4+ T cell recovery) improved out-
comes in pediatric CBT [46].
There are some limitations in our study including its de-

sign (retrospective registry survey) and the relative imbalance
in the two groups such as more frequent use of the TCF
conditioning regimen but less frequent use of ATG in dCBT
patients. These differences were carefully adjusted for in
multivariate analyses. Another potential limitation of the
study is a potential lack of statistical power to detect small
advantages of one group to another. However, the number
of patients included in the current study (n = 534) is higher
than the number of patients included in prior registry stud-
ies in adults (n= 409 in the CIBMTR study [30] and n= 239
in the Eurocord/EBMT study [17]) or in recent prospective
randomized studies in children (n= 224 in the study
reported by Wagner et al. [18] and n= 151 in the study re-
ported by Michel et al. [19]). Nevertheless, further prospect-
ive randomized studies in the RIC setting are needed to
draw definitive conclusions. Finally, further studies should
compare outcomes after CBT or HLA-haploidentical trans-
plantation following RIC regimens [47–49].

Conclusions
In summary, we observed comparable outcomes in pa-
tients given dCBT or sufficiently rich sCBT with a TNC
dose at cryopreservation >2.5 × 10e7/Kg. Recent ad-
vances in the field of CBT expansion are likely to im-
prove outcomes of RIC sCBT [50].
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