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Robust estimation of the expected survival
probabilities from high-dimensional Cox
models with biomarker-by-treatment
interactions in randomized clinical trials
Nils Ternès1,2, Federico Rotolo1,2 and Stefan Michiels1,2*

Abstract

Background: Thanks to the advances in genomics and targeted treatments, more and more prediction models
based on biomarkers are being developed to predict potential benefit from treatments in a randomized clinical
trial. Despite the methodological framework for the development and validation of prediction models in a high-
dimensional setting is getting more and more established, no clear guidance exists yet on how to estimate
expected survival probabilities in a penalized model with biomarker-by-treatment interactions.

Methods: Based on a parsimonious biomarker selection in a penalized high-dimensional Cox model (lasso or adaptive
lasso), we propose a unified framework to: estimate internally the predictive accuracy metrics of the developed model
(using double cross-validation); estimate the individual survival probabilities at a given timepoint; construct confidence
intervals thereof (analytical or bootstrap); and visualize them graphically (pointwise or smoothed with spline). We
compared these strategies through a simulation study covering scenarios with or without biomarker effects. We
applied the strategies to a large randomized phase III clinical trial that evaluated the effect of adding trastuzumab to
chemotherapy in 1574 early breast cancer patients, for which the expression of 462 genes was measured.

Results: In our simulations, penalized regression models using the adaptive lasso estimated the survival probability of
new patients with low bias and standard error; bootstrapped confidence intervals had empirical coverage probability
close to the nominal level across very different scenarios. The double cross-validation performed on the training data
set closely mimicked the predictive accuracy of the selected models in external validation data. We also propose a
useful visual representation of the expected survival probabilities using splines. In the breast cancer trial, the adaptive
lasso penalty selected a prediction model with 4 clinical covariates, the main effects of 98 biomarkers and 24
biomarker-by-treatment interactions, but there was high variability of the expected survival probabilities, with very large
confidence intervals.

Conclusion: Based on our simulations, we propose a unified framework for: developing a prediction model with
biomarker-by-treatment interactions in a high-dimensional setting and validating it in absence of external data;
accurately estimating the expected survival probability of future patients with associated confidence intervals; and
graphically visualizing the developed prediction model. All the methods are implemented in the R package biospear,
publicly available on the CRAN.
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Background
Thanks to the advances in genomics and targeted treat-
ments, an increasing interest is being devoted to develop
prediction models with biomarkers, called treatment-effect
modifiers (for which the relative treatment effect varies ac-
cording to the biomarker values), to predict how much
benefit individual patients would derive from specific treat-
ments. This aims at taking the therapeutic decision that fits
the best each individual patient. Recently, there have been
some attempts to identify prediction models that are associ-
ated with higher efficacy of particular treatments such as an
8-gene and a 14-gene signatures (i.e. prediction model) to
evaluate the degree of trastuzumab benefit in early breast
cancer patients on disease-free survival [1, 2]. Statistical
methodology has been proposed for the development of
prediction models and their validation [3, 4] and to esti-
mate individual predictions in a survival setting [5, 6]; how-
ever, no clear guidance has been yet reached and evaluated
in a high-dimensional setting.
Results from randomized clinical trials are often difficult

to translate into predictions for individual patients, but
the estimated absolute risk reductions from large random-
ized trials do still provide the best guidance [7]. Therefore,
in addition to the challenges coming from the identifica-
tion of treatment-effect modifiers in a high-dimensional
setting, it is also important to identify prognostic bio-
markers (i.e. associated with the clinical outcome and in-
dependently of treatment) to adjust for the main effect of
established clinical and genomic variables in order to ob-
tain individual survival probabilities. Indeed, the clinical
impact of a treatment can be judged only with the know-
ledge of the prognosis of a patient. It is thus of importance
to reliably predict the prognosis of patients to assist treat-
ment counseling [8].
The aim of the present study was to propose a unified

framework for developing and validating a high-
dimensional Cox model [9] in a randomized clinical trial
to estimate the expected treatment effect according to dif-
ferent values of the biomarkers included in the model, and
to estimate survival probabilities for individual patients
with associated confidence intervals. We propose different
approaches that can be used in this context. We present a
simulation study including null (i.e. with no treatment-
effect modifier) and alternative scenarios (i.e. with at least
one treatment-effect modifier) to evaluate the perform-
ance of the proposed approaches. We also illustrate the
methods in a large randomized clinical trial of breast can-
cer patients. Finally, we discuss the findings.

Methods
In the present section we investigate several approaches
to: (i) identify a parsimonious Cox regression model in a
high-dimensional setting, (ii) estimate internally the pre-
dictive accuracy metrics of the selected model, (iii)

estimate the expected survival probability for patients,
(iv) construct confidence intervals thereof, and (v)
visualize them graphically. A schematic representation of
the framework is provided in Fig. 1.

Identification of a prediction model with treatment-effect
modifiers
The objective of developing a prediction model is to iden-
tify a model allowing the computation of a prognostic and
a treatment-effect modifying score for each patient. From
a statistical viewpoint, Rothwell put forward that the most
reliable statistical approach for identifying treatment-
effect modifiers is to test the interactions between the bio-
markers and the treatment effect [7]. Hereinafter, we con-
sider the proportional hazards model

h t; T ; Xð Þ ¼ h0 tð Þ exp αT þ
Xp
j¼1

βjXj þ
Xp
j¼1

γ jXjT

 !
¼ h0 tð Þ exp αT þ β

0
X þ γ

0
XT

� �
;

ð1Þ
where α, β = (β1, …, βp)

T and γ = (γ1,…, γp)
T are the re-

gression coefficients for: the treatment T coded as +0.5
and −0.5 for the experimental and control arm, respect-
ively; the main effects of the p standardized biomarkers
X = (X1,…, Xp)

T; and the p biomarker-by-treatment in-
teractions, i.e. the product between the standardized bio-
markers X and the treatment T. In other words, the first
sum in (1) corresponds to an average prognostic compo-
nent to the total score and the second sum in (1), corre-
sponds to the treatment-effect modifying component.
For simplicity, we do not consider clinical covariates in
the presentation of the framework.
To overcome the nonidentifiability of the models due to

the high-dimensional setting, we previously reviewed and
proposed several methods to identify a parsimonious
model starting from a large number of candidate bio-
markers in a randomized clinical trial and to predict the
magnitude of the relative treatment effect for future pa-
tients [10]. Most of these methods are based on penalized
regression, which maximizes the penalized partial log-
likelihood lp(α, β, γ, λ,T,X) that is the partial log-likelihood
l(α, β, γ,T, X) of model (1) minus a penalty:

lpðα; β; γ; λ;T ;XÞ ¼ lðα;β; γ; λ;T ;XÞ

−λ
Xp
j¼1

θjjβjj þ
Xp
j¼1

ϑjjγ jj
 !

:

In the present work, we implemented two penalties: the
lasso [11] which corresponds to θj = ϑj = 1, and the adap-

tive lasso [12, 13] which corresponds to θj ¼ 1= β̂
R
j

��� ��� , ϑj
¼ 1=jγ̂R

j j , with β̂
R
j and γ̂R

j the regression coefficients
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estimated in a preliminary step through the model (1)
subject to the ridge penalty. As compared to the popular
lasso penalty, the adaptive lasso penalty was initially pro-
posed as it fulfilled the oracle property [14] in the prog-
nostic setting. However, the performance of the oracle
property is less known in high-dimensional samples with

relatively low number of events. In a time-to-event set-
ting with many candidate biomarker-by-treatment inter-
actions, the adaptive lasso penalty was one of the best
performing methods for selecting these interactions in a
simulation study in [10]. For both the lasso and adaptive
lasso, the tuning parameter λ was determined via a k1-

Fig. 1 Schematic representation of the proposed framework. 1CV and 2CV: single and double cross-validation, ĥ0(t) baseline hazard at time t, α̂; β̂; γ̂ :

estimated regression parameters, φ̂ i ¼
Xp
j¼1

β̂ jX ij : prognostic score, η̂ i ¼
Xp
j¼1

γ̂ jX ij : treatment-effect modifying score, π̂ : entire linear predictor of the

selected model, iBrier: integrated Brier score, C: Uno’s C-statistic, ΔC: different in arm-specific Uno’s C-statistics, Ŝ(t): estimated survival probability at
time t
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fold cross-validation scheme (called 1CV for the rest of
the article) by maximizing the cross-validated log-
likelihood criterion of the Cox model [15]:

cvl λð Þ ¼
Xk1
k¼1

�
lp α̂−k ; β̂−k ; γ̂−k ; λ−k ;T ; X
� �

−lp α̂−k ; β̂−k ; γ̂−k ; λ−k ;T−k ; X−k

� ��
;

with k1 = 5 and where α̂−k , β̂−k , γ̂−k and the tuning
parameter are estimated in the training data excluding
the subsample k: T− k and X− k. Penalized regression coeffi-
cients are estimated through the R-package glmnet [16,
17]. We also investigated the “refit adaptive lasso” and the
“refit lasso” for which the selected non-zero regression co-
efficients are re-estimated in an unpenalized Cox regres-
sion model.

Internal assessment of predictive accuracy of the
prediction model
To assess the performance of a prediction model, some
predictive accuracy measures (see the section “Simulation
study” for more details) can be used. However, computing
these metrics on the same data used to develop the model
could lead to over-optimistic predictive accuracy measures
and thus, external validation is crucial [18]. In the absence
of external validation data set, a strategy suggested by
Simon et al. [19] and illustrated by Matsui et al. [3] con-
sists in performing a double cross-validation (2CV) to
mimic an external validation. Indeed, patients are first di-
vided into k2 subsamples (in this work k2 = 5); then, for
each fold, the data in the fold are put apart and the data in
the remaining k2 − 1 folds are used to estimate the tuning
parameter λ through k1-fold cross validation and to esti-
mate the prediction scores of the left-out patients. The
process is iterated for all the k2 folds to estimate the cross-
validated prediction scores of the complete data set. Of
note, these scores obtained using the 2CV are only used to
compute these prediction accuracy metrics, whereas the
2CV is not used elsewhere in this study.

Point estimates of the expected survival probability
From the estimated model (1), the estimation of the ex-
pected survival probability of each patient i = (1,…, n) at
time t can be obtained by plugging the estimated param-
eters in the survival function:

Ŝ i tð Þ ¼ Ŝ t; Ti; Xið Þ
¼ exp −Ĥ 0 tð Þ � exp α̂Ti þ

Xp
j¼1

β̂ jXij þ
Xp
j¼1

γ̂ jXijT i

 ! !
;

with Ĥ0(t) the cumulative baseline hazard at time t, that
is commonly estimated through the non-parametric
Breslow estimator [20].

Estimation of confidence intervals of the expected
survival probability
We compared two strategies to estimate the confidence in-
tervals at level 1 – θ of the expected survival probabilities:
one based on analytical expressions deriving from the nor-
mal approximation of the estimator and one based on a
non-parametric bootstrap approach.
The analytical approach [21] consists in estimating the

variance of the cumulative risk Ĥi(t) =Ĥ(t,Ti, Xi) based on
the Breslow estimator [22] in the Cox model. Thus, the
confidence interval of Ŝi(t) is approximated as

CI1−θ Ŝ i tð Þ� � ¼ qθ
2
Ŝ i tð Þ
� �

; q1−θ
2
Ŝ i tð Þ� �h i

with qα Ŝ i tð Þ� � ¼ exp −Ĥ i tð Þ þ zα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvar Ĥ i tð Þ� �q� �

: This

can be directly implemented via the R-package survival
[23]. In the case that penalized coefficients are taken
without re-estimation, a practical solution to estimate
their standard errors can be to compute the Hessian
matrix based on the estimated parameter values.
The non-parametric bootstrap approach consists in gen-

erating B bootstrap samples of the original data (B = 200
in this work) and in estimating the model (1) for each of
them. Thus, B models ĥ1(t,T, X), …, ĥB(t,T, X) are ob-
tained, allowing to estimate B times the expected survival
probability for each patient i at time t, noted Ŝi,boot(t) =
{Ŝi,1(t), …, Ŝi,B(t)}. Then, the non-parametric confidence
interval of the Ŝi(t) based on the empirical percentiles
qα(⋅) of the distribution of Ŝi, boot(t) is given by

CI1−θ Ŝ i tð Þ� � ¼ qθ
2
Ŝ i; boot tð Þ� �

; q1−θ
2
Ŝ i; boot tð Þ� �h i

:

Of note, both the analytical and bootstrap confidence in-
tervals are based on the model (1) which is estimated
using a penalty parameter determined via a single cross-
validation (1CV).

Graphical visualization
We visualize the expected survival probability of the pa-
tients according to their treatment-effect modifying

score η̂i ¼
Xp
j¼1

γ̂ jXij at a given horizon τ. A toy example

is used for illustration in Fig. 2.
For the graphical visualization, the scores η̂ ¼ η̂1;…; ; η̂n

� �
are scaled so that the 2.5% (i.e. q0:025 η̂ð Þ) and 97.5% (i.e.
q0:975 η̂ð Þ) quantiles equal 0 and 1 respectively in the
training set:

η̂i ¼
η̂i− q0:025 η̂ð Þ

q0:975 η̂ð Þ−q0:025 η̂ð Þ :

In the simplest case in which only one treatment-effect

modifier and no prognostic biomarker ( β̂j ¼ 0; ∀j ) are
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included in the model, the relationship between η̂i and
Ŝi(t) (and its confidence interval bounds) is strictly
monotone (Fig. 2a). However, in the setting of many
treatment-effect modifiers and no prognostic biomarker,
two patients with equal scores η̂i have the same Ŝi(t),
but their confidence intervals may be different (Fig. 2b),
due to different biomarker values. In order to obtain
smoothed average confidence bounds, we considered
constrained basis splines (B-splines) spl(t) [24]. Splines
are numerical functions that can be used for curve-
fitting by approximately fitting the data at particular
nodes. The number of nodes was estimated through the
Akaike Information Criterion (AIC, default criterion in
the chosen R-package cobs [25]). We also forced the
constraint that 0 ≤ spl(t) ≤ 1.
When the model contains also prognostic bio-

markers, patients with the same treatment-effect

modifying score η̂i may have different survival probabil-

ity Ŝi(t) due to different prognostic scores φ̂i ¼
Pp

j¼1 β̂j

Xij: Due to the possible large heterogeneity of Ŝi(t) for
equal scores η̂i , we stratified the treatment-effect modi-
fying plot into four groups according to the prognostic
score, using the percentiles proposed by Cox [26]:
16.4%, 33.6%, 33.6% and 16.4%. For our toy example,
Fig. 2c and 2d represent the relationship between Ŝi(t)
and η̂i for the best and worst prognostic risk groups,
respectively. Heterogeneity within groups is still present
for both point estimates of the expected survival prob-
ability and confidence interval bounds; therefore we
also considered smoothing the point estimates through
B-splines. Even though categorization reduces the avail-
able information [27], it leads to a more meaningful
graphical representation of the prediction model.

C

A

D

B

Fig. 2 Graphical illustration of the expected survival probability at a given timepoint against the treatment-effect modifying ore. Expected survival
probability against the treatment-effect modifying score η̂ in the setting of: no prognostic biomarker identified and one (a) or multiple (b) treatment-
effect modifiers; multiple prognostic markers and treatment-modifiers in the lowest (c) and higher (d) prognostic risk group. Dot: point estimate,
vertical line: 95% pointwise confidence interval, solid curves: average smoothed splines for point estimates, dashed curves: average smoothed splines
for confidence bounds. Graphical illustrations are coming from several selected models based on a simulated dataset from the scenario 6
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In the rest of the study, we investigated both the spline
strategy with prognostic categorization and the pointwise
strategy.

Simulation study
In this section, we present a simulation study cover-
ing several null (i.e. with no treatment-effect modifier)
and alternative (i.e. with at least one true treatment-
effect modifier) scenarios to evaluate the operating
characteristics of the different approaches.

Data generation and scenarios
For each simulated data set, we generated p = 500 Gaussian
unit-variance variables, including prognostic biomarkers
and/or treatment-effect modifiers. Data were generated for a
total of n = 1500 patients, randomly assigned to the experi-
mental or control group with equal probability of 0.5. We
generated random survival times t with constant hazard.
Table 1 shows the three null and three alternative scenarios
considered in the simulations. Simulation parameters such
as the desired baseline (i.e. x= (0, …, 0)T) survival probabil-
ity S0(⋅) at the horizon τ (5 years in our simulations) and the
regression parameters α, β and γ were chosen on the basis
of the early breast cancer trial presented in the section
“Application”. Thus, we fixed S0(5) = 77%. All the scenarios
included censoring and an autoregressive correlation struc-

ture [28] between biomarkers ρjj0 ¼ 0:8 j−j
0j j� �

within 25-

biomarker blocks. As sensitivity analyses, we also investi-
gated other values for: the baseline survival probability S0(5)
(i.e. 50%), the number of biomarkers p (i.e. 100 and 1000)
and the empirical censoring rate (i.e. between 36% and 62%)
to assess their impact on the results. For each scenario, 250
data sets were generated and 250 additional ones were gen-
erated for external validation, each with the same parame-
ters as each of the training data sets.

Evaluation criteria
All the evaluation criteria have been measured at τ = 5
years.
Integrated brier score. As a measure of overall

prediction error of the models, we used the

integrated Brier score (iBrier score, [29]). The
time-dependent Brier score is a quadratic score based on
the predicted time-dependent survival probability
defined by

Brier τð Þ ¼ 1
n

Xn
i¼1

ŜC tið Þ� �2
I ti≤τ; δi ¼ 1ð Þ
ŜC tið Þ þ 1−Ŝ i tð Þ

� �2
I ti > τð Þ

ŜC τð Þ

" #
;

and takes censoring into account through ŜC(ti) =
P(C > ti), the Kaplan-Meier estimate of the censoring
distribution with ti the survival time of patient i. The
integration of the Brier score can be done by over
time t ∈ [0, τ] with respect to some weight function
W(t) for which a natural choice is (1 − Ŝ(t))/(1 − Ŝ(τ))
[29]. The lower the iBrier score, the larger the predic-
tion accuracy is.
Uno’s C-statistic. To evaluate the discrimination of

the prediction model, we also measured the concord-
ance between π̂ i , the linear predictor of (1), and the
survival time based on the Uno’s C-statistic, one of
the least biased concordance statistic estimator in the
presence of censoring [30]. For the entire model, we
computed

C τð Þ ¼ UnoC π̂ ; τð Þ

¼
X

i;i
0 ŜC tið Þ� �−2

I ti < ti0 ; ti < τ
� �

I π̂ i > π̂ i
0

� �
δiX

i;i
0 ŜC tið Þ� �−2

I ti < ti0 ; ti < τ
� �

δi

:

The larger the C(τ), the higher the overall discrimination is.
ΔUno’s C-statistic. For the treatment-effect modifying
component η̂i , we computed the absolute difference
of the arm-specific Uno’s C-statistics as we proposed
previously [10] to evaluate the biomarker-by-treatment
interaction strength:

ΔC τð Þ ¼ UnoC η̂; τ; T ¼ þ0:5ð Þ−UnoC η̂; τ; T ¼ −0:5ð Þj j;

where UnoC η̂; τ;T ¼ Tð Þ is the Uno’s C-statistic com-
puted within the arm T only. The larger the ΔC(τ), the
higher the interaction strength is.

Table 1 Simulation scenarios

Scenarios Effect size Censoring rate

α βj γj T− T+

(1) Complete null 0 0 0 0.72 0.72

(2) Treatment effect only − 0.8 0 0 0.62 0.80

(3) 20 prognostic markers 0 ~ U(−0.05, − 0.20) 0 0.70 0.70

(4) 15 treatment-effect modifiers 0 0 ~ U(−0.10, − 0.40) 0.71 0.71

(5) Treatment effect + (4) − 0.8 0 ~ U(−0.10, − 0.40) 0.61 0.78

(6) 20 prognostic markers + (5) − 0.8 ~ U(−0.05, − 0.20) ~ U(−0.10, − 0.40) 0.60 0.76

T+: experimental arm, T−: control arm
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As a comparator, we also computed these predic-
tion accuracy metrics (iBrier, Uno and ΔUno) for the
“oracle model” that is the unpenalized Cox pro-
portional hazards model fitted to the truly related
biomarkers in the training set and applied to the
validation set.

Bias and precision of the expected survival probability
To assess reliability of the estimation of the expected
survival probability, we compared for each patient i,
its estimated survival probability Ŝi(τ) to its theoret-
ical survival probability Si(τ). The theoretical survival
probability is computed from the baseline survival
and the regression parameters of the simulation
model. We evaluated the accuracy of Ŝi(τ) through
the mean bias

Mean Bias MBð Þ ¼ 1
n

Xn
i¼1

Ŝ i τð Þ− Si τð Þ� �
and its precision through its standard error

Standard Error SEð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1

Xn
i¼1

Ŝ i τð Þ− E Ŝ i τð Þ� �� �2s
:

Finally, to evaluate the accuracy of the developed con-
fidence intervals, we also evaluated their empirical
coverage probability as

Coverage Probability CPð Þ ¼ 1
n

Xn
i¼1

I qθ
2
Ŝ i τð Þ� �

≤Si τð Þ≤q1−θ
2
Ŝ i τð Þ� �� �

:

Results
The results of the simulation study are summarized
in Tables 2 and 3. These tables summarize both the
predictive accuracy metrics and the accuracy and pre-
cision of survival estimates of the time-to-event re-
gression models subject to the adaptive lasso penalty.

As the lasso penalty provided slightly worse coverage of
the confidence intervals and obtained slightly less good
biomarker-selection performance in some scenarios [10],
its results are given in the Additional files 1 and 2.
The models identified through the adaptive lasso pen-

alty provided predictive accuracy (Table 2) relatively
close to the oracle models. Computed on an external
validation data set, the iBrier score was quite low (vary-
ing from 0.099 to 0.109) and the Uno’s C-statistic was
quite large in presence of prognostic effects (scenarios 2
and 6, varying from 0.586 to 0.670). The ΔUno’s C-
statistic was also large in presence of true treatment-
effect modifiers (scenarios 4–6, varying from +0.207 to
+0.229). When evaluating these criteria on the training
set used to compute the prediction model, we observed
overrated performances of the models as compared to
results in external data (training 1cv vs. validation: from
+0.077 to +0.155 for C and from +0.062 to +0.107 for
ΔC). The double cross-validation technique (training
2cv) gave internal results close to those of an external
validation (validation).
When focusing on the estimation of the survival prob-

ability (Table 3), the mean bias was close to zero in all
scenarios. Nonetheless, for S0 ~ 50% (Additional file 3),
a slight negative bias was observed (from −0.007 to
−0.020). In terms of precision, the standard error of the
survival point estimate was low in absence of biomarker
effects (null scenarios 1–2, from 0.05 to 0.06) and was
higher in presence of prognostic biomarkers (null sce-
nario 3, 0.09) and even higher with treatment-effect
modifiers (scenarios 4–5, from 0.10 to 0.11). The vari-
ability was the largest when both prognostic and
treatment-modifiers were present (scenario 6, SE from
0.13). No relevant difference in terms of accuracy and
precision of survival point estimate was observed be-
tween the pointwise and spline strategy (Table 3). The
standard error was inflated, too, when refitting the se-
lected regression model in a second step (“refit adaptive

Table 2 Prediction measures of the selected models by the adaptive lasso penalty

Scenarios Integrated Brier score (iBrier) Uno’s C-statistic (C) Δ Uno’s C-statistic (ΔC)

Training Validation Training Validation Training Validation

1cv 2cv Selected
model

Oracle
model

1cv 2cv Selected
model

Oracle
model

1cv 2cv Selected
model

Oracle
model

(1) Complete null 0.094 0.099 0.099 0.098 0.636 0.497 0.499 0.500 0.070 0.030 0.002 0.000

(2) Treatment effect only 0.096 0.102 0.101 0.100 0.663 0.586 0.586 0.558 0.062 −0.001 −0.001 0.000

(3) 20 prognostic markers 0.097 0.105 0.105 0.102 0.717 0.630 0.630 0.665 0.062 −0.003 0.000 0.000

(4) 15 treatment-effect modifiers 0.094 0.106 0.105 0.101 0.726 0.570 0.571 0.641 0.334 0.209 0.229 0.283

(5) Treatment effect + (4) 0.094 0.107 0.106 0.102 0.740 0.621 0.621 0.675 0.332 0.206 0.225 0.284

(6) 20 prognostic markers + (5) 0.096 0.111 0.109 0.104 0.767 0.669 0.670 0.718 0.296 0.183 0.207 0.266

1cv and 2cv: single and double cross-validation in the training set. The selected model is the penalized model obtained by single cross-validation in the training
set (1cv) and applied to the validation set. The oracle model is the unpenalized Cox proportional hazards model fitted to the truly related biomarkers in the
training set and applied to the validation set. Average quantities across 250 replications
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lasso”) to obtain unpenalized coefficients (e.g. scenario 6:
SE from 0.16 to 0.17, Additional file 4).
For the computation of the 95% confidence interval of

the estimated survival probability, the non-parametric
bootstrap approach outperformed the analytical ap-
proach in terms of empirical coverage (Table 3). Despite
the former (through the pointwise strategy) produced
slightly overly conservative confidence intervals (CP
from 0.96 to 0.97), the latter was more biased and in the
opposite direction (CP from 0.91 to 0.93 in null scenar-
ios and 0.88 in alternative scenarios). These probabilities
for the analytical approach were even lower when using
the refit model (CP from 0.68 to 0.73, Additional file 4),
whereas remained unchanged for the bootstrap
approach.
The categorization of the prognostic scores into risk

groups and the use of splines slightly increased the cover-
age probability of the confidence intervals for the bootstrap
approach (increase from 0.96–0.97 to 0.96–1.00) whereas
the coverage probability remained unchanged for the ana-
lytical approach.
In sensitivity analyses, the overall number of bio-

markers p and the empirical censoring rate slightly im-
pacted the results. Indeed, for smaller p and lower
censoring rate, the prediction accuracy metrics were
closer to the oracle models and the overfitting issue was
smaller (Additional files 5 and 6). Also, the precision of
the expected survival estimates was higher for this set-
ting (Additional files 7 and 8).

Application
A retrospective biomarker study was performed on
tumor samples from n = 1574 patients in an early breast
cancer randomized clinical trial comparing chemother-
apy plus adjuvant trastuzumab (arm C + T, n = 779) or
not (arm C, n = 795). The comprehensive description of
this data set is provided in Pogue-Geile et al. [1]. Gene
expression data had been collected for p = 462 genes

and normalized as in the original publication. Clinico-
pathological covariates such as ER and nodal status, and
tumor size were also available. Median follow-up time
for distant-recurrence free survival (DRFS) was 7.1 years
and the censoring rate was 73% (i.e. 431 events for
DRFS). The arm-specific 5-year DRFS was 84% (CI95%:
81%–86%) and 64% (CI95%: 61%–68%) for patients in
arm C + T and C, respectively (Fig. 3). In the 1574 pa-
tients, adjuvant trastuzumab led to significant better
DRFS as compared to chemotherapy alone (Hazard
Ratio = 0.46 [95% CI: 0.38–0.56]).
The clinico-genomic prediction model, established

through the model (1) subject to the adaptive lasso pen-
alty, is presented in Table 4. It contains 102 prognostic
variables (4 clinical and 98 genomic variables) and 24
treatment-effect modifiers. Interestingly, some prognos-
tic biomarkers have already been identified in the bio-
medical literature, such as SOX4 [31] or CSNK1D [32].
In addition, some immune genes were also identified in
the treatment-effect modifying component: CD9 and
CCL21, which is consistent with some articles highlight-
ing the involvement of immune pathways in the efficacy
of trastuzumab [33, 34]. Fig. 4 provides a graphical
visualization of the model representing the 5-year DRFS
according to the treatment-effect modifying score for
different prognostic risk groups. Confidence intervals
were estimated through the non-parametric bootstrap
approach (B = 200) and were smoothed via B-splines
using two or three nodes estimated by AIC. The prog-
nostic score was categorized through the distribution
proposed by Cox [26], i.e. group 1 ( φ̂ < 0.20), group 2
(0.20 ≤ φ̂ < 0.99), group 3 (0.99 ≤ φ̂ < 1.85) and group 4
(1.85 ≥ φ̂). The entire prediction model (i.e. 126 vari-
ables) has a moderate ability to discriminate patients ac-
cording to their survival probability (C = 0.67 for a
double cross-validation). Regarding the treatment-effect
modifying component of the model, it only slightly dis-
criminates patients for their treatment benefit (ΔC =

Table 3 Accuracy and precision of the survival probabilities, and coverage probability of their 95% confidence intervals of the
selected models by the adaptive lasso penalty

Scenarios Point estimate of the 5-year survival probability 95% CI of the expected survival

Mean bias Standard error Coverage probability

Pointwise Spline Pointwise Spline Pointwise Spline

Anly Boot Anly Boot

(1) Complete null −0.002 −0.001 0.05 0.05 0.93 0.97 0.94 1.00

(2) Treatment effect only −0.001 −0.001 0.06 0.05 0.93 0.96 0.93 1.00

(3) 20 prognostic biomarkers −0.002 0.001 0.09 0.09 0.91 0.97 0.89 0.98

(4) 15 treatment-effect modifiers −0.003 −0.001 0.11 0.10 0.88 0.96 0.89 0.98

(5) Treatment effect + (4) −0.002 0.000 0.11 0.10 0.88 0.96 0.89 0.98

(6) 20 prognostic biomarkers + (5) −0.005 0.000 0.13 0.13 0.88 0.96 0.87 0.96

Anly: analytical approach, Boot: non-parametric bootstrap approach, CI: confidence interval. Average quantities across 250 replications
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+0.02 for a double cross-validation): the lowest the
treatment-effect modifying score, the highest the benefit of
the trastuzumab is. As expected, when performing a single
cross-validation the prediction measures are higher (C =
0.80 and ΔC= 0.23). In terms of point estimates, the effect
of treatment with trastuzumab on absolute DRFS seems
higher for the low treatment-effect modifying scores. How-
ever, the width of the confidence intervals is extremely large
and the confidence intervals largely overlap between the
two arms. The selected model subject to the lasso penalty
identified only the SIAH2 gene as treatment-effect modifier
(Additional file 9). Some recent articles have been proposed
to reduce the number of selected biomarkers by selecting a
more stringent tuning parameter. We previously proposed
the pcvl criterion [35] that reduces the number of selected
penalized biomarkers in the present application from 122
to 64 for the adaptive lasso (Additional file 10).

Discussion
Individual predictions for future patients are the ultim-
ate goal of the stratified medicine era [36]. Individual
outcome predictions from population risks are most
often affected by an inherently large amount of uncer-
tainty. Nevertheless, the expected survival probabilities
under different treatment alternatives can be a valuable
tool to inform therapeutic decision-making.
In the present study, we proposed a unified framework

for developing, evaluating and visualizing a prediction tool
for future patients in the setting of randomized clinical
trials with a survival endpoint in a high-dimensional
space. We performed a simulation study covering null and
alternative scenarios to evaluate different approaches.

Fig. 3 Arm-specific distant-recurrence free survival in the illustrated
breast cancer trial. Vertical lines: 95% confidence interval at 5 years

Table 4 Developed clinico-genomic model through the full
biomarker-by-treatment interaction Cox model subject to the
adaptive lasso penalty

Prognostic component

Clinical variables (p = 4) Treatment (−0.889u), ER status (−0.091u),
Tumor size (0.175u), Nodal status (0.418u)

Genomic variables (p= 98) ACTB (0.020), ADCYAP1 (0.009), ANGPTL4
(0.034), ARL8A (0.020), BBC3 (−0.088), BDH2
(−0.067), CAPS (0.064), CASC3 (−0.058),
CCDC74A (0.080), CDC6 (−0.069),
CDH3 (0.027), CFLP1 (−0.143), CSNK1A1
(−0.079), CSNK1D (−0.063), CXXC5 (−0.141),
DHPS (0.148), DNAJC4 (−0.154), DPY19L4
(0.015), ELAVL4 (−0.107), ELN (0.015), ENO1
(0.012), ERBB4 (−0.047), FABP5 (0.063),
FAM84B (−0.084), FBXW11 (0.069),
FKSG30 (−0.049), FLJ22659 (0.006), FLJ22795
(0.009), FLJ35390 (0.096), FRAG1 (0.075),
FRMD4A (0.106), GHR (−0.067), GPRIN1
(0.009), GSN (0.039), HIST1H2AA (−0.085),
HIST2H2BE (0.009), IDUA (0.038), IGJ (−0.110),
IGKV2.24 (0.029), ILF2 (0.014),
KCNE4 (−0.075), KIAA1920 (−0.025), KIF2C
(0.093), KRT81 (−0.106), L3MBTL2 (−0.057),
LCE3E (−0.101), LOC400590 (−0.021), MAD2L2
(−0.098), MAP3K13 (0.115),
MBOAT2 (0.101), MED13L (−0.090), METTL3
(−0.138), MSI2 (−0.039), MTCH2 (0.018), MVP
(0.068), NAT1 (−0.019), NAT10 (−0.085), NDC80
(0.082), NECAB3 (0.075),
NXPH3 (0.001), OGFR (−0.040), PCK2 (−0.061),
PGM5 (0.139), PHGDH (0.107),
PITPNC1 (0.089), PRPF40A (0.041), PTTG1
(0.091), RBM14 (0.090), RELB (−0.016), RHBDD1
(−0.070), RND3 (0.022), RPL34 (<0,001), RPS2
(−0.050), SFRP1 (−0.121),
SLC25A28 (−0.057), SLC25A31 (0.154),
SLC25A5 (−0.047), SLC30A10 (0.018),
SLC6A19 (−0.056), SMCP (0.055), SOX4 (0.112),
SPDEF (0.079), SPP1 (0.090), ST6GALNAC4
(−0.058), STEAP3 (−0.005), STK11IP (−0.009),
SULT1A2 (−0.085),
TBXAS1 (<0,001), TCEB2 (0.058), TFRC (−0.132),
TMSB10 (−0.096), TRABD (−0.037), TUBB2C
(0.103), UBE2W (0.116), UGDH (0.039), XYLT1
(0.082), ZNF592 (0.072), ZNF609 (−0.081)

Treatment-effect modifying component

Genomic variables (p = 24) ATAD3A (−0.100), C16orf14 (0.165), C1orf93
(−0.115), CCL21 (−0.046), CD9 (−0.191),
CIAPIN1 (−0.063), CLIC1 (0.148), DKFZP434
A0131 (0.167), FAM148A (−0.085),
FNDC4 (0.010), FURIN (0.030), KRTAP2.4
(0.256), MED13L (0.046), MIA (−0.064), MMD
(−0.104), ORMDL3 (−0.023), RPLP0 (0.006),
SIAH2 (0.123), SLC39A14 (0.007), SSBP2
(−0.099), THOP1 (−0.279), THRAP1 (−0.049),
TMEM45B (−0.169), UNC119 (0.017)

Prediction measures

C-statistic (C) 0.80 (1CV), 0.67 (2CV)

ΔC-statistic (ΔC) 0.23 (1CV), 0.02 (2CV)
uunpenalized regression coefficient, 1CV and 2CV: single and
double cross-validation
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Based on simulations, the models identified either with
the lasso or the adaptive lasso penalties give close results,
with accurate and precise estimations of the expected sur-
vival probability. The lasso penalty give slightly worse re-
sults than the adaptive lasso penalty for the construction
of confidence intervals through the analytical approach;
however, for both penalized models, the coverage prob-
abilities of their non-parametric 95% confidence intervals
are close to the nominal level.
The simulations also highlighted that refitting the regres-

sion model after biomarker selection to obtain unpenalized
coefficients reduced the precision of the expected survival
probability estimations. In case no external data is available,
a double cross-validation is useful to reduce the over-
optimism of the measures computed internally (prediction
error through the iBrier score and discrimination through
the Uno’s C-statistics). Other resampling techniques such
as bootstrap or jackknife could have been also proposed,
but are known to be more time consuming. In addition, a
previous study comparing resampling methods highlighted

that the cross-validation performed well for predictive ac-
curacy [37]. Regarding the construction of confidence inter-
vals, the non-parametric (bootstrap) confidence intervals
outperform the analytical approach in our simulation study.
A possible explanation is that standard errors of penalized
regression coefficients are difficult to estimate, we used the
Hessian matrix based on the estimated parameter values in
this study. Furthermore, this approach does not take into
account the upstream variable selection process, which
adds variability and could explain why the coverage prob-
ability is lower than the nominal level.
Finally, we also considered to possibly use smoothing

splines and to categorize the prognostic score into four
risk groups to obtain a more meaningful graphical
visualization of the model. Of course, the cut-offs are ar-
bitrary and should be predefined by warranting a suffi-
cient number of patients per group. Even if the
categorization of the prognostic scores slightly reduces
the information, this is counterbalanced by a more
straightforward graphical representation of the model

Fig. 4 5-year distant-recurrence free survival against the treatment-effect modifying score of the effect of trastuzumab in early breast cancer.
Graphical representation of the model showed in Table 4. DRFS: distant-recurrence free survival, dot: point estimate, solid curves: average
smoothed splines for point estimates, dashed curves: average smoothed splines for confidence bounds
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predictions. In particular, this reduction in coverage
probability is minimal with the bootstrap approach.
To the best of our knowledge, no simulation study has

previously investigated the accuracy and precision of ex-
pected survival probabilities from a penalized Cox
regression model investigating in high-dimensional spaces
both prognostic biomarkers and treatment-effect modi-
fiers in a randomized clinical trial. Matsui et al. [3] showed
in a real data example how to obtain individual estima-
tions from prediction models based on both prognostic
biomarkers and treatment-effect modifiers. However, they
did not mention the problem of computing confidence in-
tervals and selected the biomarkers through a univariate
approach, which is suboptimal in a high-dimensional
setting [10]. The inference of survival probabilities is a
topic increasingly discussed in the literature. Two recent
articles [5, 6] focused on a prognostic setting, mainly in
low-dimensional spaces. Sinnott and Cai [5] proposed a
two-step ensemble voting approach and Lin and Halabi
[6] proposed a perturbation approach to better estimate
the standard errors, but did not investigate the impact on
expected survival probabilities.
We also applied the proposed strategies to a randomized

clinical trial of early breast cancer. Interestingly, the iden-
tified model contains some biomarkers already known in
the biomedical literature but the interaction strength
seemed low based on double cross-validation. Due to the
low number of events of the complete data set, we did not
separate it into training and validation sets. Of note, the
large width of the confidence intervals of the survival pre-
dictions translates the high uncertainty around these mea-
sures, as also discussed by [5]. The identified model
contains a very large number of biomarkers, but parsimo-
nious models could be preferred. Some strategies have
been proposed to reduce the number of selected bio-
markers by selecting a more stringent tuning parameter
such as the pcvl criterion [35]. Finally, a remaining open
question concerns the integration of clinical and genomic
variables. Ongoing research focuses on this topic, but no
consensus has been reached yet [38, 39]. In the application
shown, we left the clinical variables unpenalized because
they are known to have a strong prognostic main effect in
the early breast cancer setting.

Conclusions
In this paper, we propose a unified framework for develop-
ing and validating a prediction model with treatment-
effect modifiers from high-dimensional survival data in a
randomized clinical trial. We suggest to: internally esti-
mate the performance of the model through a double
cross-validation; estimate the expected survival probabil-
ities at a given horizon for future patients and construct
confidence intervals thereof using bootstrap; and visualize
them using different plots for different prognostic risk

groups with smoothed splines to obtain a meaningful
graphical visualization.
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