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Lactate has long been considered as a metabolic by-product of cells. Recently, this 
view has been changed by the observation that lactate can act as a signaling molecule 
and regulates critical functions of the immune system. We previously identified lactate 
as the component responsible for the modulation of innate immune epithelial response 
of fermented milk supernatants in vitro. We have also shown that lactate downregulates 
proinflammatory responses of macrophages and dendritic cells. So far, in vivo effects 
of lactate on intestinal inflammation have not been reported. We evaluated the effect of 
intrarectal administration of lactate in a murine model of colitis induced by 2,4,6-trinitro-
benzenesulfonic acid (TNBS). The increase in lactate concentration in colon promoted 
protective effects against TNBS-induced colitis preventing histopathological damage, as 
well as bacterial translocation and rise of IL-6 levels in serum. Using intestinal epithelial 
reporter cells, we found that flagellin treatment induced reporter gene expression, which 
was abrogated by lactate treatment as well as by glycolysis inhibitors. Furthermore, 
lactate treatment modulated glucose uptake, indicating that high levels of extracellular 
lactate can impair metabolic reprograming induced by proinflammatory activation. These 
results suggest that lactate could be a potential beneficial microbiota metabolite and 
may constitute an overlooked effector with modulatory properties.

Keywords: innate immunity, lactate, TnBs-induced colitis, flagellin, immunomodulation

inTrODUcTiOn

Inflammatory bowel disease (IBD) involves a group of chronic, inflammatory disorders of the gastro-
intestinal tract, including Crohn’s disease and ulcerative colitis, affecting people of all ages including 
the pediatric population. The etiology of IBD is still unknown but is thought to be due to a combina-
tion of genetic, microbial, immunological, and environmental factors that result in an abnormal and 
excessive immune response against commensal microbiota (1). The intestinal microbiota profoundly 
regulates the host immune function under physiological conditions and is likely the most important 
environmental factor in IBD as the target of the inflammatory response (2).
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Dysbiosis or a lack of specific bacteria with anti-inflammatory 
properties may be responsible for gut inflammation (3–6). 
Although the molecular mechanisms of host–microbiota inter-
actions are still not fully elucidated, manipulation of microbiota 
by probiotics or prebiotics is becoming increasingly recognized 
as a therapeutic option, for the treatment of the dysfunction or 
inflammation of the intestinal tract (7). The metabolic output of 
the modification of gut microbiota is the production of differ-
ent profiles of short chain fatty acids (SCFA) such as butyrate, 
propionate, and acetate, and these metabolites are of relevance in 
the modulation of key signaling pathways involved in the inflam-
mation of the gastrointestinal mucosa (7–9).

The impact of probiotic bacteria on intestinal health with the 
aim to prevent IBD or improve its treatment has been studied 
(10–12), as well as it has been shown that metabolites present in 
the supernatants of fermented dairy products can exert a protec-
tive effect ex vivo on intestinal mucosa exposed to inflammatory 
insults (13).

Lactate is the main metabolite of many fermented products and 
can also be generated in situ on the intestinal mucosa. Although 
lactate has been known to biochemists for over 200 years, it has 
been considered as a mere intermediate of carbon metabolite 
with specific organoleptic/antimicrobial properties rather than 
a bioactive molecule. Recently, lactate has been rediscovered as 
an active signaling metabolite in multiple fields of biology and 
medicine (14). Lactate mediates signaling pathways on several 
cell types, including production of pro- and anti-inflammatory 
mediators by T cells and macrophages and migratory changes and 
metabolic adaptation in T cells, endothelial cells, and neurons. 
Intracellular lactate can directly bind to proteins, influence the 
redox state via the lactate dehydrogenase reaction, stabilize 
hypoxia inducible factor-1, induce reactive oxygen species, and 
act as an inhibitor of glucose breakdown (15). The occurrence of 
these effects might depend on the cell type. Hoque et al. (16) dem-
onstrated that administration of lactate reduced inflammation 
and organ injury in mice with immune hepatitis (16). Moreover, 
besides immunomodulation, Okada et al. (17) showed that lumi-
nal lactate-stimulated enterocyte proliferation in a murine model 
of hunger feedback, contributing to maintain intestinal barrier 
function (17). We have recently shown that lactate abrogates TLR 
and IL-1β dependent NF-κB activation of intestinal epithelial 
cells (18) and can regulate critical functions of several key players 
of the immune system such as macrophages and dendritic cells 
(19). In order to determine if the immunomodulatory capacity of 
lactate operates in vivo, the present work evaluated the effect of 
lactate in innate-driven murine model of colitis.

MaTerials anD MeThODs

chemicals and reagents
Different chemical reagents used 2,4,6-trinitrobenzenesulfonic 
acid (TNBS), 2 deoxyglucose (2DO), sodium oxamate, sodium 
3-bromopyruvate (3BrPA) were purchased to Sigma Chemicals. 
dl-lactic acid (J. T. Baker) was employed. Flagellin was puri-
fied from Salmonella, detoxified, and controlled as previously 
described (20). Other proinflammatory stimulators, such as 

human interleukin-1β (IL-1β) and tumor necrosis factor (TNF), 
were purchased from R&D Systems (Minneapolis, MN, USA).

animals
Male BALB/c AnN, 6 weeks old mice with weight over 20 g were 
purchased from Faculty of Science Veterinary from National 
University of La Plata, Argentina. The animals kept in polypro-
pylene cages were maintained under standard conditions. The 
experimental protocols were approved by the Animal Ethics 
Committee of Faculty of Exact Sciences, National University of 
La Plata, Argentina (Approval No 011-01-15). Before conducting 
experiments, animals were acclimatized to animal facility condi-
tions for 7 days.

Treatment and induction of experimental 
colitis Using TnBs
Procedure was performed as previously described (21). Briefly, 
mice randomly divided into four groups were instilled with 
PBS (200  µL) (two groups) and with lactate solution in PBS 
200  mM (200  µL) (two groups) by intrarectal route. Two 
hours post-administration, experimental colitis was induced 
by intrarectal instillation of 0.5  mg TNBS (SIGMA-Aldrich, 
USA) in ethanol 50% (v/v). Control animals were instilled 
with ethanol 50% (v/v) in distilled water. Enemas were gently 
instilled through a polyurethane catheter (18 G) inserted into 
the colon 4 cm proximally to the anal verge, and mice were held 
thereafter in a head-down position for 30 s. The weight of each 
mouse was determined and blood sampled at the beginning of 
the experiment and at 24 and 48 h. After 48 h, animals were 
sacrificed by cervical dislocation; colon tissues were collected 
for histological analysis (hematoxylin and eosin staining); 
and livers were aseptically taken to determine microbial 
translocation.

serum il-6 Determination
Blood was collected by submandibular bleeding and serum was 
isolated. Serum IL-6 determination was performed using BD 
Bioscience OptEIATM Mouse IL-6 ELISA Kit (Franklin Lakes, 
NJ, USA), according to manufacturer instructions.

assessment of colonic epithelial Damage 
and inflammation
Histopathological damage was determined following the criteria 
described previously (21). This system records two separate 
scores evaluating epithelial damage and infiltration. Briefly, the 
epithelial damage was scored as 0 for none, 1 for a minimal loss 
of goblet cells, 2 for extensive loss of goblet cells, 3 for a minimal 
loss of crypts and extensive loss of goblet cells, and 4 points 
for extensive loss of crypts; the infiltration was scored as 0 for 
none, 1 for an infiltrate around crypts bases, 2 for an infiltrate in 
muscularis mucosa, 3 for extensive infiltrate in muscularis mucosa 
with edema, and 4 points for the infiltration of submucosa. 
Preparations were assessed double blind, and the histopatho-
logical activity index was calculated as the sum of the epithelial 
damage and the infiltration score, ranging between 0 and 8 points 
from unaffected to severe colitis.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


3

Iraporda et al. Prevention of TNBS-Induced Colitis by Lactate

Frontiers in Immunology | www.frontiersin.org December 2016 | Volume 7 | Article 651

Microbial Translocation
Portions of liver were aseptically collected and placed in a sterile 
tube with a volume of BHI broth (Oxoid, England) in order to 
obtain 1 g organ/10 mL. These suspensions were homogenized, 
enriched in total viable bacteria by incubation 24 h at 37°C and 
used to inoculate BHI agar plates. Translocation of bacteria was 
defined by growth of microorganism on plates after 48–72 h of 
incubation at 37°C.

cell culture and ccl20:lUc reporter 
assay
Caco-2 cells stably transfected with a luciferase reporter con-
struction under the control of the chemokine-ligand-20 (CCL20) 
promoter (Caco-2-CCL20:LUC) have been previously described 
(20). The cells were routinely grown in Dulbecco’s Modified 
Eagle’s Minimum Essential Medium (DMEM, GIBCO BRL Life 
Technologies, Rockville, MD, USA); supplemented with 15% (v/v) 
heat-inactivated (30 min, 60°C) fetal-bovine serum (FBS, PAA, 
GE Healthcare Bio-Sciences Corp., USA), 1% (v/v) non-essential 
amino acids (GIBCO BRL Life Technologies, Rockville, MD, 
USA) and the following antibiotics (Parafarm, Saporiti SACIFIA, 
Buenos Aires, Argentina): penicillin (12 IU/mL), streptomycin 
(12  µg/mL), and gentamicin (50  µg/mL). Caco-2-CCL20:LUC 
cells were used at 24 h post-confluence after 8 days of culture at 
subculture passages between 12 and 22 from the original stocks. 
All experiments were performed in serum-free medium.

Confluent Caco-2-CCL20:LUC cells cultured in 48-well plates 
were treated for 30 min with different concentrations of lactate 
pH 7.4 or different solutions of glycolysis inhibitors. The cells 
were then exposed to stimulation by flagellin (1  µg/mL), Il-1β 
(10  ng/mL), or TNF-α (100  ng/mL), during 6  h at 37°C in an 
atmosphere of 5% CO2—95% air. A basal condition without 
any treatment was included as a control lacking stimulation; 
while flagellin, TNF-α, or IL1-β was added to cell that did not 
receive any treatment as control of 100% of induction of the 
proinflammatory response. The cells were next lysed with lysis 
Buffer (Promega, Madison, WI, USA), and luciferase activity was 
evaluated using the Luciferase Assay Kit (Promega, Madison, WI, 
USA) following manufacturer’s instructions and measured in a 
luminometer (Luminoskan TL Plus). Luminescence was normal-
ized to the stimulated control cells and expressed as a percentage 
of the normalized average luminescence (% normalized luciferase 
activity) ± SD from at least three independent experiments.

cytotoxicity assay
As a method of assessing treatment-induced cytotoxicity, 
mitochondrial activity was evaluated employing commercial 
kit CellTiter 96® AQueous One Solution Cell Proliferation 
Assay (Promega, Madison, WI, USA) following manufacturer’s 
instruction.

glucose consumption by epithelial cells 
against Tlr5 agonist stimulation
Confluent Caco-2/TC-7 epithelial cells cultured in 48-well plates 
were incubated at 37°C, in controlled atmosphere 5% CO2 in 
DMEM containing initially 2  g/L glucose. Glucose uptake was 

determined in the culture medium employing a commercial 
enzymatic kit (Wiener lab, Rosario, Argentina). Samples were 
taken after 3, 6, 15, and 24 h of incubation either in basal condi-
tion, stimulated with flagellin with and without lactate 100 mM 
in the culture medium.

statistical analysis
The results are expressed as mean  ±  SD. Data analysis was 
performed using Graph Pad Prism version 5.01 for Windows 
(GraphPad Software, CA, USA). Analyses of variance followed 
by Dunnet Test or Bonferroni Test were applied. A p-value <0.05 
indicated a significant difference.

resUlTs

lactate Treatment Prevents Tissue 
inflammation, early il-6 Production, and 
Bacterial Translocation in a TnBs-induced 
colitis Model
To address the in  vivo immunomodulatory capacity of lactate, 
we evaluated the capacity to protect mice from colitis induced 
by intrarectal administration of TNBS. During the experiment, 
we compared the development of TNBS-induced colitis in mice 
that received intrarectal administration of lactate 200 mM or PBS 
as control. Such administration guaranteed lactate contact with 
intestinal cells exposed to the TNBS. The intrarectal administra-
tion of PBS or lactate followed by vehicle administration did not 
induce any significant changes of animal weight. In contrast, the 
rectal administration of TNBS causes progressive weight loss 
reaching up to 15% of the initial weight at 48 h. In both TNBS-
treated groups (PBS/TNBS and Lactate/TNBS), a significant 
weight loss was observed (Figure S1 in Supplementary Material). 
Although the differences were not significant, the weight loss 
was lower in lactate/TNBS than in PBS/TNBS (10 versus 15%). 
Histological features of colitis were observed in the PBS/TNBS 
group as determined by epithelial damage, loss of goblet cells, 
edema, and infiltration of immune cells, leading to a pathology 
index of 4.67 ± 2.33 (Figure 1). In contrast, the group of mice 
pretreated with lactate (lactate/TNBS) showed significant protec-
tion from TNBS-induced inflammation, with lack of epithelial 
damage and minimal edema. Indeed, the histological sections 
were similar to the control groups that did not receive TNBS 
(PBS/vehicle and lactate/vehicle). The histopathology index of 
1.40  ±  0.54 was significantly different from that of PBS/TNBS 
group (p = 0.039) (Figures 1A,B). This was in concordance with 
a clear better behavior of lactate-treated animals, indicating that 
lactate treatment prevents intestinal inflammation in the TNBS 
colitis model.

Inflammation is associated with the production of various 
inflammatory mediators, primarily cytokines that are key players 
in the innate and adaptive immune responses. Levels of circulat-
ing IL-6 were determined in the different experimental groups 
before and 24 or 48  h after instillation (Figure  2). IL-6 levels 
were significantly increased 24 h after treatment with TNBS in 
control group but decreased to the baseline at 48 h. In contrast, 
lactate treatment abolished the production of circulating IL-6 at 
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FigUre 2 | rectal administration of lactate protects animals against 
early il-6 production. Serum was obtained from animals treated as in 
Figure 1, and levels of IL-6 were measured by ELISA. Serum levels of IL-6 
(pg/ml) (□) before (■) 24 h (■) 48 h, after TNBS or vehicle administration. 
Results from a representative experiment out of five are shown, expressed as 
the mean ± SD, *indicates significant difference with p < 0.05 respect to its 
corresponding control.

FigUre 1 | rectal administration of lactate protects animals against damage in TnBs acute colitis model. Mice were treated with lactate or PBS (i.r.) 2 h 
before TNBS or vehicle instillation and 48 h afterward tissue was collected for histopathological analysis. In all cases, groups of at least five mice were used. Results 
from a representative experiment out of five are shown. (a) Histopathological activity index assigned to different experimental groups. Different letter indicates 
significant differences with p < 0.05. (B) Photomicrograph of H&E-stained cross section (×100 top line and ×200 bottom line) of distal colon of a representative 
mouse of each experimental groups.
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2,4,6-trinitrobenzenesulfonic acid is known to disrupt the 
mucosal barrier function by interacting with surface-active 
phospholipids of the colonic mucosa, a process that is evi-
denced by microbial translocation. We assessed the disruption 
by measuring the presence of bacteria into the liver. Our data 
demonstrated bacterial translocation four out of six animals in 
the PBS/TNBS group (Table  1). On the contrary, we did not 
find any bacteria in liver of animals pretreated with lactate and 
exposed to TNBS. These results were similar to the groups of 
mice that received vehicle (PBS/vehicle and lactate/vehicle) 
and did not experimented disruption of the mucosal barrier. 
Overall, our results show that luminal lactate could prevent 
bacterial translocation and reduce tissue inflammation induced 
by TNBS.

lactate Downregulates Proinflammatory 
response in intestinal epithelial cells and 
induces Metabolic changes
In order to unravel the mechanisms of the anti-inflammatory 
effect of lactate in mice, an in vitro assay in the intestinal epi-
thelial cell line Caco-2-CCL20:LUC that enables the monitoring 
of proinflammatory activation was used. In concordance to 
previous reports, pretreatment of Caco-2-CCL20:LUC cells with 

24  h, resulting in levels similar to control group. These results 
indicate that lactate pretreatment also prevents systemic altera-
tion induced by TNBS treatment.
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TaBle 1 | Microbial translocation to liver observed 48 h after 
2,4,6-trinitrobenzenesulfonic acid (TnBs)-induced colitis.

Treatment animals with positive translocation/total animals 
in the group

PBS/VEH 0/5
LAC/VEH 0/5
PBS/TNBS 4/6
LAC/TNBS 0/5

Results from a representative experiment out of five are shown.

FigUre 3 | lactate pretreatment as well as glycolysis inhibition leads to downregulation of inflammatory response in caco-2-CCL20:LUC cells. 
Reporter cells were stimulated with IL1-β (10 ng/mL), tumor necrosis factor (TNF)-α (100 ng/mL), or flagellin (1 µg/mL), after pretreatment with different 
concentrations of lactate. (a) Results are expressed as normalized luciferase activity, using the levels of stimulated cells in absence of lactate as 100% of activation. 
The Caco-2-CCL20:LUC cells pretreated with solutions of glycolysis inhibitors (B) 2DG (mM) (c) 3-bromopyruvate (μm) (D) Oxamate (mM). Results shown are the 
mean and SEM from independent triplicates. Results from a typical experiment out of at least three are depicted. □ Non-stimulated and ■ stimulated Flic. *Indicates 
a significant difference from the cells without treatment and stimulated with flagellin, IL-1β, and TNF-α, respectively, with p < 0.05.
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lactate produced a significant decrease of luciferase activity 
induced by various proinflammatory stimuli, i.e., flagellin (the 
TLR5 agonist), the cytokines IL1-β, and TNF (Figure 3A). In 
all stimulation conditions, a similar pattern of downregulation 
of the proinflammatory signaling was observed. For instance, 
exposure to concentrations of lactate of 5  mM or higher elic-
ited a significant decrease of IL1-β-induced activation. These 
inhibitory effects of lactate were increased in a dose-dependent 
manner.

We have previously observed that lactate treatment abrogates 
enhanced glycolysis in TLR-stimulated macrophages, which 
correlates with its activity as modulator of innate response (22), 
Caco-2-CCL20:LUC reporter cell line was utilized to evaluate if 
the effects of lactate on epithelial cells could be related to meta-
bolic changes.

Treatment of cells during 6 h with glycolysis inhibitors such as 
2DO or 3BrPA (competitive inhibitors of hexokinase) and oxam-
ate (inhibitor of lactate dehydrogenase) in different concentrations 
did not affect luciferase activity in non-stimulated condition. 
Luciferase activity induced by flagellin was significantly lower in 
cells pretreated with glycolysis inhibitors, and this effect was dose-
dependent (Figures  3B–D). Cell viability was not affected by 
6 h incubation with glycolysis inhibitors, showing an enzymatic 
activity on MTT reduction over 85% in all cases (not shown).

We observed that Caco-2 intestinal epithelial cells decreased 
their rate of glucose consumption in the presence of lactate 
either in basal as well as with flagellin conditions. This could be 
associated with an inhibition of glycolysis in presence of lactate 
(Figure 4). Overall, these results indicate that lactate modulation 
of epithelial response, correlates with its capacity to alter glyco-
lytic activity, which alters the capacity to trigger the effectors of 
innate response activation.

DiscUssiOn

Although the etiology of IBD is still unknown, increasing 
evidence shows that IBD may involve in genetically susceptible 
individuals a dysregulation of their immune response to resident 
microbiota (23). It is now widely accepted that a misbalanced gut 
ecosystem also plays an important role other pathologies of the 
gastrointestinal tract (24).
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FigUre 4 | lactate treatment decreases glucose uptake of caco-2/
Tc-7 cells either in basal as well as stimulated conditions. Percentage 
of glucose remaining in culture medium of Caco-2/TC-7 cells either with 
lactate 100 mM or not, non-stimulated and stimulated with flagellin  
(1 µg/mL), incubated for (□) 3, (■) 6, (■) 15, and (■) 24 h.
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Several therapeutic strategies proposed to reduce the symptoms 
of IBD are based on the use of anti-inflammatory drugs (such as 
corticoids, 5-aminosalicylic acid, and anti-TNF-α antibodies), all 
having marked long-term side effects. Other proposed treatments 
are based on microbiota-based dietary interventions, either by the 
use of probiotics or prebiotics (25). Therapeutic administration of 
probiotic species such as Bifidobacterium spp., Lactobacillus spp., 
or Propionibacterium has been shown to have protective effects 
on IBD models through the production of anti-inflammatory 
metabolites (26, 27). Almost two decades ago, proof of concept 
in clinical studies demonstrated the efficacy of SCFAs-based 
treatments in IBD, specifically in ulcerative colitis, treating the 
inflamed region using a mixture of SCFAs (acetate 80  mM, 
butyrate 40 mM and propionate 30 mM) enemas (28–30). In the 
recent years, therapeutic strategies related to intestinal SCFAs to 
manage IBDs have renewed interest based on studies from either 
animal models or intestinal metabolomic/microbiota analysis on 
patients. Interventions in animal models resulting in increased 
exposure of intestinal tissue to specific SCFAs have shown pro-
tective effects in intestinal mucosa (31, 32) and new combined 
interventions with pharmaceuticals and oral SCFAs formulated 
to be released in large intestine have shown efficacy in patient 
management (33).

We have previously shown that lactate can downregulate the 
proinflammatory responses of immune cells such as macrophages 
and dendritic cells, as well as those of mucosal structural cells 
like intestinal epithelial cells (18, 19). The diverse effects of lactic 
acid on various immune cells suggest that lactic acid or lactate 
may influence widely used signaling pathways. Indeed, both 
molecules have been demonstrated to influence several MAP 
kinases, NFkB signaling, or the PI3K/AKT pathway (15, 34). 
Aiming to analyze effects of lactate on inflammation in vivo, in 
a proof of concept experimental design, we found that pretreat-
ment with lactate 200 mM modulates the epithelial damage and 
infiltration induced by TNBS. This effect was not observed when 
lactate 200 mM was administered in drinking water, on account 
of low lactate levels measured in distal colon (not shown). This 
reduced content could be due to either intestinal absorption by 

enterocytes, lactate consumption by microbiota, or both. To have 
protective effect, lactate luminal levels should be high, such as 
those reached by intrarectal administration. TNBS i.r. admin-
istration has been used as model for innate-driven intestinal 
inflammation due to epithelial damage and increased access of 
microbial-derived molecules to the immune cells in the lamina 
propria compartment (35). The use of the TNBS model that pro-
duce an acute local activation of inflammatory response allowed 
us to evaluate the local effect of lactate after a short term exposure, 
upon i.r intervention. Due to experimental design, contribution 
of microbiota, other fermentation metabolites, or other microbial 
products to the anti-inflammatory effect is expected to be low, 
indicating that is lactate the main responsible for the modulation 
observed.

Using different strategies, several authors showed that preven-
tion of inflammation in the TNBS model is usually correlated 
with lower bacterial translocation from the gut to mesenteric 
lymph nodes and systemic compartment (36–40). In coincidence 
with these results, we have shown that lactate administration 
protects against microbial translocation to the liver in animals 
treated with TNBS and the increase in lactate concentration 
in colon alleviates TNBS-induced colitis. Furthermore, lactate 
treatment also prevented serum rise of levels of IL6 (Figure 2), 
in coincidence with our previous observations that lactate pre-
treatment abrogates NFkB activation and proinflammatory gene 
expression such as IL12, IL1β, or IL6 (18, 19). Some proinflam-
matory cytokines that may be modulated in this way, such as IL1b 
and IL18, have also the capacity to trigger epithelial renewal and 
reinforce barrier function (41). Nevertheless, in our system, the 
overall effect of lactate is to promote tissue protection as appreci-
ated by hystopathological analysis (Figure 1).

There are several possible non-mutually exclusive mechanisms 
that may explain the capacity of lactate to prevent inflammation 
in our model. We have recently shown that lactate, as other 
SCFAs, may prevent TLR-mediated activation of macrophage and 
dendritic cells (19). Several reports indicate that the blockage of 
macrophage activation can modulate colonic inflammation in 
different acute models; Du et al. (42) have shown that targeting 
intestinal macrophages with gadolinium chloride block colitis in 
a TNBS model (42). Furthermore, several treatments targeting 
intestinal macrophage activation, using miRNAs or modulation 
of specific GPCRs, can also modulate colitis in TNBS model 
(43, 44). Besides, previous studies have shown that lactate can 
modulate innate activation of intestinal epithelial cells (18, 19). 
Since epithelial cells can also contribute to the amplification of 
inflammation in the TNBS model, this could be another possible 
cellular target that explains the bioactive properties of lactate. In 
line with this possibility, Cheng et al. have shown that targeting 
intestinal epithelial cells may reduce colitis in IBD models (45).

Beyond the cellular target of lactate, there are also several 
mechanisms that may account for its activity. We have recently 
shown that lactate impairs macrophage metabolic reprograming 
after LPS activation in a GPR81-independent manner (22), which 
has also been associated with blunting the proinflammatory 
cytokine response (46). In accordance with these results, Selleri 
et al. (47) have shown that local increase of lactate in the envi-
ronment of mesenchymal stromal cells shifts macrophage M1 
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activation toward the less inflammatory M2 (47). Colegio et al. 
(48) have shown also the blunting of M1 macrophage activation 
in the solid tumor environment due to high lactate production of 
Warburg metabolism of tumor cells (48). Kreutz and colleagues 
have shown that increase in extracellular lactate of macrophages 
impair proinflammatory activation by altering its capacity to 
rise its glycolitic flux, effect that is enhanced at low pH (34, 49). 
Inhibition of lactate efflux from macrophages blocks LPS-driven 
activation by a mechanism also associated to impairment of 
glycolytic reprograming of macrophage upon activation (50).

Metabolic reprograming upon proinflammatory activation of 
myeloid cells implicates enhanced glycolysis with low respiratory 
rate (51). In the case of macrophages, this implies high rate of 
urea cycle intermediates for the production of NO from arginine 
(46) and production of lipid metabolites from citrate. In the 
case of dendritic cells, metabolic reprograming supplies carbon 
from glycolysis to lipid metabolites, mainly to allow expansion 
of endoplasmic reticulum in order to facilitate antigen presenta-
tion (52). Although it is not clear that the extent of metabolic 
reprograming takes place in epithelial cells upon TLR activation, 
there are some reports that show similarities on macrophage and 
epithelial cell response to mediators of metabolic reprograming 
(53). Our results indicate that blocking of glycolysis impairs 
flagellin-induced CCL20 transcriptional activation observed in 
our reporter system (Figure 3). Furthermore, we observed less 
consumption of glucose in the presence of extracellular lactate 
(Figure  4). These results are consistent with the necessity of 
enhancement of glycolysis rate in epithelial cells for a full func-
tional TLR response, as is the case of macrophages.

Although our experimental design was first aimed to confirm 
the bioactive properties of lactate observed in vitro in a preclinical 
model, it opens the possibility of using lactate in local treatments 
to modulate inflammation. Furthermore, it can be considered 
that local production of lactate by probiotic microorganisms that 
attach to the intestinal epithelium may also contribute to their 
protective capacity in inflammatory situations (14), providing 
alternative cues for selection of microorganisms to be used as 
complement in the management of IBDs.

cOnclUsiOn

Results shown here were conclusive in relation to the effect of 
lactate at local level in a model of acute intestinal inflamma-
tion, contributing to a decrease in epithelial damage, signs of 

inflammation, and the secretion of proinflammatory cytokine 
IL-6, presenting a first approximation in vivo about the role of 
lactate in preventing intestinal inflammation.

Although several possibilities remain to be considered to 
explain the cellular and molecular mechanisms responsible 
for the observed effect, a correlation between impairment of 
glycolysis and proinflammatory activation of epithelial cells was 
observed, in coincidence with previous works in macrophages.

These results suggest that lactate could be a potential beneficial 
microbiota metabolite and may contribute to health-promoting 
properties on the intestinal mucosa.

aUThOr cOnTriBUTiOns

CI performed experimental work, participated in the study design 
and conception and manuscript writing. AB, DR, AE, and DC 
performed experimental work, participated in study design. BF 
performed experimental work, participated in study design and 
manuscript writing. J-CS participated in study design, funding, 
and manuscript writing. GG, AA, and MR participated in study 
design and conception, funding, and manuscript writing.

acKnOWleDgMenTs

CI and AB are fellows of Argentina National Research Council 
(CONICET), DR, AE, AA, GG, and MR are members of Scientific 
Career of CONICET. DC, J-CS, and BF are supported by the 
Institut Pasteur de Lille, the University of Lille, CNRS and Inserm. 
Work was supported by grants from CONICET, Agencia Nacional 
de Promoción Científica y Tecnológica (ANPCYT) and ECOS 
A12B03 grant of the National Ministry of Science, Technology 
and Innovation (MINCYT-Argentina).

sUPPleMenTarY MaTerial

The Supplementary Material for this article can be found 
online at http://journal.frontiersin.org/article/10.3389/fimmu. 
2016.00651/full#supplementary-material.

FigUre s1 | intrarectal administration of lactate protects animals against 
weight loss in 2,4,6-trinitrobenzenesulfonic acid (TnBs) acute colitis 
model. Weight variation after 24 and 48 h of TNBS-induced colitis (% of initial 
weight). In all cases, groups of at least five mice were used. Results from a 
representative experiment out of five are shown. Different letter indicates 
significant differences with p < 0.05.
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