
HAL Id: inserm-01526074
https://inserm.hal.science/inserm-01526074

Submitted on 22 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Auditory steady state responses and cochlear implants:
Modeling the artifact-response mixture in the

perspective of denoising
Faten Mina, Virginie Attina, Yvan Duroc, Evelyne Veuillet, Eric Truy, Hung

Thai-Van

To cite this version:
Faten Mina, Virginie Attina, Yvan Duroc, Evelyne Veuillet, Eric Truy, et al.. Auditory steady state
responses and cochlear implants: Modeling the artifact-response mixture in the perspective of denois-
ing. PLoS ONE, 2017, 12 (3), pp.eCollection 2017. �10.1371/journal.pone.0174462.s015�. �inserm-
01526074�

https://inserm.hal.science/inserm-01526074
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE

Auditory steady state responses and cochlear

implants: Modeling the artifact-response

mixture in the perspective of denoising

Faten Mina1,2,3*, Virginie Attina1,2,3, Yvan Duroc1, Evelyne Veuillet1,2,3, Eric Truy1,2,4,

Hung Thai-Van1,2,3

1 Claude Bernard Lyon 1 University, Lyon, France, 2 Lyon Neuroscience Research Center (Inserm U1028

CNRS UMR5292), Lyon, France, 3 Department of Audiology and Otoneurological Evaluation, Civil Hospitals

of Lyon, Lyon, France, 4 ENT Department, Civil Hospitals of Lyon, Lyon, France

* faten.m.mina@gmail.com

Abstract

Auditory steady state responses (ASSRs) in cochlear implant (CI) patients are contami-

nated by the spread of a continuous CI electrical stimulation artifact. The aim of this work

was to model the electrophysiological mixture of the CI artifact and the corresponding

evoked potentials on scalp electrodes in order to evaluate the performance of denoising

algorithms in eliminating the CI artifact in a controlled environment. The basis of the pro-

posed computational framework is a neural mass model representing the nodes of the audi-

tory pathways. Six main contributors to auditory evoked potentials from the cochlear level

and up to the auditory cortex were taken into consideration. The simulated dynamics were

then projected into a 3-layer realistic head model. 32-channel scalp recordings of the CI

artifact-response were then generated by solving the electromagnetic forward problem. As

an application, the framework’s simulated 32-channel datasets were used to compare the

performance of 4 commonly used Independent Component Analysis (ICA) algorithms: info-

max, extended infomax, jade and fastICA in eliminating the CI artifact. As expected, two

major components were detectable in the simulated datasets, a low frequency component

at the modulation frequency and a pulsatile high frequency component related to the stimu-

lation frequency. The first can be attributed to the phase-locked ASSR and the second to

the stimulation artifact. Among the ICA algorithms tested, simulations showed that infomax

was the most efficient and reliable in denoising the CI artifact-response mixture. Denoising

algorithms can induce undesirable deformation of the signal of interest in real CI patient

recordings. The proposed framework is a valuable tool for evaluating these algorithms in a

controllable environment ahead of experimental or clinical applications.

1 Introduction

The ongoing development of cochlear implants (CIs) has continuously improved the quality

of life of patients suffering from profound hearing loss by compensating the dysfunction of the

cochlea’s sensory hair cells with adequate stimulation currents. In practice, the CI stimulation
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parameters must be adjusted patient-wise in consideration of the subjective evolution of audi-

tory perception after cochlear implantation. This is performed during regular post-implanta-

tion CI parameter fitting sessions. During each session, a subjective evaluation of the threshold

and comfortable hearing levels is determined for each CI stimulation electrode (up to 22 elec-

trodes depending on the manufacturer).

While the active participation of adult patients in these time-consuming fitting sessions is

indispensable, behavioral indices constitute the only guide for the adjustment of CI parameters

in infants, toddlers, the disabled and the elderly. Consequently, and in view of the absence of

clear clinical guidelines for current CI parameter fitting practices [1], objective measures of

auditory perception in cochlear implanted patients have long been a subject of interest for the

hearing community [2–9]. These measures represent a solution for optimizing CI parameters

without requiring the active participation of the patient.

Nevertheless, state-of-the-art studies [10–13] have highlighted the complexity of detecting

these objective measures, mainly evoked potentials, in the presence of the electrical artifact

that is generated by the CI as well as the difficulty in suppressing this artifact. Therefore, the

reliability of these responses remains, in some cases, bound to the subjective judgment and

experience of the clinician or the experimenter. For instance, responses may be considered

valid based on their scalp topographical distribution [14] or other electrophysiological

assumptions such as the amplitude growth function [12]. These assumptions are usually based

on equivalent results obtained through experiments with normal hearing subjects [15, 16].

Among the different types of objective measures, auditory steady state responses (ASSRs)

are of particular interest given the reported correlation of their amplitude growth function

with the loudness growth function of auditory stimulus in normal hearing subjects [15]. More

importantly, recent studies demonstrated the reliability and feasibility of using ASSRs in the

context of CI clinical fittings [11, 17–19]. ASSRs can also be used for testing multiple hearing

frequencies simultaneously and are thus less time-consuming than other conventional audi-

tory evoked potentials (see [16] for a review).

To our knowledge, the interference of the CI stimulation artifact with the detection of the

evoked responses and therefore the reliability of objective measures in CI patients has never

been formally addressed. This is probably due to the fact that this is practically impossible to

achieve in clinical data given the physical co-existence of the artifactual activation source, the

CI, and the electrophysiological sources of these evoked potentials in CI patients. It is generally

assumed that a significant difference between the phase value of the detected response and

that of the corresponding contaminated raw data is sufficient proof of reliable detection. The

objective of the present study is to propose a formal approach for: 1) evaluating the efficiency

of commonly used signal processing algorithms in suppressing the CI artifact from EEG data-

sets and 2) assessing their impact on the characteristics of the evoked electrophysiological

responses.

Blanking [19] is one of the most commonly reported denoising algorithms used to elimi-

nate the CI artifact in the context of ASSR. This method is particularly efficient in eliminating

symmetric stimulation pulses of short duration and has a proven reliability in denoising ASSR

clinical data ahead of response detection [11, 18, 19]. Nevertheless, the performance of this

algorithm remains bound to the limited temporal spread of the CI artifact. In fact, in a very

recent clinical study, the authors report that blanking was insufficient for the suppression of

electrical stimulation artifacts from the electrophysiological recordings of ipsilateral electrodes

[18]. Although ASSRs were retrievable from less contaminated contralateral electrodes, the

mentioned study concludes by acknowledging the need for the development of a “more

sophisticated” denoising method capable of removing the artifact from all recording elec-

trodes. Moreover, the stimulation paradigm of cochlear implants varies among manufacturers
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which can make it difficult for the blanking method to function universally. For instance, the

Digisonic SP cochlear implant (Oticon Medical, Vallauris, France) employs pulse-width-mod-

ulation to encode sound intensity. This implant generates pseudo monophasic pulse trains in

order to maximize the probability of exciting the auditory nerve fibers [20]. Each monophasic

pulse then resembles an active anodic-first pulse followed by an asymmetric passive discharge

that counterbalances the accumulation of electrochemical Faraday charges. This passive dis-

charge is exponential in shape and of relatively long-term duration, i.e. the contamination

induced by each pulse can extend over 1 ms, equivalent to 50% of the inter-active-pulse inter-

val at a clinical stimulation rate of 500 Hz. Therefore, using the standard blanking method, in

this context, results in the elimination of a large portion of the useful signal. Consequently, the

use of an alternative denoising method such as independent component analysis (ICA) may be

more suitable to eliminate such temporally-spread electrical artifacts. A recent study reported

that ICA (infomax) was more efficient than blanking in denoising the CI artifact in clinical

data and therefore retrieving less contaminated ASSR measures [17].

In this paper, a computational simulation framework is proposed. It aims to simulate the

mixture of the CI artifact and the corresponding electrically evoked responses. Its parameters

were tuned to represent the Digisonic SP cochlear implant’s stimulation paradigm. This

computational framework is built on a neural mass model of the main generators of auditory

evoked potentials (AEPs) as well as the stimulation source, the CI. A realistic head model was

then used in order to simulate the 10–10 EEG datasets, which were used to test the perfor-

mance of candidate signal processing algorithms in separating the artifact-response mixture.

Four ICA algorithms were explored in simulation. Finally, an illustration of the effects of these

methods on the detected responses in a CI patient was also performed.

2 Materials and methods

A formal approach for quantifying the efficiency of a signal processing algorithm in suppress-

ing the CI stimulation artifact from the EEG recordings of a CI patient consists in providing

access to the expected uncontaminated recordings. Since this is impossible to achieve in real

clinical datasets, we propose a computational framework allowing for the separate simulation

of 1) the artifactual CI electrical potentials and 2) the corresponding evoked electrophysiologi-

cal potentials. This section presents the framework’s architecture, from the level of the neural

mass model to the realistic head model, as well as the methodology used to evaluate and com-

pare the performance of four ICA algorithms in denoising the artifact-response mixture.

Finally, the clinical dataset used for the preliminary exploration of the outcome of these algo-

rithms in real data is described.

2.1 The lumped-parameter model

In order to simulate realistic neural dynamics, the proposed computational framework was

based on a lumped-parameter model of auditory neural dynamics. This model was built on the

mesoscopic level for two reasons. First, the main objective of this framework is to evaluate the

efficiency of artifact removal methodologies, i.e. artifact-response separability. Therefore, a

microscopic representation of the underlying neural dynamics of auditory processing was con-

sidered superfluous. Second, at this level, we were not interested in the effectiveness of audi-

tory evoked potential (AEP) detection algorithms. Consequently, the macroscopic modeling of

the background cortical activity constituted an unnecessary additional computational com-

plexity for this computational framework. However, in conformity with the neurophysiologi-

cal generation of ASSRs, the representation of the main neural generators [21] was judged

indispensable. Therefore, the proposed lumped-parameter model included six interacting
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modules: two cortical modules, two thalamic modules, a brainstem module and a cochlear

module (see Fig 1).

2.1.1 The cortical modules. The cortical modules represent the two processing nodes of

the left (Fig 1A) and the right primary auditory cortex (Fig 1B) denoted A1,l and A1,r respec-

tively. Besides a principal cell neuronal population, (PA1,l and PA1,r), these modules include

two interneuron populations representing fast-mediated (IA1,l and IA1,r) and slow-mediated

GABAergic transmission (I’A1,l and I’A1,r). The output of these two modules corresponds to

the mean membrane potential of PA1,l and PA1,r respectively. Two Gaussian additive noise

inputs representing non-specific cortical excitation from local cortical neural populations

stochastically modulate the excitability of the principal neuronal populations PA1,l and PA1,r

respectively.

2.1.2 The thalamic modules. The architecture of the left (Fig 1C) and right (Fig 1D) tha-

lamic modules follows that of the cortical modules. Each of these modules is formed of a prin-

cipal cell neuronal population, (PTh,l and PTh,r) and two interneuron populations representing

fast-mediated (ITh,l and ITh,r) and slow-mediated GABAergic transmission (I’Th,l and I’Th,r).

Likewise, the output of the thalamic modules corresponds to the mean membrane potential of

PTh,l and PTh,r respectively.

2.1.3 The brainstem module. The brainstem module is composed of two lumped neuro-

nal subpopulations (Fig 1E): an excitatory principal cell population PBS and an inhibitory neuro-

nal population IBS. The PBS population projects excitatory connections to the cortical and

thalamic modules and receives in return excitatory feedback from these four modules. A Gauss-

ian additive noise input representing non-specific excitatory local projections stochastically

Fig 1. Architecture of the neural mass model: (a) left cortical module, (b) right cortical module, (c) left

thalamic module, (d) right thalamic module, (e) brainstem module and (f) cochlear module.

https://doi.org/10.1371/journal.pone.0174462.g001
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projects to PBS modulating its excitability. The output of this module corresponds to the mean

membrane potential of subpopulation PBS.
2.1.4 The cochlear module. The cochlear module (Fig 1F) is the most important module

of this model. It presents a lumped representation of the effects of the cochlear stimulation cur-

rent on the mean firing rate of the auditory nerve. For simplicity, a single electrode of the CI

electrode array is represented in this module. The electrochemical diffusion of the stimulation

current is represented by a capacitive electrode-electrolyte (cochlea) interface (see [22] for a

review). The transfer function of this interface is expressed as follows:

vstim ¼ Zec � istim þ Rs � istim ð1Þ

The potential, vstim, induced by the stimulation current istim adds up to the mean membrane

potential of the auditory nerve. Its value depends on the impedance of the electrode-cochlea

interface, Zec, detailed in Eq (2) in the form of a transfer function, and the cochlea’s input resis-

tance Rs.

Zec ¼ Cdl=ðsþ 1=ZfCdlÞ ð2Þ

The parameter Cdl designates the double layer capacitance of the electrode cochlea interface

while Zf represents its faradaic resistance.

Then, the resulting average potential, v, is transformed into an equivalent mean firing rate

via the nonlinear transfer function S(v).S(v) is the sigmoidal wave-to-pulse function as

described by Freeman [23] and is expressed formally as follows:

SðvÞ ¼ 2e0=ð1þ expðrðv � v0ÞÞÞ ð3Þ

where 2e0 represents the maximal mean firing rate of the auditory nerve, v0 the corresponding

postsynaptic potential at a mean firing rate e0, and r the slope of the sigmoidal function S(v).

Residual hearing was modeled as a Gaussian additive noise input that adds up to the stimula-

tion input of this module. Its parameters are detailed in Table 1 (Appendix–S14 File).

This module is an essential element for simulating the artifact-response mixture for two

reasons. Firstly, the dynamics of the mean membrane potential, induced by istim, contribute to

the simulation of the artifactual component of the EEG dataset. Secondly, the output of this

module, representing the mean firing rate of the auditory nerve, is the modulatory input of the

simulated temporal dynamics of the five remaining modules. Therefore, this module is the

basis for generating the AEP components of the simulated EEG dataset, namely the ASSRs in

this study. Consequently, these dynamics depend on the choice of the stimulation current at

the input of the cochlear module, which in turn should correspond to the electrical translation

of the hypothetical acoustic input.

Table 1. Mutual information (MI) values between the artifactual source and each of the neural sources

simulated by the model. The second column presents the raw estimated values of MI and the third presents

the corrected values w.r.t the estimation bias.

Source Uncorrected MI Corrected MI

Brainstem 0.0086 1.9x10-4

Right Thalamic 0.0089 5.1x10-4

Left Thalamic 0.009 5.7x10-4

Right Cortical 0.0065 � 0

Left Cortical 0.0070 � 0

https://doi.org/10.1371/journal.pone.0174462.t001
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2.2 Model input

CIs map the perceived sound to electrical impulses via a coding strategy. This coding strategy

is dependent on the CI manufacturer [24]. Generally, sound intensity is coded by amplitude

modulation (AM) or pulse width modulation (PWM). This information is thus transmitted by

varying either the amplitude or the duration of the stimulation pulses respectively. On the

other hand, the spectral envelope is coded by the spatial activation of intracochlear electrodes,

with the most basal ones coding higher frequencies. Finally, the stimulation frequency of the

CI is manually tuned patient-wise to optimize perception. It is of fixed value and is usually set

in the range of 500 Hz. Recent studies reported that speech perception is enhanced with CI

stimulation rates in the range of 500 to 600 Hz compared to lower or higher frequency ranges

[25, 26].

In this study, the model input was determined with respect to the particular application

explored, i.e. Auditory Steady State Responses (ASSRs) in CI patients equipped with a Digiso-

nic SP cochlear implant (Oticon Medical, Vallauris, France). ASSRs are stationary AEPs elic-

ited by a continuous auditory stimulus [16] generally composed of frequency or amplitude-

modulated sine tones. Therefore, the model input can be defined as the corresponding CI

stimulation current encoding an AM sine tone stimulus by PWM, in view of the Digisonic

SP’s coding strategy. Technically, the input used was a PWM monophasic pulse train with

the following parameters: the carrier frequency (fc), also representative of the aforementioned

CI stimulation rate, was set to 500 Hz as in the general clinical context, the modulation fre-

quency (fm) was set to 39.06 Hz, and the modulation depth to 75%. The choice of the modula-

tion frequency and the modulation depth aimed at amplifying the response of the auditory

nerve and the cortical AEP generators to stimulation. Since the same parameters are to be used

with the CI patient, this should enhance the detectability of the response [16]. Monophasic

rather than biphasic or charge-balanced current was used in this study for simplicity without

loss of generality.

2.3 Artifact-response mixture simulation: The forward model

The output of each of the six modules of the lumped-parameter model represents the local

field potential of each one of them and can be theoretically measured by depth electrodes

implanted at these nodes. In order to transform these direct measures into simulated scalp

potentials, a realistic 3-layered head model (Fig 2) was constructed in Matlab1 using the Field-

trip toolbox (Donders Institute for Brain, Cognition and Behaviour, Radboud University Nij-

megen, the Netherlands. See http://www.ru.nl/neuroimaging/fieldtrip) [27]. This model allows

for the estimation of a transfer matrix (or lead field matrix) by using six dipoles each represent-

ing one of the ssix modules presented in section (2.1). The lead field matrix models the passive

conduction of the electromagnetic field generated by these dipoles. The temporal dynamics of

these six dipoles are modeled by the output of their corresponding modules. Dipole orienta-

tions and coordinates can be defined application-wise. In this paper, their definition is based

on the state-of-the-art ASSR literature [16, 21]. Their orientations were further tuned to match

the topographies obtained experimentally in a pilot study. Dipole orientations are then speci-

fied in an additional matrix, K, of the forward model’s formulation. The respective coordinates

of dipole locations were adapted given the template MRI in such a way that the cochlear dipole

is positioned in the cochlea, the cortical dipoles in the primary auditory cortices (symmetric),

the thalamic dipoles in the thalamus (symmetric) and the brainstem dipole in the brainstem.

Dipole parameters are specified in the Appendix (S14 File Table 2). The conductivity ratios of

the scalp, the skull and the brain in such 3-shell head models are often set to 1, 1/80, and 1

respectively. The scalp to brain conductivity ratio of 1/80 was first reported by Rush and
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Driscoll [28] and has been commonly used ever since as a standard value in head models. The

conductivities of the scalp and the brain were set to 0.33 S/m [29] and therefore that of the

skull to 0.042 S/m.

Instead of computing a single lead field matrix accounting for all the modeled dipoles, we

computed two separate matrices, the first, LF1, for the five neural dipoles and the second, LF2,

for the artifactual dipole (cochlea). Once the lead field matrices had been calculated, the direct

EEG problem was formulated as follows:

EEGmix ¼ LF1 � K1 � Sn þ LF2 � K2 � SArt þ b ð4Þ

Matrices K1 and K2 define the orientation specifications of the neural and artifactual dipoles

respectively. Therefore, the simulated EEG takes into consideration the neural temporal

dynamics, represented by matrix Sn, as well as the artifactual dynamics related to cochlear

stimulation, represented here by matrix SArt. Additive white Gaussian noise is also modeled at

the recording electrodes by matrix b. Moreover, the contribution of the dipoles of interest to

the simulated EEG is computed systematically as follows:

EEGASSR ¼ LF1 � K1 � Sn ð5Þ

EEGASSR represents the uncontaminated control dataset that is necessary to evaluate the

efficiency of artifact suppression algorithms. In this study, the simulated EEG was sampled at

50 kHz (user defined in the model).

Being built on a stochastic neural population model, the output of the forward EEG model

presented in this section slightly varies at each simulation without hindering the generation of

the basic neural and artifactual dynamics required for this study.

Fig 2. The 3-layered head model and the positions of the 6 dipoles and the 32 electrodes.

https://doi.org/10.1371/journal.pone.0174462.g002

Table 2. Average negentropy of simulated EEGmix channels and detected sources per algorithm obtained over 10 model simulations (MD = 75%)–

see S1 Fig for a boxplot presentation.

EEGmix channels infomax extended infomax jade fastICA

Average negentropy 0.1387 ± 1.1 x 10−4 7.13 x 103 ± 1.07 x 103 3.75 x 103 ± 1.28 x 103 2.28 x 103 ± 356 4.49 x 103 ± 868

https://doi.org/10.1371/journal.pone.0174462.t002
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2.4 Comparing ICA algorithms

As previously stated in the introduction, our interest in independent component analysis

(ICA) is motivated by the temporally widespread stimulation artifact induced by a monopolar

unsymmetrical stimulation current in the CI of interest, the Digisonic SP implant. In such a

context, the commonest efficient method of CI artifact removal in the context of ASSRs, blank-

ing [11, 18, 19], would require the loss of up to 50% of the recorded EEG signal. Moreover,

ICA is another frequently used method to attenuate or remove the cochlear stimulation artifact

in CI patients’ EEGs [10, 14, 17, 30] without systematically eliminating segments of the signal

of interest. However, ICA involves various algorithms, of various mathematical and computa-

tional complexities. In the present study, only the following four popular ICA algorithms were

tested for their efficiency in removing the CI artifact: infomax [17, 31], extended infomax [32],

jade [33] and fastICA [34] given their previous reported usage in denoising the CI artifact [14,

17, 30, 35, 36].

2.4.1 The ICA algorithms in a blink. The four algorithms tested, infomax, extended info-
max, fastICA and jade, aim at achieving statistically independent sources following non-Gauss-

ian distributions at their output. However, in order to achieve this statistical independence,

these methods employ different criteria, or contrast/likelihood functions.

Infomax and extended infomax separate a blind mixture by minimizing the mutual informa-

tion among the extracted sources [31, 32]. Although these two methods stem from the same

basic mathematical contrast function, extended infomax provides a higher flexibility concern-

ing the statistical distribution of the detected source due to its generalized learning rule. While

infomax [31] allows the detection of supra-Gaussian sources only, extended infomax [32] takes

sub- and supra-Gaussian sources into account.

The contrast function of the fastICA algorithm is based on maximizing negentropy, which is

a measure of the distance between the distribution of the detected source and that of a normal

distribution of the same mean and standard deviation [34]. As a matter of fact, it has been

shown that maximizing negentropy is mathematically equivalent to minimizing mutual infor-

mation (see [34]), implying that infomax, extended infomax and fastICA belong to the same

family of ICA algorithms. Also, this algorithm takes as input parameter, the type of contrast

function used to estimate negentropy [34]. In our simulations, we used the default contrast func-

tion, which is a general purpose function based on kurtosis. Finally, jade maximizes the kurtosis

of the separated sources by jointly diagonalizing their fourth order cumulant matrices [33].

2.4.2 ICA source constraints. In order for ICA algorithms to be applicable, two major

constraints should be respected: 1) the statistical independence and 2) the non-Gaussianity of

the mixed sources. These two constraints have been validated for EEG signals [37]. Any Gauss-

ian source will be perceived as a mixture of two or more non-Gaussian signals, according to

the central limit theorem, and will therefore be impossible to detect as a single independent

component. Therefore, proving the non-Gaussianity of our simulated sources is important.

Similarly, measuring the statistical independence between the artifactual source and each of

the neural sources in our simulations is crucial.

The non-Gaussianity of each source was tested using the Anderson-Darling test (adtest

Matlab1 statistical toolbox function). This function tests the null hypothesis that the each of

the simulated source dynamics follows a normal distribution. Then, the statistical indepen-

dence between the artifactual source and each of the simulated neural sources was evaluated

by calculating the mutual information (MI) based on the Kullback entropy [38] expressed as:

MI X;Yð Þ ¼
P

i;jpðXi;YjÞ � logð
pðXi;YjÞ

pðXiÞ � pðYjÞ
Þ ð6Þ
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where X and Y are two random variables. The naïve algorithm, or the histogram based tech-

nique was accordingly implemented to estimate MI. Also the obtained values were corrected

by an estimation bias of
ðM� 1Þ2

2
� 1

N where M is the number of histogram bins and N is the num-

ber of samples in each signal [39].

2.4.3 Comparing efficiency. These methods are here compared based on the error of

estimation of the amplitudes of the expected simulated responses. A significant increase or

decrease in response amplitude observed in the denoised dataset is considered as an indication

of undesired performance. In other words, a positive estimation error indicates the presence of

artifactual residuals in the denoised dataset. Likewise, a negative estimation error implies an

imperfect separation of the artifact-response mixture, leading to the rejection of an artifactual

independent component actually containing a neural response.

Artifactual components were identified and rejected manually based on their characteristic

topographical and frequency distribution calculated by FFT (FIC). Ten EEG simulations were

performed, of 40 s each, and the four ICA algorithms were operated accordingly on each simu-

lation. This aims at taking the stochastic nature of the model and therefore the respective per-

formance of each algorithm into consideration.

More generally, the efficiency of these algorithms can be evaluated as a function of many

parameters (stimulation frequency, cochlear dipole position and orientation, etc.) using the

model. In this study, the effect of the modulation depth of the input signal on the performance

of ICA algorithms was assessed. In fact, a recent study showed the possibility of eliminating

the transcranial alternating current stimulation artifact in MEG recordings using beamformers

only if an amplitude modulation is applied to the sinusoidal stimulation signal [40]. Therefore,

supplementary simulations were performed accordingly for the following values of modula-

tion depth: 100, 75, 50 and 20% in order to evaluate possible effects.

2.5 Proof of concept: ICA algorithms in a real dataset

As previously stated, it is quite impossible to assess the efficiency of a CI artifact-denoising

algorithm by applying it directly to real datasets recorded in CI patients without taking into

consideration the potential effects on the underlying AEPs. However, it is possible to compare

the outcome of several denoising algorithms obtained from processing a given CI patient’s

EEG dataset. Coupled with the computational results, the clinical exploration can offer insight

into the actual effects of these algorithms in real data.

In this section, the patient EEG dataset used to compare and contrast the aforementioned

four ICA algorithms is described. This study was approved by the local ethics committee (CPP

Sud-Est IV 14/034 ID RCB 2014-A00345-42) and data acquisition was performed with the

written informed consent of the patient. The subject is a profoundly deaf male patient, 68

years old, who had been implanted for 2 years at the time of the experiment.

The stimulus was constructed in Matlab1 in accordance with the parameters specified in

the computational approach. It consisted of an amplitude modulated pure tone with a carrier

frequency of 1 kHz, a modulation frequency of 39.06 Hz and a modulation depth of 75%. Note

that the choice of the acoustic carrier frequency targeted the activation of the CI electrode cod-

ing for the 1 kHz frequency range. Furthermore, the electrical carrier frequency was equivalent

to the patient’s CI stimulation rate fstim set to 500 Hz as in the daily usage protocol. This fre-

quency matches the carrier frequency of the stimulation pulses at the model input. The sound

intensity was calibrated to 70 dB SPL. It was then presented acoustically via the auxiliary input

of the cochlear implant for a continuous duration of five minutes.

EEG activity was recorded using 31 active electrodes (actiCAP, Brain Products GmbH,

Munich, Germany) placed following the 10–10 international system. EEG signals were
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amplified and digitized at a sampling frequency of 50 kHz (actiCHamp, Brain Products

GmbH, Munich, Germany). The recorded data were grounded to the forehead and referenced

to the nose. ICA algorithms were applied respectively to this dataset. The number of compo-

nents was fixed at 31 for all the algorithms. The artifactual component(s) was manually

rejected based on its particular scalp topography and its particularly distributed frequency

spectrum.

3 Results

This section presents the major findings of the study. First, the simulated dynamics are

described and their topographical distributions depicted. Then, the ASSR and the artifact

dynamics are illustrated as projected at the scalp electrodes. Finally, the denoising results

obtained by applying the four tested ICA algorithms to simulated and real data are presented.

3.1 From the dynamics of the neural mass model to simulated EEG

Due to the capacitive characteristics of the electrode-cochlea interface, the envelope of the

model’s PWM input is slightly deformed to follow the modulation frequency fm (Fig 3A).

This signal represents the temporal dynamics of the cochlear artifact dipole. Moreover, the

simulations show that the PWM input (fc = 500 Hz; fm = 39.06 Hz) generates typical oscillatory

dynamics in the neural mass model that can be representative of the simulated ASSRs. As

depicted in Fig 3B, the output of the brainstem module conserves the high frequency content

of the input signal readily following its envelope (fm). As expected, the induced oscillations are

low-pass filtered throughout the thalamic nodes (Fig 3C and 3D) and up to the cortical nodes

(Fig 3E and 3F). This is in part due to the explicit modeling of the pulse-to-wave transfer func-

tion [23] in neural mass models. However, this may still explain in part the participation of the

cortical nodes in ASSRs generated by a modulation frequency around 40 Hz but not around

Fig 3. Simulated dynamics (arbitrary units) at the (a) cochlear module, (b) brainstem module, (c) right

thalamic module, (d) left thalamic module, (e) right cortical module and (f) left cortical module. Projected

scalp potentials at scalp electrodes (g) TP8 and (h) Cz. Upper panels correspond exclusively to the neural

contribution and the lower panels represent the contaminated signals.

https://doi.org/10.1371/journal.pone.0174462.g003
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80 Hz, higher frequencies being filtered throughout the ascending auditory pathways. The

dynamics generated at the cortical nodes exhibit considerable low frequency content (< 200

Hz). At this level, the spectral peak at the modulation frequency loses its prominence. This

peak can be re-established by averaging the simulated cortical dynamics over fixed-time seg-

ments of duration D equivalent to an integer number (k) of the modulation period (Tm), such

that D = k � Tm.

On the system level, the simulated EEG datasets, EEGASSR and EEGmix, generated using Eqs

(4) and (5) and the temporal dynamics simulated by the nodes of the lumped parameter

model, show a major contamination of scalp electrodes by the stimulation artifact. Fig 3G and

3H depict the simulated neural-based (EEGASSR, upper panel) and mixture-based (EEGmix,
lower panel) EEG activity recorded at electrodes TP8 and Cz respectively.

3.2 Non-Gaussianity and statistical independence

The Anderson-Darling test confirmed the non-Gaussianity of all simulated sources as the null

hypothesis, that each considered source follows the normal distribution, was rejected (p<

10−3 for all sources). Concerning mutual independence, the number of histogram bins was

estimated based on the amplitude intervals of the simulated sources based on Scott’s rule [41].

The smallest (M = 160) value obtained over all sources was used in order to minimize estima-

tion bias (section 2.4.2). The uncorrected values of the mutual information between the artifac-

tual source and each of the neural sources are depicted in the second column of Table 1. These

values are of the same order of magnitude as the estimation bias (b = 0.0084), therefore indi-

cating extremely small values of mutual information. The corrected values are presented in the

third column of Table 1. These values confirm the statistical independence of the artifactual

simulated dynamics of those of the neural sources simulated by the model.

Furthermore, MI was also computed between EEGASSR and EEGArt (the simulated EEG

dataset accounting for the artifactual source only) for two electrodes, T8, representing a highly

contaminated electrode, and Cz, representing an electrode of high ASSR amplitude. The cor-

rected MI values for both electrodes were smaller than 10−4, once again indicating the statisti-

cal independence of the artifactual and neural simulated sources.

Finally, the mutual information among the neural sources was computed. It is worth

mentioning that almost all the sources presented little mutual information (corrected

values< 0.07). The two cortical sources presented a relatively high value of MI (corrected

value of 0.1). The thalamic sources (left and right) presented a significantly high value of MI

(corrected value of 3.9).

3.3 The efficiency of ICA algorithms in silico

Fig 4 provides a representative example of the topographies of detected averaged amplitudes

obtained from one simulation of the model and the outcome of the four ICA algorithms.

Response detection was performed by phase coherence [42]. Phase coherence is a measure of

the phase-locking among the occurrences of a defined frequency component in a continuous

signal. In this study, each epoch is defined as a time segment containing 20 modulations of the

presented acoustic signal. Therefore, whenever an ASSR is evoked due to the presented stimu-

lus, its phase is hypothetically constant over the epochs. According to [42], phase coherence is

calculated according to the following equation:

PC ¼
1

N
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
PN

i¼1
cos yiÞ

2
þ ð
PN

i¼1
sin yiÞ

2

q

ð7Þ

where θi is the phase value of the FFT of epoch i at the frequency of interest (i.e. the
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modulation frequency) and N is the number of the considered epochs. When PC tends to 1,

it indicates perfect phase-locking of the underlying frequency component throughout the

epochs. Values inferior to 0.5 indicate poor phase-locking. In this study, a response was only

detected when its phase coherence attained a value above 0.8 over several sweeps (in this study

predefined as 20 epochs). Fig 4A represents the scalp topography of ASSR amplitudes obtained

by averaging the dataset EEGASSR over 150 consecutive time segments of duration D = k � Tm,

where k = 20. The neural dipole orientation parameters were tuned in order to focalize the

ASSR distribution over the frontal and central electrodes, notably around Cz in accordance

with the current ASSR literature [21] and based on experimental data obtained in normal hear-

ing participants in a pilot study. Similarly, the orientation of the cochlear dipole was also tuned

to achieve a realistic topography similar to what is generally observed in implanted patients,

i.e. an ipsilateral spread of the stimulation artifact, most intense near the CI implantation site.

Note that the topography of contamination and its spread varies slightly from one patient to

another in terms of electrodes affected and degree of contamination. The considered simula-

tion parameters present a case of wide-spread contamination affecting the electrodes of the

fronto-central region of interest. Fig 4B depicts the topographical distribution of the averaged

scalp potential calculated from the mixed dataset EEGmix. These plots show that the artifactual

potential is generally maximal around the implantation site but may still contaminate central

and frontal electrodes. Also, the order of magnitude of the averaged artifactual potentials is sig-

nificantly larger than that of the averaged neural potentials (8 μV vs. 1 μV). Equivalent contam-

ination schemes can be observed in real undenoised datasets recorded from CI patients and

depending on the orientation of the cochlear dipole. This computationally confirms that aver-

aging raw EEG data without prior denoising would certainly induce artifactual responses.

However, the degree and spread of contamination is dependent on the surgical emplacement

of the CI and therefore on the position and orientation of the cochlear stimulation dipole.

Hence, denoising is an indispensable step ahead of averaging in order to minimize false

detection.

The computational results demonstrate that the four ICA algorithms tested, infomax,

extended infomax, jade and fastICA, efficiently denoise the simulated dataset EEGmix under the

simulation conditions considered in this study (notably high sampling rate). For information,

Fig 4. Simulated topographies of ASSR amplitudes (μV) calculated from (a) the neural dataset, (b) the mixed

dataset, and the datasets denoised by (c) infomax, (d) extended infomax, (e) jade and (f) fastICA.

https://doi.org/10.1371/journal.pone.0174462.g004
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in our simulations, only one component was automatically detected and rejected for infomax,

extended infomax, and jade out of 25 computed independent components. The number of

computed ICs was limited to 25 in the simulated data to limit the computation time required

for convergence. This was sufficient given the simplicity of the modeled dynamics. Further

increasing the number of ICs in the model did not enhance the quality of the results. Also, one

component was rejected for fastICA out of the 4 independent components detected. In fact,

the fastICA algorithm automatically adapts the number of independent components to be esti-

mated from a given dataset. In the simulated EEG, fastICA estimated the number of indepen-

dent components at 4 components. The topographies of the averaged potentials calculated

from the denoised datasets are depicted in Fig 4C–4F. When applying infomax (Fig 4C), the

amplitudes of the resulting denoised potentials significantly approach those of the averaged

neural potentials (Fig 4A), whereas extended infomax (Fig 4D) as well as jade (Fig 4E) induce a

decrease in the response amplitudes over all electrodes, indicating a probable imperfect separa-

tion of the artifact-response mixture using these two algorithms. Therefore, part of the

response is eliminated with the artifactual component detected. Finally, using fastICA, we

obtained a topographical representation of the detected responses (Fig 4F) that significantly

resembles the topographical distribution of the neural dataset (Fig 4A).

3.3.1 ASSR amplitude estimation error. Fig 5 depicts the stochastic distribution of the

amplitude estimation error (in percentage) induced by each of the tested algorithms as com-

pared to the expected (neural) ASSR amplitudes. These boxplots represent the results of 10

simulations for each method. As observed at all electrodes, infomax and fastICA present the

smallest variance and can therefore be considered to be the most stable among the four algo-

rithms. Yet, the estimation error incurred by infomax remains the closest to 0%, thus suggest-

ing that this algorithm retrieves the expected neural ASSR amplitudes at most of the recording

electrodes.

To confirm the significance of the error estimation difference among the 4 methods, a

region of interest was first defined. This concerned all the fronto-central electrodes, Fz, F3, F7,

FC5, FC1, C3, Cz, C4, FC6, FC2, F4 and F8. All 10 repetitions were included in the statistical

analysis performed with the anova2 function (Statistical toolbox, Matlab1, Mathworks).

The choice of the denoising algorithm proved significant in determining the estimation error

(ANOVA: F(3,432) = 76.13, MSE = 3557.67, p< 10−4). Post-hoc Tukey’s HSD tests showed that

the estimation error obtained over all the electrodes considered was significantly minimal (mean

value = -2%) when computed by infomax as compared to the other four algorithms. Also, the

estimation errors of extended infomax and fastICA were not significantly different for this set

of electrodes. Yet, it is worth mentioning, that the estimation error was significantly different

between infomax and fastICA over 80% of the electrodes considered when individually tested

using ANOVA (p< 10−3). Also, the outcome of extended infomax was significantly more vari-

able than that of infomax (ANOVA on estimation error standard deviation; p< 10−2).

As for the computational complexity, infomax was the most efficient, converging in an aver-

age time of 4.7 (standard deviation 0.2397) seconds. Given that execution time depends on the

PC used, the average time needed for infomax to converge will be denoted asdtconv . Extended
infomax required on average 400 �dtconv before converging while jade converged in approxi-

mately 6:96 �dtconv and fastICA in 2:62 �dtconv .

In conclusion, this computational investigation advocates the use of infomax given its sta-

bility (low variability of the estimation error), its precision in amplitude estimation (error clos-

est to 0%) and its low computational complexity compared to the other algorithms. It is thus

the most suitable for this context in comparison to the other 3 ICA algorithms tested and

under the simulation parameters considered.
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3.3.2 Effects of the modulation depth. As expected, the computational simulations

showed that varying the modulation depth (MD) of the model input has an effect on the

Fig 5. Boxplots of the ASSR amplitude estimation error obtained from 10 denoised datasets after the

application of infomax (red), extended infomax (green), jade (blue), fastICA (purple) at the 32 scalp

electrodes.

https://doi.org/10.1371/journal.pone.0174462.g005
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performance of the ICA algorithms (Fig 6). For all four algorithms, the ASSR amplitude esti-

mation error increased as the modulation depth diminished. Fig 6 depicts this change at elec-

trodes Fz (Fig 6A), FC1 (Fig 6B), FC2 (Fig 6C) and Cz (Fig 6D) respectively.

The choice of electrodes can also be justified by the peak values of ASSR amplitudes at these

electrodes and their clinical relevance as observed in a pilot study. The represented boxplots

indicate that extended infomax presents the least variability as a function of MD (Fig 6 second

column) and still has a considerable error interval at 100% MD. On the other hand, the perfor-

mance of infomax varies significantly (for example on electrode Cz, ANOVA F(3,31) = 20.32;

MSE = 15.49,p < 10−4) as a function of the MD (Fig 6 first column). Despite this variability the

estimation error remains confined to the interval [-2; 6%]. Jade presents the highest sensitivity

to MD as evidenced by the high variability of its performance (Fig 6 third column). This vari-

ability remains statistically insignificant however, thus reflecting an undesired performance

for all MD values. Jade can induce up to 40% estimation error when used with low MDs. Fas-
tICA follows the same behavior as infomax (Fig 6 fourth column). However, the interval of

Fig 6. Effect of the modulation depth on the estimation error of the ICA algorithms tested as measured on

electrodes Fz (a), FC1 (b), FC2 (c) and Cz (d). The corresponding p values are indicated in the plot.

https://doi.org/10.1371/journal.pone.0174462.g006
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estimation error remains slightly wider as it extends over [-2; 10%]. Furthermore, the mean of

the estimation error only approaches 0% at 100% MD.

3.3.3 Effects of ICA application on the non-Gaussianity of the estimated sources. Since

the maximization of non-Gaussianity is a clear indicator of the performance of an ICA algo-

rithm, the effect of the chosen algorithm on the non-Gaussianity of the separated sources was

estimated. Negentropy was chosen as a measure of non-Gaussianity and was calculated based

on the estimate provided in [43] and expressed as follows:

JðyÞ ¼ ðEfGðyÞg � EfGðgÞgÞ2 ð8Þ

where y is the considered signal, and g is a Gaussian variable of zero mean and unit variance,

and G is a non-quadratic function expressed as follows:

G uð Þ ¼
1

a
log coshða � uÞ ð9Þ

and 1� a� 2. In our simulations, a was fixed to 1. Negentropy reflects the distance between a

given distribution and the normal distribution [43]. The further the value of negentropy from

zero, the higher the non-Gaussianity of the concerned distibution.

For 10 model simulations (MD = 75%), the values of negentropy were calculated and aver-

aged over the 32 channels of EEGmix, over the 25 sources detected by each of infomax, extended
infomax and jade, and over the 4 sources detected by fastICA. Table 2 depicts the average of

the obtained values per method as well as the standard deviation. These results are also pre-

sented in the form of boxplots in S1 Fig. In fact, the application of each of the ICA algorithms

incurred a significant (ANOVA; p< 10−4) increase of the order of 104 times in average negen-

tropy among the EEGmix channels simulated and the sources estimated. This increase in

negentropy translates into an increase in non-Gaussianity and therefore validates the conver-

gence of the ICA algorithms applied to the simulated data. Moreover, the increase in negen-

tropy proved to be significantly (ANOVA; p< 10−4) the highest for solutions obtained by

infomax in comparison to each of the other algorithms. This can further corroborate its higher

efficiency in comparison to the other algorithms tested in the context of our study.

3.4 ICA outcome in CI patient EEG recording

3.4.1 The extracted artifact. As an illustration, Fig 7 shows two of the artifactual indepen-

dent components rejected by infomax. These two major components reflect the artifact’s tem-

poral spread, which is about 50% for this patient. Note that this percentage may vary from one

Fig 7. The temporal artifactual spread as observed in real data. CI1 and CI7 are two of the independent

components rejected by infomax.

https://doi.org/10.1371/journal.pone.0174462.g007
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patient to another due to the variability of the subjective pulse duration among patients. This

wide temporal spread of the artifactual contamination justifies once again the need to find an

alternative method to blanking for this type of stimulation.

3.4.2 The resulting topographies. Applying the different ICA algorithms to the EEG

recording of a CI patient (section 2.5) resulted in slightly different estimations of the ASSR

amplitude topography among algorithms (Fig 8). The presented topographies color-code only

the detected response amplitudes. In the absence of response detection at certain electrodes

(e.g., Oz), the response amplitude is color-coded with a zero amplitude response (dark blue).

This implies that the phase coherence of the detected amplitude is not significant of sufficient

phase-locking. For precision, a maximum of 20% of the estimated components (i.e., 5 compo-

nents out of 31) was allowed in manual rejection for every algorithm. Namely, 5 components

were rejected for infomax and extended infomax, 4 for jade, and 3 for fastICA.

Fig 8A represents the topography of the amplitudes of the detected responses obtained

from a patient’s undenoised dataset. Note that the visual inspection of this patient’s data

showed negligible contamination at electrodes Fz, Cz, Pz and Oz. The phase values of the

Fig 8. ASSR amplitudes in nV obtained from the undenoised (a) real dataset and their corresponding (b)

phase values. ASSR amplitude topographies (nV) of a real CI patient recording denoised by (c) infomax, (d)

extended infomax, (e) jade and (f) fastICA.

https://doi.org/10.1371/journal.pone.0174462.g008
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detected responses are depicted in degrees in Fig 8B. The phase value for this type of stimula-

tion cannot be easily used to confirm or reject the quality of the denoised results as is the case

with amplitude modulated biphasic symmetric stimulations [18]. This can be explained by the

morphology of the artifact (Fig 7), i.e. the passive components will contribute more or less to

the contamination at a given electrode as a function of its distance from the implantation site.

Contralateral electrodes exhibit only sharp peaks of contamination as the amplitude of the

other two passive phases of the artifact will be of the same order of magnitude as that of the

neural activity. The contamination schemes can also vary by the variation in the implantation

coordinates and the orientation of the stimulation dipole.

In this study, we did not aim at reproducing computationally the topographies of the

recorded patient, but at investigating the subtle variation in ASSR amplitude estimation as a

function of the denoising method used. By analogy with the computational results, the equipo-

tential lines of the topographies of infomax (Fig 8C), jade (Fig 8E), and fastICA (Fig 8F) did

not present significant differences from those obtained in the model. In other words, the mea-

sured ASSR amplitudes were of the same order of magnitude for infomax (Fig 6A) and fastICA
(Fig 6D). The topography obtained with jade (Fig 8E) showed a slight decrease in ASSR ampli-

tudes in comparison with the model’s prediction. Finally, the response amplitude topography

measured after denoising by extended infomax (Fig 8D) did not present a deviation from the

infomax topography as predicted by our computational framework. This discrepancy can be

explained by the high variability in the performance of extended infomax for the given record-

ing conditions (MD = 75%). In conclusion, it can be assumed that the order of the induced

amplitude change predicted by the model remains credible for the four ICA algorithms tested.

4 Discussion

Despite the fact that EEG signal preprocessing (filtering, denoising, averaging, etc.) is an inevi-

table step for the enhancement of the signal-to-noise ratio in the context of AEPs, the misuse

of preprocessing can lead to the deformation and therefore to the misinterpretation of actually

evoked responses [44–46].

4.1 The computational framework

The major contribution of this paper is the computational tool that it introduces as a means of

assessing the effects of preprocessing on raw neural data. This is especially important in the

context of cochlear implants given the additional artifactual noise induced by the CI stimula-

tion. Despite its relatively simple architecture, the proposed computational framework allows

for the simulation of the artifact-response mixture in a controlled and predictable manner.

Thus it permits the evaluation of the effectiveness of the preprocessing algorithm used by com-

paring the resulting denoised AEPs to the original uncontaminated AEPs. In certain applica-

tions, this approach can be impossible to achieve in the clinical setup given the lack of a priori
information concerning the spread and the characteristics of the CI artifact in a given CI

patient.

4.1.1 Simulating the artifactual contamination. The model takes into consideration

the six main contributors to the artifact-response (ASSR) mixture in CI patients. This model

deliberately models artifactual contamination by stimulation pulses and ignores the represen-

tation of the radio-frequency transmission artifact induced by the processor’s antenna for the

following reasons. First, the frequency of the RF signal is 4 MHz which is not likely to contami-

nate responses at the frequency of interest of 39 Hz. Second, even when this signal occurs

every time a stimulation pulse is active, it would affect the frequency range around the stimula-

tion frequency and not the modulation frequency. Third, we did not observe unidentified
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artifactual components in our dataset that could be representative of the RF-induced DC offset

artifact [11, 19]. The two DC phases surrounding the active stimulation pulse in the artifactual

component IC1 (Fig 7) correspond to two passive stimulation phases of the CI aiming at bal-

ancing the Faradaic charge injected by the active pulse.

4.1.2 Construction of the head model. Concerning the head model, the values of layer

conductivities used date back to the first reported study on the matter which determined the

brain scalp conductivity ratio to be of the order of 1/80 [28]. Although more recent studies

report varying values of this ratio mostly dependent on the method of measurement (see [47]

for a review), we assume that these values will not drastically affect the simulations of this

computational framework as a tool for comparing denoising algorithms. This ratio remains

user defined in our implementation.

4.1.3 Relevance of modeling to testing denoising algorithms. To our knowledge, neural

mass models and forward EEG models have never been proposed or used before for studying

CI artifact denoising algorithms. However, it is worth noting that simulated data have already

been exploited to evaluate the performance of denoising algorithms in eliminating artifacts of

physiological (muscular, ocular, etc.) and non-physiological origin (mostly related to technical

issues) from EEG recordings (see [48] for a review). For instance, Makeig and his colleagues

[49] simulated realistic 6-channel ERP data by injecting a noise-free 4-channel ECoG record-

ing into 4 simulated dipolar sources of a 3-layer spherical head model in order to evaluate the

performance of ICA in separating the simulated mixture. Also, in order to assess the perfor-

mance of ICA algorithms in eliminating muscular artifacts from EEG recordings, a realistic

3D head model (3 layers) was used to generate realistic EEG datasets from dipolar sources by

solving the forward problem [50].

4.2 The tested algorithms

Concerning the particular application of ASSRs, our results show that CI artifact denoising

is an important step before detecting responses. Moreover, the particular use of ICA can

be an alternative to blanking [11, 18, 19] in patients wearing the Digisonic SP CI (Oticon Med-

ical, Vallauris, France). Otherwise, artifactual responses of relatively high amplitudes (of the

order of microvolts) may be detected. In this case, other methods should be deployed for the

identification of false alarms. Previous studies used the non-linearity of the amplitude growth

function [12] and/or the phase value of artifactual responses [11] to identify non-artifactual

responses. For these methods, determining whether a detected response is a false alarm is

bound to a comparison with other detected responses at different intensities [12] or at different

modulation frequencies [11]. These types of classification may then require several points of

measurement to confirm detection.

4.2.1 The algorithms’ performance in silico. Nevertheless, the choice of the denoising

algorithm has also an effect on the responses obtained. In the results section, it is computation-

ally demonstrated that the performance of four common ICA algorithms (infomax, extended
infomax, jade and fastICA) in attenuating the CI stimulation artifact is different. Computation-

ally, infomax is the most efficient method in reconstituting the expected response amplitudes

and remains stable for varying levels of modulation depths. FastICA presents a similar stability

but tends to incur a negligible increase (< 4%) in the expected amplitude at 75% MD. On the

contrary, the extended infomax and jade algorithms present a significant variability in their

outcome. On average, the estimation error of extended infomax is centered on 0% with a prob-

able deviation of about ±10% at 75% MD as depicted in the second column of Fig 6. Similarly,

jade has also a wide variability in its outcome ([-5; 20%]) at 75% MD (Fig 5 and Fig 6) but will

on average incur an overestimation of the response amplitude.
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4.2.2 The difference in algorithm efficiency. The variability in performance observed

among the four algorithms tested computationally in this paper is most probably due to the

slight difference in the mathematical approach that they use to optimize statistical indepen-

dence. For instance, as infomax and extended infomax use mutual information to estimate

independence, their mean output is not statistically different. However, given that the source

of interest, the artifact, follows a supra-Gaussian distribution (kurtosis 74.4), the infomax algo-

rithm proves highly sufficient to isolate it. While extended infomax takes into consideration

sub- and supra-Gaussian sources increasing its computational complexity (i.e. convergence

time), its outcome presents significantly more variability than that of infomax (ANOVA test

on mean error standard deviation per electrode; p = 0.002). Since extracting sub-Gaussian

sources was not part of the studied application, the extended infomax algorithm did not pro-

vide an enhancement to the infomax algorithm.

On the other hand, the performance of the fastICA algorithm in silico seems to be also justi-

fied by the particular contrast function used to estimate statistical independence, negentropy,

which is also equivelant to mutual information (see section 2.4.1). This algorithm initializes by

estimating the number of independent components to retrieve, 4 in our simulations. This is

probably due to the interdependencies between the two thalamic sources as well as the two

cortical sources (see section 3.2), which reduces the number of independent elements to 4.

Furthermore, the slight positive error in ASSR amplitude estimation (< 4%) may be attributed

to the choice of the mathematical contrast function used to estimate negentropy (kurtosis

based). As a matter of fact, this general purpose function is kurtosis-based and best suits sub-

Gaussian sources [34]. It is not optimal for separating supra-Gaussian sources [34], which is

the case of the simulated artifactual source. According to the authors of [34], a Gaussian-based

contrast function is better suited to highly supra-Gaussian sources.

Finally, the distinct performance of the jade algorithm can be attributed to its distinct

core algorithm, which seeks to achieve the statistical independence of its output sources by

maximizing their kurtosis through the joint diagonalization of their fourth order cumulant

matrices. The resulting separated sources in our simulations do not seem to achieve a clear

separation of the artifactual and the neural sources based on this approach.

4.2.3 Performance on real data. In this study, we did not aim at reproducing the exact

values of the patient’s ASSR amplitudes in the model. We basically investigated the perfor-

mance of four commonly used ICA algorithms in separating the artifact from the neural data

in silico and then we investigated the outcome of these algorithms in a CI patient’s recordings.

Furthermore, the results established on the EEG recording of a CI patient proved in line with

the computational results. The algorithms infomax and fastICA yielded similar topographies in

the computational simulations (Fig 4C and 4F). The similarity of outcome can be also observed

in the real data (Fig 8C and 8F). The jade algorithm (Fig 8E) slightly diminished the amplitude

topography in comparison with what was observed for infomax (Fig 8C). As for extended info-
max, the algorithm worked quite well on this recording, yielding its average outcome and

inducing a comparable topography to that of infomax (Fig 8C). More importantly, the varia-

tion in the obtained outcome may not be crucial at a stimulation of 75 dB SPL. However, it can

play an important role at threshold detection. Therefore, optimal artifact attenuation is of con-

siderable importance.

4.2.4 The use of ICA for CI artifact denoising. ICA algorithms are rarely compared for

CI artifact suppression in the context of AEPs using real datasets. And when compared [30],

it is generally to test the detectability of an uncontaminated AEP independent component.

Conversely, our approach aims at detecting and suppressing artifactual components in CI

patient raw data ahead of applying preprocessing (averaging, filtering, etc.) for AEP detection.

Although Castaneda-Villa [30] reported that it was not possible to retrieve an uncontaminated
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AEP independent component using extended infomax, it remains the most popular ICA algo-

rithm for CI artifact attenuation [10, 14, 51] followed by infomax [36, 52] and then jade [35].

Regardless, it is worth noting that the performance of a denoising algorithm is also related to

the targeted application and the recording conditions (sampling frequency, number of elec-

trodes, etc.). While many studies [10, 14, 17, 35, 36, 51, 52] successfully used ICA algorithms to

extract auditory brain responses from CI patient data, some others failed [53]. The possible

absence of statistical independence between the CI artifact and the neural responses due to

their time-locking was indicated as a possible reason behind the malfunctioning of ICA algo-

rithms in some applications [54]. Although this might relatively be true, the statistical indepen-

dence of the stimulation artifact and the relevant neural response (the ASSR in our study),

seems to go beyond the notion of time-locking or phase-locking. As a matter of fact, the choice

of the recording parameters (sampling frequency, anti-alaising filters . . .) plays an important

role. Applying these preprocessing procedures may deform the electrical stimulation artifact

(sampling rate of 125 kHz), extracting its envelope, thus necessitating an extra interpolation

procedure to attenuate the artifactual residue after low-pass filtering as illustrated by [13]. In

some cases, the artifact residue is more correlated with the neural response than the artifact

itself. This is particularly true for ASSRs, sinusoid-like responses time-locked to the stimulus

whose envelope is also a sinusoid of the same frequency as the expected response. Therefore,

the use of low sampling frequencies at acquisition may hinder the correct application of ICA.

Furthermore, it was reported that the ICA algorithm infomax successfully denoised the CI arti-

fact in CI-patient ASSR recordings; the sampling frequency used was 8192 Hz [17]. Moreover,

using our computational framework, we show that the modulation depth of the stimulus also

affects the performance of the ICA algorithms considered in the context of ASSRs. Finally, it is

worth noting that spatial filters, such as beamformers, are inapplicable in the case of ASSRs as

they require response-free artifact-only time windows to function properly, i.e., a time window

in which the neural response is not yet generated. These algorithms are therefore mostly effi-

cient for CI artifact suppression in the context of late AEPs [55].

In conclusion, given 1) the fast convergence of infomax, 2) its conservation of the original

neural topography (Figs 4A) and 3) the stability of its outcome (Figs 5 and 6), it is advised to

privilege the use of infomax in the context of ASSRs if an ICA algorithm is to be used. The

algorithm fastICA may be also considered although its convergence remains bound to the

choice of the initial conditions.

5 Conclusion

In CI research, the development of objective auditory measures in CIs constitutes a topic of

major interest given its impact on the overall functioning of the CI. Not only is the topic

important for optimizing the CI parameters but also for preparing progress towards intelligent

user-controlled CIs. In this view, it is recognized that the CI stimulation artifact impedes the

recording of reliable short and middle-latency AEPs due to stimulation-induced contamina-

tion at the recording electrodes. Therefore, denoising and pre-processing constitute two inevi-

table steps preceding the detection of objective measures (responses) in CI patients. We

present an original tool for assessing the theoretical performance of denoising algorithms and

their impact on the evoked responses as a function of the simulation parameters. This tool is a

computational framework allowing for the simulation of the CI artifact-response mixture of

CI patients in a controllable environment. In this work, its utility is illustrated through the

study of the efficiency and stability of four ICA algorithms in denoising the CI artifact. Other

examples may include the study of the impact of the orientation and the position of the

cochlear stimulation dipole in the head model on the performance of denoising algorithms.
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Other denoising algorithms that may also be interesting and adapted to PWM asymmetric

stimulation are parametric fittings and non-parametric fittings, such as exponential fitting and

linear interpolation [9, 13]. In order to study such methods, the integrity of the stimulation

artifact should be represented in the model, i.e. including the passive discharge.

At this stage, the current architecture of the model does not allow for the study of the perfor-

mance of AEP detection algorithms. A possible future solution would be the incorporation of dis-

tributed sources of cortical background activity [56]. This would ensure the representation of the

cerebral background noise irrelevant to auditory processing. While this enhancement is not neces-

sary for the current purpose of the model, i.e. the study of denoising algorithms, it becomes essen-

tial if the latter is to be used to evaluate the efficiency of AEP detection algorithms.
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as for the estimated sources by each of the ICA algorithms tested (n = 10 simulations). The

mean values and their standard deviations are given in Table 2 of the manuscript.
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