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Figure S1: Initialization and sampling of the simulation  
a,b) Each simulation run is initialized by a random configuration of chromosomes as illustrated. Two 

initializations are shown, for the same model parameters. Beads belonging to the same chromosome have 

the same color. Pink beads represent telomeres, and the bigger violet beads are monomers of the rDNA 

locus. c) Distance between the beads corresponding to the telomeres of chromosome arms 4R and 12R as 

function of simulation time steps. d) Autocorrelation function of the distances shown in c. Distances become 

effectively decorrelated after ~3x107 time steps. Because chromosome arms 4R and 12R are the longest in 

the yeast genome, they are expected to dominate the decorrelation time. Results shown here are for the 

simulation containing the largest number of monomers (n=16,202), for which the decorrelation time is 

expected to be largest. The simulation used the following parameters: persistence length P = 55 nm, C = 

25 bp/nm, W = 30 nm, L = 400 nm. The entire simulation was run for 1010 time steps. After a burn-in period 

of 108 time steps, we sampled the simulation trajectories every 10,000 time steps and pooled the samples 

from 6 independent replicate simulations (2-6 replicates were used for each model depending on the 

parameter values, see Additional File 2).  
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Figure S2: Similar predictions from replicate simulations 

a) for each of the 144 core models (Table 1, Additional File 2), this plot shows the 

median telomere-telomere distances for 62 pairs of telomeres[1] (observable O1, 

Table 2 and Additional File 3) as predicted by two independent simulation runs A and B 

for the same parameter values Π" (or the averages from two groups of independent 

simulations when more than 2 replicates were available). Each dot corresponds to a 

single parameter value Π", $ = 1. .144, and a single pair of telomeres. Each color 

corresponds to a single pair of telomeres. b) The relative mean absolute difference (in 

%) between median distances predicted by two replicate simulations, for each value of 

the parameter Π" (as indicated by simulation number i; see Additional File 2).  
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Figure S3: Parameters of the simulations used for validation  

To validate the parameter inference method on a known ground truth, we generated 

synthetic data from our simulation. We did this for five different values of the chromatin 

compaction C and persistence length P as indicated by the five dots: (P0, C0)= (41 nm, 

50 bp/nm); (69 nm, 25 bp/nm); (126 nm, 83 bp/nm); (126 nm, 25 bp/nm), and (54 nm, 

83 bp/nm).  The chromatin width and microtubule length were fixed to W = 45 nm and 

L = 300 nm in all five cases. 
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Figure S4: Robustness of parameter inference to parameter mismatch 
Results of a robustness analysis, where the inference method was applied to synthetic data generated by a 

simulation with parameter values outside the range spanned by the core simulations (see Fig. 1a, Table 1 

and Additional File 2). Specifically, we changed )*+,-, the diameter of the beads corresponding to the 

rDNA locus, such that the net volume occupied by these beads, V, varied from 5% to 30% of the nuclear 

volume, with intermediate values 10%, 16% and 20%. The total volume effectively occupied by these beads 

is roughly 2V. In all core simulations, we used V = 14% (Additional File 2). a) Bars show the root mean 

squared (RMS) error of the chromatin persistence length P as determined from the maximum a posteriori 

(MAP) estimate (see Fig. 1f,g). Three different levels of noise were added to the simulated data 

(Supplementary Methods section D). Each color corresponds to a different volume V, as indicated in the 

legend. The black bar corresponds to an independent replicate of the core simulation with V =14%. The red 

bar corresponds a simulation with V =14% but using a cutoff distance of 1.12 for the Lennard-Jones 

potential instead of 1.15 (see Supplementary Methods section A.3). b) same as panel a, for the chromatin 

compaction C. c) Predicted median distances between 62 pairs of telomeres (observable O1, Table 2 and 
Additional File 3) for different volumes V compared to the reference simulation with V = 14 %. The average 

difference between the distances predicted for V�14% and V=14% is indicated in the legend. 
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Figure S5: Weak effect of chromatin width on parameter estimation 
These plots show the joint posterior probability density for the three pairs of parameters 

(C,P), (W,P) and (W,C) among the chromatin compaction C, the chromatin persistence 

length P, and the chromatin fiber width W, as determined from the entire experimental 

data set combined (observables O1-O9, see Table 2 and Additional File 3). Panel a is 

identical to Fig. 3g. The data constrain both C and P to a relatively narrow range (a). By 

contrast, it is apparent from the almost vertical probability densities in b and c that the 

data do not strongly constrain W. Thus, the estimation of P and C  is not sensitive to the 

exact values of W within this range. 
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Figure S6: Improved prediction of distances between telomeres  
Both panels show the predicted vs measured median distances between 62 pairs of 

telomeres (observable O1, Table 2 and Additional File 3). Blue dots are for telomere 

pairs involving telomere 4R, red dots are for pairs involving telomere 6R, green dots are 

for pairs involving telomere 10R. a) Predictions are from our “best model” (Table 1). 

b) Predictions from our previous study by Wong et al. [2]. The Pearson correlation 

coefficient between predicted and measured distances and the root mean square (RMS) 

error are indicated. The model predictions are in markedly better agreement with the 

measurements in panel a. Note in particular that for distances between telomere 4R and 

other telomeres (blue dots), predictions negatively correlated with the measurements in 

Wong et al. [2] (panel b), indicating systematic discrepancies. Such negative correlations 

are no longer apparent in the new model (panel a).  
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Figure S7: Pericentromeric chromatin stretching is due to chromosome crowding 
The predicted median spatial distance between two loci on the right arm of chromosome 

4 is plotted as function of the genomic distance s between the loci, both for the 

pericentromeric (blue) and internal region of the chromosome (green). For the blue 

curves, one of the two loci is at 4 Kb from the centromere; for the green curves, one of 

the loci is at 404 Kb from the centromere and 678 Kb from the telomere. Solid curves are 

from a core simulation, which accounts for steric and topological constraints among 

chromosomes (model #17 in Additional File 2). Dashed curves are from a simulation 

with the same parameters, but in which all chromosomes except chromosome 4 were 

removed. In both simulations, spatial distances increase with genomic separation s, but 

for a given genomic distance s, the spatial distance between loci is larger near the 

centromere than in the internal region of the chromosome arm, reflecting pericentromeric 

stretching of the chromatin fiber (and conversely “shrinking” of the internal chromosome 

region). This difference between pericentromeric and internal regions is strongly reduced 

when the other chromosomes are removed from the simulation, indicating that it arises 

largely from steric or topological constraints exerted by the other chromosomes.  
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Figure S8: Predicted vs measured distance distributions between pairs of loci. 

Predicted (green) and measured (blue) distance distributions for nine pairs of chromatin loci. 

Experimental data are provided in Additional File 4. a-e) distances between pairs of loci on the 

right arm of chromosome 4. Panel titles indicate the genomic distance of the two loci to the 

centromere, with the genomic distance between them in parentheses. f-I) distances between 

pairs of telomeres. Panel titles indicate the chromosome arm of each telomere (e.g. Tel3L is the 

telomere on the left arm of chromosome 3).  
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Figure S9: Predicted vs measured genome-wide contact frequencies 

Predicted (a) and experimentally measured (b-f) genome-wide contact frequency 

matrices. The predicted contact frequencies are from our “best model” (Table 1). The 

measured contact frequencies were obtained from three independent Hi-C studies by 

Marie-Nelly et al. [3] (b), Duan et al. [4] (c), Belton et al. [5] (d) and one Micro-C XL 

experiment by Hsieh et al. [6] (e). For all matrices the bin size is 5 Kb. Contact 

frequencies are displayed as heat maps, with bright pixels indicating high frequencies 

and dark pixels low frequencies. A logarithmic scaling is applied to reveal lower 

frequency contact patterns. f) Pearson correlation coefficient between predicted and 

measured chromatin contact frequencies, as function of genomic bin size from 5 Kb to 

70 Kb. Blue: correlation between model prediction and Hi-C data from Marie-Nelly et 

al.[3] (O9, see Table 1). Green: correlation between model prediction and Hi-C data 

from Duan et al.[4]  (O8, see Table 1). Red: correlation between model predictions and 

Micro-C XL data from Hsieh et al. [6]. Cyan: correlation between model predictions and 

Hi-C data from Belton et al. [5]. Violet: correlation between Hi-C data from Marie-Nelly et 

al.[3] and Duan et al.[4].   
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Figure S10: Predicted vs measured contact frequencies between chromosomes 
a-e) Predicted (a) and measured (b-e) contact frequencies between the 16 chromosomes, displayed as heat maps with bright colors indicating high frequencies, 

and dark colors indicating low frequencies. The contact frequencies are normalized by the product of genomic lengths of the chromosomes to remove trivial 

variations [2]. Predicted contact frequencies (a) are from our “best model” (Table 1). Measured contact frequencies are from Hi-C data by Marie-Nelly et al.[3] (b), 

Hi-C data by Duan et al.[4] (c), Hi-C data by Belton et al. [5] (d) and Micro-C XL data by Hsieh et al. [6] (e). f-i) Scatter plots show the predicted vs measured 

contact frequencies from a-e. Blue circles correspond to intrachromosomal contacts, green diamonds to interchromosomal contacts. Pearson and Spearman 

correlation coefficients are indicated along with the corresponding p-value. 
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Figure S11: Predicted vs measured intrachromosomal contact frequencies  

Intrachromosomal contact probabilities are plotted as function of genomic distance. 

Contact probabilities are scored using bins of 5 Kb. Blue curves are genome-wide 

averages. Green curves are restricted to contacts involving a centromere. From top to 

bottom: predictions from our “best model” (Table 1); Hi-C data from Marie-Nelly et al.[3] 

(09); Hi-C data from Duan et al.[4] (O8); Hi-C data from Belton et al. [5]; Micro-C XL data 

from Hsieh et al. [6]. The three pairs of curves were scaled differently to facilitate 

visualization. For the experimental data, red lines indicate the value corresponding to a 

single contact event.  
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Figure S12: Contact correlation maps for human and yeast chromosomes 

The three panels show correlation matrices calculated from intrachromosomal contact 

data obtained by Hi-C experiments (a,b) or predicted by our model (c). Correlation 

matrices were computed as first described in [7]: in order to remove the average effect of 

genomic distance on the contact frequencies, the raw contact frequency matrix was 

normalized by the average contact frequencies over all pairs of loci that share the same 

genomic distance; then the correlation matrix was computed such that each entry (i,j) is 

the Pearson correlation between rows i and j of the normalized contact frequency matrix. 

a) Contact correlation matrix for the right arm of human chromosome 14, with a bin size 

of 1 Mbp, as obtained from Hi-C data in Lieberman-Aiden et al. [7]. b) Contact 

correlation matrix for yeast chromosome 4, as obtained from Hi-C data in Belton et al. 

[5], with a bin size of 10 Kb. c) Contact correlation matrix for yeast chromosome 4 as 

predicted by our “best model”, with a bin size of 5 Kb. While multiple large compartments 

of negative or positive correlations are clearly apparent in the Hi-C data of the human 

chromosome (a), this is not the case in Hi-C data of yeast, where correlations are high 

and homogeneous except for the pericentromeric region, which exhibits negative 

correlations (b). A very similar pattern is predicted by our model, which assumes an 

entirely homogeneous chromatin fiber (c). Therefore, reproducing the observed contact 

correlation pattern does not require a heterogeneous fiber model. 
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Figure S13: Effect of fiber heterogeneity on contact frequency maps 
We examine a heterogeneous fiber model consisting of a mixture of monomers of high 

compaction (!"	= 100 bp/nm) and monomers of low compaction (!$ = 25 bp/nm) and compare it 

to our “best model”, which assumes a homogeneous chromatin fiber with a constant compaction 

of !  = 50 bp/nm. For each chromosome arm, the number of compact monomers was set to %" =

! − !$ / !" − !$ %, where %	is the total number of monomers in the homogeneous fiber model. 

A random subset of %" out of % monomers was assigned a high compaction !"	, while the 

remaining  %$ = % − %" monomers were assigned low compaction !$. This ensures that the 

average compaction along each chromosome arm equals !, as in the homogeneous model. a) 

compaction as function of monomer index along chromosome 4 for the heterogeneous fiber 

(blue) and the homogeneous fiber (red). b-e) predicted (b,c) and measured (d,e) contact 

frequency maps for yeast chromosome 4, for a bin size of 5 Kb, together with a magnified view of 

a 200 Kb region on the diagonal. b) prediction from the homogeneous fiber model. c) prediction 

from the heterogeneous fiber model. Horizontal and vertical stripes result from variations in 

chromatin compaction along the chromosome. d) Hi-C contact data from Belton et al. [5]. 

e) Micro-C XL contact data from Hsieh et al. [6].  
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Figure S14: Predictions of heterogeneous vs homogeneous fiber models 
These plots show observables predicted by a heterogeneous chromatin fiber model vs. a 

homogeneous chromatin fiber model. The models were defined as described for Fig. S13. a) 

median distances between pairs of loci (as in Fig. 4a). b) median angles between chromatin loci 

and the line joining the nuclear and nucleolar centers (as in Fig. 4c).  c) Contact frequencies 

between pairs of chromosomes normalized by the product of their genomic lengths (as in 

Fig. S10).  d) Intrachromosomal contact frequencies as function of the genomic distance 

averaged over the entire genome (blue) or centered on centromeres (red). Solid curves are from 

the homogeneous model, circles from the heterogeneous model.  
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Supplementary Methods 
 

A. Langevin dynamics simulations   

A.1 Chromosomal polymer chains 
All simulations were run using the molecular dynamics software package LAMMPS[8] 

(http://lammps.sandia.gov). Each of the 16 yeast chromosomes was represented as a 

chain of spherical monomers (beads) connected by a harmonic potential (see below). 

The number of beads of a chromosome of genomic length ) (in bp) is the closest integer 

to )/(!+), where ! is the compaction (in bp/nm) and + is the bead diameter, i.e. the 

width of the fiber. Depending on these parameters, the total number of beads in the 

simulation ranged from 1,966 to 16,202. The same bead size + was used for all 

chromosomes, except for the rDNA locus on chromosome 12, which contains 100-200 

repeats of the rDNA gene, and was modeled using 150 beads of larger diameter, 

+-./0 > +. In all core simulations (Fig. 1a, Table 1, Additional File 2), we 

set +-./0= 194 nm, such that the net volume occupied by the rDNA beads 

approximates 2 = 14% of the nuclear volume. Because of the space between distinct 

rDNA beads, the total volume of the nucleolar compartment formed by the rDNA 

amounts to about 22 ~ 30% of the nucleus. We used a different nucleolar volume 2 ≠

14% only when generating test data to assess inference robustness to parameter 

mismatch (Fig. S4).  

A.2 Bonds between monomers, persistence length 
Consecutive monomers of a chromosome chain 8, 8 + 1  were linked by a finite 

extensible non-linear elastic (FENE) bond defined by the energy potential:  

;<=/= 8, 8 + 1 = −"
$
>?@

$ ln 1 −
CD,DE"
?@

$

+ 4F
G

CD,DE"

"$

−
G

CD,DE"

H

+ F 

where CD,DE" = IDE" − ID  is the distance between the centers of the two beads of 

position vectors ID and IDE"(Fig. S15a)  We set the parameters as follows: > = 30/L$, 

?@ = L,		F = 1, G = L, where L was defined as: 

- L = + for pairs of monomers outside of the rDNA region  
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- L = +-./0 for pairs of monomers within the rDNA region 

- L = + ++-./0 2  for pairs of monomers spanning the boundaries of the rDNA 

region (i.e. monomer 8 is inside the rDNA but 8 + 1 is outside, or vice-versa).  

(In practice, we set W to unity, but scaled all other length scales accordingly.)  

In order to adjust the rigidity of the chromosome fiber, we added a harmonic angle 

potential between all triplets of consecutive monomers 8 − 1, 8, 8 + 1  - (except for beads 

in the rDNA locus): 

;MNOPQOR(8) = >@ SD
$ 

where SD	is the angle between IDE" − ID and ID − IDT" and the constant  >@ controls the 

rigidity (Fig. S15b). In order to relate this constant to the chromatin persistence length P, 

we simulated a single long chromosome with 612 beads in absence of confinement and 

computed P as: U = −
VW,WXY

ZO [\]^W
= −

@.`a	b

ZO [\]^W
, where the brackets . 	denote statistical 

average and the second identity results from the FENE potential above. We considered 

four values of >@: [0, 0.5, 1, 2], for which the resulting persistence lengths P were 0.9W, 

1.5W, 2.3W and 4.2W, respectively. 

 

Figure S15: FENE and bending potentials 

a) FENE potential as function of the normalized distance CD,DE" G = IDE" − ID G  between 

consecutive monomers. b): Bending potential as function of the angle SD between consecutive 

bond vectors IDE" − ID and ID − IDT". 

A.3 Repulsive interaction between arbitrary monomers 

The interaction between non-consecutive monomers 8, d , d ∉ 8 − 1, 8, 8 + 1  is modeled 

with a truncated Lennard-Jones potential: 
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;fg 8, d =
4F

G

CD,h

"$

−
G

CD,h

H

− 4F
G

C@

"$

−
G

C@

H

8i	CD,h ≤ C@

0 8i	CD,h > C@

 

where CD,h = ID − Ih  is the distance between the centers of the two monomers, F = 1, C@ 

is the cut-off distance, which was set to C@ = 1.15G	 with G = +D + +h /2, where  +D and 

+h are the diameters of the beads 8  and d, respectively (Fig. S16a). The choice of C@ =

1.15G creates a very small attractive potential for CD,h	between 1.12G	and 1.15G. However 

we verified that very similar results are obtained for C@ = 1.12G, as shown in Fig. S4a,b 

(red bars). 

 

Figure S16: Repulsion between monomers. 
Truncated and shifted Lennard-Jones potential (left) and the corresponding force (right) as 

function of the normalized distance C8,d G between the centers of monomer i and j. The truncation 

point is visible at around C8,d G = 1.12 

A.4 Nuclear confinement and tethering at telomeres  

Confinement of the chromosomes by the spherical nuclear envelope was modeled using 

another truncated Lennard-Jones potential: 

;l 8 =
4F

G

?l − CD

"$

−
G

?l − CD

H

− 4F
G

?l − C"

"$

−
G

?l − C"

H

8i	CD ≥ ?l − C"

0 8i	CD,h < ?l − C"

 

where ?l − CD is the distance between the center of bead 8 and the sphere of radius 

?l = 1000	nm representing the nuclear envelope; F = 1;  G = +D is the bead diameter 
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(+D = + for all beads except those in the rDNA locus, where +D = +-./0), and the cutoff 

distance is C" = 1.12	+D (Fig. S17a). This potential was applied to all monomers of the 

simulation. 

In order to account for the tethering of telomeres at the nuclear envelope[9], we added 

an attractive potential between each of the 32 beads at the extremities of the polymer 

chains, and the sphere of radius ?l:  

;pNZ 8

=
4F

G

?l − CD

"$

−
G

?l − CD

H

− 4F
G

?l − C$

"$

−
G

?l − C$

H

8i	CD ≥ ?l − C$

0 8i	CD,h < ?l − C$

 

with F = 4, G = + and  C$ = 2	+  (Fig. S17b). 

 

Figure S17: Potentials for nuclear confinement and telomeric tethering. 

a)  nuclear confinement potential ;l 8 . b) telomeric tethering potential ;pNZ 8 . In both cases, 

the potential is plotted as function of the normalized distance qrTVW
s

 	of the monomer center to the 

nuclear envelope.   

A.5 Centromeric tethering 

To model the tethering of centromeres to the spindle pole body (SPB) via microtubules, 

we introduced a harmonic potential:  

;[NO(8) = >[NO CD,tuv − )
$ 
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where CD,tuv = ID − ?lwx  is the distance between the center of a centromeric bead and 

the SPB, and the spring constant was set to >[NO = 10 (Fig. S18). The parameter ) 

represents the length of the centromere-SPB link by microtubules and was varied from 

200 to 400 nm (Table 1, Additional File 2). The value of >[NO was determined 

empirically to ensure that the average distance between centromere and SPB (which is 

also affected by other factors) remains  close to ). 

 

Figure S18: Centromeric tethering potential 
The harmonic potential that tethers centromeres to the vicinity of the SPB, as function of the 

distance between the center of the centromeric bead and the SPB. 

 

A.6 Langevin dynamics  
The motion of a monomer is governed by the Langevin equation: 

yD
z$ID
z{$

= |D { − }D
zID
z{

+ ~D({) 

where yD is the monomer mass,	ID the monomer center position vector, |D {  is the 

deterministic force exerted on the monomer, }D is the viscous damping coefficient, and 

~D({) is a random force of average zero ~D({) = 0 and variance ~D({)$ = 6ÄÅÇ}D, 

where ÄÅ is the Boltzmann constant and Ç is the temperature in Kelvins. In practice, the 

three components of ~({) are drawn from a Gaussian distribution with mean zero and 

variance 2ÄÅÇ}D. We used reduced units, whereby the mass of each monomer was unity 

(yD = y@ = 1), except for monomers in the rDNA locus, where we used yD = y-./0 =

34 (see below). The force |D {  was derived from the sum of the applicable potentials 
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described above: 

|D { = −∇;(8) 

For a generic monomer 8 (i.e. not a centromere, nor a telomere), we have: 

; 8 = ;<=/= 8 − 1, 8 + ;<=/= 8, 8 + 1 + ;MNOPQOR 8 + ;fg 8, d
hÑD

+ ;/ 8  

For a monomer corresponding to a centromere or telomere, the relevant potential ;[NO(8) 

or ;pNZ 8 	was added to the right hand side of this equation.  

The damping coefficient of non-rDNA monomers was set to: }D = }@ = 1/2 (LJ unit). For 

the larger rDNA monomers, we scaled the damping coefficient with the monomer radius, 

i.e. we set }D = }@ y-./0 y@ + +-./0 . The mass of the rDNA beads, y-./0, was 

chosen based on the smallest ratio of bead diameters between rDNA and non-rDNA 

(+-./0/+) and found to be consistent with the observed differences in chromatin 

dynamics between rDNA loci and non-other loci as reported in ref. [10]. 

LAMMPS provides a numerical implementation of the Langevin equation, with discrete 

time intervals, which we set to 0.005.  

A.7 Initialization and equilibration 
The initial configuration of chromosomes was generated as a random walk, as shown in 

Fig. S1a,b. Then a confining sphere of radius ?@ > ?l was introduced that encloses all 

chromosomes. During the first phase of the simulation, we progressively decreased this 

radius until it reached ?l. The force that tethers centromeres to the SPB (−∇;[NO) was 

turned on only after this point. 

Before using the model to predict various observables, we checked if the simulations are 

equilibrated. To assess equilibration, we run at least two, and up to six independent 

simulations with the same parameter values ('replicate simulations', Additional File 2), 

but with different (random) initializations (Fig. S1a,b). We used more replicates for the 

models with larger numbers of monomers. In cases with more than two replicates, we 

randomly assign them to two groups A and B. We then compare the mean predicted 

observables from these two groups. If the simulation is equilibrated, the two independent 

predictions should be similar. The specific observables we considered are the 62 

average telomere-telomere distances[1] zD , 8 = 1. .62 (O1, Table 2, Additional File 3). 
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We call zDÖ and zDÅ the average distance for telomere-telomere pair 8 predicted by 

simulations from groups A and B, respectively. These predicted distances are plotted 

against each other in Fig. S2a for all 144 models, indicating very good agreement 

between replicates.  For the vast majority of models, the relative difference Ü =

100×
"

H$

àW
âTàW

ä

àW
âEàW

ä /$
H$
Dã"  was below 5% and in no case exceeded 7% (Fig. S2b). Thus, the 

independent replicate simulations yielded similar results for all simulations, therefore to a 

good approximation the simulations appear to be equilibrated. 

The number of time steps in each simulation ranged from 8x108 to 8x109, depending on 

the number of monomers, as systems with more monomers need more time to 

equilibrate. 

B. Predicting observables from simulations 

B.1 Sampling the simulation 
In order to predict observables listed in Table 2 and Additional File 3, we considered 

the simulation trajectories after 108 time steps - i.e. at least 3 times the decorrelation 

time- and sampled the chromosome configurations every 10,000 time steps (see 

Fig. S1c,d). We then pooled these samples with those from the replicate simulation(s). 

Temporal statistics over simulation time were used to predict cell population statistics at 

a single time. For example, the predicted distances between two loci A and B averaged 

over samples from a single simulation run were compared to the distances between 

fluorescently tagged loci in a single microscopy snapshot, averaged over all cells in the 

image[1]. 

B.2 Predicting spatial distances  
The prediction of 3D distance statistics from the simulation samples (as required for 

comparison with observables O1, O3, O5-O7 in Table 2 and Additional File 3) is 

straightforward. To compute projected 2D distances (as required for observable O4) 

from pairs of 3D coordinates, we randomly dropped one of the three coordinates from 

each sample. To predict distances between telomeres and the SPB (7 data points, 

observable O7), we assumed that the SPB is located at the position åtuv, çtuv, étuv =

−?l − 70	nm, 0, 0 = −1070	nm, 0, 0 . The 70 nm shift was meant to account for the 

fact that the protein Spc42p -which was used to tag the SPB in the experimental 
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measurements[11]- is located roughly 70 nm from the nucleoplasmic face of the SPB, 

where microtubules attach [12], [13]. Since Spc42 is actually at ~20 nm outside the 

nuclear envelope, this choice could lead to an overestimate of predicted distances 

between Spc42 and chromatin loci located in close to the SPB. However, in practice, the 

distances between SPc42 and chromatin loci (all telomeres) in the experimental data 

used here all exceeded ~0.9 µm (Table 2 and Additional File 3). Therefore, the 50 nm 

additional shift entails at most a ~5% error in predicted distances and does not 

significantly impact our results. We indeed verified that using åtuv = −?l − 20	nm has 

little consequence on the 7 predicted distances. 

B.3 Predicting contact frequencies  
Predicting contact frequencies from the simulation requires a definition of contact events. 

We scored a contact between two monomers	8 and d if the distance CD,h between their 

centers fell below a ‘capture radius’ Cê. The choice of Cê affects the predicted contact 

probabilities : on average, larger Cê  increased interchromosomal contact probabilities 

more than intrachromosomal contact probabilities when these were normalized to one 

(see Fig. S19a). This introduces an additional unknown parameter Cê in the comparison 

between model predictions and experimental measurements. However the capture 

radius is known to affect predominantly contacts between genomically proximal loci[14]. 

Therefore, we ignored all intrachromosomal contacts between loci separated by less 

than 20 Kb. This restriction effectively removed the dependency of chromosomal contact 

probabilities on Cê (see Fig. S19b). In all our predictions, we used Cê=1.15 W. 

 

Figure S 19: Effect of capture radius on predicted contact probabilities 

Both panels compare the contact probabilities between chromosomes predicted for two different 
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capture radii (Cê = 2.5	+ vs Cê = 1.15	+).  Each of the 120 red dots corresponds to contacts 

between a distinct pair of chromosomes (trans contacts), each of the 16 green dots corresponds 

to contacts within a single chromosome (cis contacts). In a), all contacts are considered, in b) cis 

contacts between loci are ignored if their genomic separation is 20 Kb or less. Note that in all 

cases, the contact frequencies were normalized to probabilities, such that the sum of all 120 

interchromosomal and 16 intrachromosomal probabilities equals one. Simulation parameters 

were P = 54 nm, C = 83 bp/nm, W = 60 nm, L = 400 nm (model #44 in Additional File 2).  

 

Using the above capture radius, each time point of the simulation was turned into a 

binary contact matrix of size n x n, where n is the number of monomers in the model. 

Summing all binary matrices from the sampled simulation run yielded a predicted contact 

frequency matrix (Fig. 4d) that can be compared to Hi-C data (see Fig. 4e,f). For our 

parameter inference method, rather than using the full resolution contact frequency 

matrix as input, we chose to use the following two sets of summary statistics:  

• Contacts frequencies between chromosomes in cis and trans: if %ë\ë is the total 

number of scored contacts across the genome (counting contacts between 

monomers Ä, í  and í, Ä  only once), %D the total number of contacts involving 

chromosome 8 (8 = 1. .16), )D the genomic length of chromosome 8, %êDì,D the number 

of contacts within chromosome 8, and %îVïñì,D = %D − %êDì,D the number of contacts of 

chromosome 8 with other chromosomes, then we defined:  óêDì,D = %êDì,D )D
$%îòî  and 

óîVïñì,D = %îVïñì,D 2)D )hhÑD %ë\ë  as the cis-and trans-chromosomal contact 

probabilities, normalized by the genomic lengths of the chromosomes. The 32 

numbers óêDì,D and óîVïñì,D (8 = 1. .16) provide the first set of statistics comprising our 

contact frequency observables in O8 and O9 (Table 2). 

• Intrachromosomal contact frequencies: As a second set of statistics, we considered 

average intrachromosomal contact frequencies as function of genomic distance. 

Specifically, we discretized genomic distances in 5 Kb intervals from 25 to 85 Kb, 

thereby defining 12 genomic bins ôö, ôöE" , Ä = 0. .11 (ô@ = 25	>õ;	ôöE" = ôö + 5	>õ). 

We defined %ùZZ,ö as the total number of contacts between any of the 16 centromeres 

and monomers separated by a genomic distance ô ∈ ôö, ôöE" . We also define %[NO,ö 

as the number of contacts between pairs of monomers separated by a genomic 

distance ô ∈ ôö, ôöE" . The corresponding probabilities were then obtained after 
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normalizing to the value at 25 Kb, i.e. we computed óùZZ,ö = %ùZZ,ö %ùZZ,@  and óêüñ,ö =

%[NO,ö %[NO,@ Ä = 0. .11. Finally, because these probabilities fall off rapidly with 

genomic distance[2], [7], we replaced them by their logarithm, íùZZ,ö = ln óùZZ,ö =

ln %ùZZ,ö %ùZZ,@  and í[NO,ö = ln ó[NO,ö = ln %[NO,ö %[NO,@ . These probabilities provided 

24 additional data points from contact frequencies for observables O8 and O9 

(Table 2). 

Together, óêDì,D, óîVïñì,D, íùZZ,ö and í[NO,ö thus provide 56 predicted contact probabilities (or 

their logarithm) that can be compared to the 56 experimental measurements. 

B.4 Interpolating predictions   
Sections B.2, B.3, and B.4 above described how various observables are predicted from 

our simulations for a given value of the parameters ΠD, where 8 ∈ 1,144  (Additional 

File 2). We denote yD = y(ΠD) the model corresponding to parameter value ΠD and °ö
¢W 

the prediction by this model of observable Ä, where Ä ∈ 1,266 	(see Table 2). For each 

observable Ä, our inference method requires computing its predicted values °ö
¢(£)	for 

arbitrary, continuous values of the parameters Π (within the range spanned by the 

extreme values, see Table 1). Therefore an interpolation scheme is needed to compute 

°ö
¢(£) from the discrete set of values °ö

¢W, 8 = 1. .144. We used radial basis function 

interpolation as implemented in the Python scipy library, with a linear kernel and the 

smoothing factor set to 50 for observables O1, 10 for O2-O7, and 0 for O8 and O9.  

C. Bayesian inference and priors 

C.1 Bayes rule and likelihood 
As described in the main text, our inference method computes the posterior probability 

density of the parameters Π from the experimental data § using the Bayes rule: 

ó Π|§ ∝ ó §|Π ó Π  

where ó §|Π  is the likelihood and ó Π  is the prior on the parameters. 

The data § consist in one or more of the data sets O1-O9 described above. Each data 

set, for example O1, consists of multiple data points, § = °"
ß, … , °l

ß . We note the 

corresponding model predictions as °"
¢, … , °l

¢ . The likelihood expresses the 

probabilistic relationship between measurements °Dß and model predictions °D¢. For 
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simplicity, we assume that each predicted value is related to its corresponding 

measurements via a Gaussian probability density, whose mean and variance GD$ depend 

on the data set as described below. Specifically, we assume that:  

ó §|Π = 	ó °"
ß|Π ×… .×ó °l

ß|Π  

=
1

2©G"
exp −

°"
ß − °"

¢ + ≠"
$

2G"
$ … .

1

2©Gl
×exp −

°l
ß − °l

¢ + ≠l
$

2Gl
$  

where ≠D accounts for the possible presence of a bias (see below). In general, the 

variance GD$ depends on the nature and value of the variable °Dß (e.g. the distance 

between loci or contact frequency between chromosomes, etc.) and on additional 

unknown parameters, called nuisance parameters, generically noted Ξ. The bias ≠D 

depends on the prediction °D¢ as well as the nuisance parameter Ξ. The specific forms of 

these relationships will be detailed for each type of observable below. We treat the 

nuisance parameter Ξ as additional parameters to be inferred along with the structural 

parameters Π, thus reformulating the Bayes rule as: 

ó Π, Ξ|§ ∝ ó §|Π, Ξ ó Π ó Ξ  

Therefore, three quantities must be computed to evaluate the posterior probability 

ó Π, Ξ|§  (up to a normalization factor): (i) the likelihood ó §|Π, Ξ , (ii) the prior on the 

structural parameters, ó Π  and (iii) the prior on the nuisance parameters ó Ξ .  

 

• The likelihood is evaluated as:  

ó §|Π, Ξ = 	ó °"
ß|Π, Ξ ×… .×ó °l

ß|Π, Ξ

=
1

2©G"(Ξ, °"
ß)
×exp −

°"
ß − °"

¢ + ≠"(Ξ, °"
¢) $

2G"
$(Ξ, °"

ß)
… .

1

2©Gl(Ξ, °"
ß)

×exp −
°l
ß − °l

¢ + ≠l(Ξ, °"
¢) $

2Gl
$(Ξ, °"

ß)
 

where we have emphasized the dependency of GD and ≠D on the measurements °Dß , the 

predictions °D¢ and the nuisance parameter(s) Ξ. The specific forms of the likelihood for 

each type of data will be detailed below. 

 

• The prior on the structural parameters is assumed to be flat, i.e.: ó Π =

ó U, !,+, ) = ó U ó ! ó + ó ) = constant (over the range of parameter 

values indicated in Table 1). 

• The prior on the nuisance parameter(s), ó Ξ , depends on the type of 
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observable, and will be described below. 

C.2 Likelihood and nuisance prior for distances between loci  

For observables O1, O3-O7, each data point °Dß is the mean, median or mode of 

distances between two loci. We assume that °Dß is related to its predicted counterpart °D¢ 

by a Gaussian probability density:  

ó °D
ß Π, ¥ =

1

2©G(¥)
exp −

°D
ß − °D

¢ $

2G$(¥)
 

where the variance is given by G (¥) = 	°D
ß ¥, and ¥ is a normally distributed random 

variable with mean and standard deviation 1,000 (the order of magnitude of the number 

of cells analyzed in some of the distance data sets, e.g. [1]).  

Combining all data points within a given set of data § = °"
ß, … , °l

ß  (e.g. all data points 

in O1), we obtain the following likelihood: 

óPQ]ëùO[N] § Π, ¥ =
¥

2©

l/$ 1

°"
ß×⋯×°l

ß exp −
°"
ß − °"

¢ $

2 °"
ß $ ¥ ×⋯×exp −

°l
ß − °l

¢ $

2 °l
ß $ ¥  

and the prior density on the nuisance parameter ¥ is: 

óPQ]ëùO[N] ¥ =
1

2©×1000$
exp −

¥ − 1000 $

2×1000$
 

C.3 Likelihood and nuisance prior for angles of nuclear locus territories 
Observable O2 contains median angles ∂ between loci, nuclear and nucleolar 

centers[1], [15]. Random errors in the experimental measurements of these three points 

lead to a substantial systematic overestimation of these angles. To account for this bias, 

we assumed the following relation between measured and predicted median angles °Dß 

and °D¢: 

óùORZN] °D
ß Π, G∑, G/∏[ =

1

2©G∑
exp −

°D
ß − °D

¢ + ≠ °D
¢, G/∏[

$

2G∑
$  

Here, G/∏[ represents the standard deviation of localization errors of the nucleolar 

center, and	≠ °D
¢, G/∏[  the bias in measured angles due to these errors. In practice, we 

compute this bias numerically as   ≠ °D
¢, G/∏[ = °D

¢π(G/∏[) − °D
¢, where °D¢π(G/∏[) are 
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median angles obtained from the simulation after addition of random localization errors 

of standard deviation G/∏[ to the nucleolar center. Based on a previous estimate of these 

errors[15], we assume the following prior for  the nuisance parameter G/∏[: 

óùORZN] G/∏[ =
1

2©× 10	nm
exp −

G/∏[ − 30	nm
$

2×(10	nm)$
 

and for the nuisance parameter G∑, we further assume: 

óùORZN] G∑ =
1

2©× 5	deg.
exp −

G/∏[ − 10	deg.
$

2×(5	deg. )$
 

Taking into account all angle measurements § = °"
ß, … , °l

ß  in O2, the likelihood is then 

expressed as: 

óùORZN] § Π, G∑, G/∏[ =
"

$ºsΩ

l
exp −

æY
øT æY

¿EÅ æY
¿,s¡¬√

ƒ

$sΩ
ƒ ×⋯×

exp −
ær
øT ær

¿EÅ ær
¿,s¡¬√

ƒ

$sΩ
ƒ   

C.4 Likelihood and noise prior for contact frequencies  
As discussed above (section B.3), we summarize the contact frequency data into two 

sets of probabilities comprising: (i) 2x16=32 probabilities of contacts within and between 

chromosomes (óêDì,D and óîVïñì,D, collectively denoted below as óD, 8 = 1. .32), (ii) 2x12=24 

log-probabilities of intrachromosomal contacts for 12 genomic bins, either averaged over 

the genome (íùZZ,ö) or restricted to the centromeres (í[NO,ö), here collectively noted íD, 8 =

1. .24 . We separately discuss the óD and íD below: 

The probabilities óD are obtained as ratios of the number of contacts between two 

chromosomes %D		and the total number of contacts %ë\ë, i.e.  óD = %D %ë\ë	. The number 

of contacts %D		obeys a multinomial distribution, which for large %ë\ë can be approximated 

by a Gaussian distribution of mean óD%ë\ë and variance óD 1 − óD %ë\ë. The probability 

óD	then follows a Gaussian distribution of mean óD and variance óD 1 − óD /%ë\ë. 

In theory, %ë\ë is directly provided by the experimental data and is thus not a random 

number. However, in practice, several additional factors besides counting noise can 

affect the measured contact frequencies[16]–[18]. This is evidenced by a comparison of 

both Hi-C data sets [3], [4], for which the measured probabilities differ by up to 10% 
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despite a large total number of contacts %ë\ë.  In order to accommodate additional 

sources of noise in a simple manner, we therefore instead assume that %ë\ë follows a 

Gaussian distribution of mean 100 and standard deviation 100. Under these 

assumptions the likelihood for all 32 contact probabilities § = °"
ß, … , °≈$

ß  taken together 

becomes: 

ó[∆-T[∆-	[\Oëù[ë] § Π, ¥ =
ñ

$º

≈$
"

æY
ø "TæY

ø ×⋯ æ«ƒ
ø "Tæ«ƒ

ø
exp −

æY
øTæY

¿ ƒ

$æY
ø "TæY

ø ¥ ×

⋯ exp −
æ«ƒ
ø Tæ«ƒ

¿ ƒ

$æ«ƒ
ø "Tæ«ƒ

ø ¥   

with the prior on the nuisance parameter ¥ given by: 

ó[∆-T[∆-	[\Oëù[ë] ¥ =
1

2©×100$
exp −

¥ − 100 $

2×100$
 

 

Concerning the 24 log-probabilities íD of intrachromosomal contacts as function of 

genomic distance, we assume that they obey the following Gaussian probability 

distribution: 

óQOë-ù[∆-	[\Oëù[ë] § Π, G =
1

2©G

≈$

exp −
°"
ß − °"

¢ $

2G$
×⋯×exp −

°$a
ß − °$a

¢ $

2G$
 

with the following prior on the nuisance parameter G: 

óQOë-ù[∆-	[\Oëù[ë] G =
1

2©0.3
exp −

G − 0.3 $

2× 0.3 $  

D. Generation of synthetic validation data 
The synthetic data used to validate the inference method were obtained from our 

simulations. We first used simulations among our ‘core simulations’, which were used in 

the inference method itself (Fig. 2). For the robustness analysis, we also used 

simulations with parameters outside the range used in the core simulations (Fig. S4). 

The simulation was sampled to predict observables as described above, then we added 

three levels of random noise ('low', 'medium' and 'high') as specified below for different 

observables:  
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• For the mean, median, or mode of distances between loci (Table 2, observables O1, 

O3-7), we added Gaussian noise of mean 0 and standard deviation G» =0.3 nm (low 

noise), 30 nm (medium noise) or 60 nm (high noise). The largest noise level was 

chosen based on previous estimates of random errors in locus positioning and 

distance measurements [1]. 

• For the median angles between loci, nuclear center and nucleolar centroid[1], [15] 

(Table 2, observable O2), we added Gaussian noise of mean 0 and standard 

deviation of 0 (low noise), 1 (medium noise), or 5 degrees (high noise).  

• For the contact probabilities between chromosomes, óD (see sections B.3 and C.4), 

we added Gaussian noise of mean 0 and standard deviation equal to the probability 

multiplied by 0.03% (low noise), 5% (medium noise) or 10% (high noise). This was 

done as an approximation of counting noise, which necessarily affects contact 

frequencies determined from a finite number of ligation events by Hi-C[18]. We 

discarded negative values and repeated the addition of noise from the predicted 

frequency until the result was positive. We then renormalized the noisy values to a 

sum of 1 to obtain probabilities. The highest noise level was chosen to be higher 

than the difference between two independent Hi-C data sets[3], [4], for which we 

found that chromosomal contact probabilities differed on average by 2 % and at 

maximum by 7 %. 

• For the log-probabilities of intrachromosomal contact as a function of genomic 

distance, íD (see sections B.3 and C.4), we added Gaussian noise of mean 0 and 

standard deviation equal to íD multiplied by 0.03% (low noise), 5% (medium noise) or 

10% (high noise). 

E. Genome-wide contact frequency data 

We used four different experimental data sets on genome-wide contact frequencies, 

obtained by four distinct groups: a Hi-C data set from Duan et al. [4], a Hi-C data set 

from Marie-Nelly et al. [3], a Hi-C data set from Belton et al.[5], and a Micro-C XL data 

set from Hsieh et al. [6]. 

• For the Hi-C data of Duan et al. [4] we used contact frequency data from 

http://noble.gs.washington.edu/proj/yeast-architecture/sup.html . Specifically, we 

combined contact frequency data from Hi-C experiments using HindIII and EcoRI, as 
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given by the following four files:  

 - "interactions_HindIII_MseI_beforeFDR_inter.txt" 

 - "interactions_HindIII_MseI_beforeFDR_intra_all.txt" 

 - "interactions_EcoRI_MspI_beforeFDR_inter.txt" 

 - "interactions_EcoRI_MspI_beforeFDR_intra_all.txt" 

• For the Hi-C data of Marie-Nelly et al. [3], we used contact frequency data from file 

‘Supplementary-S_cerevisiae_raw_matrix.dat’ available at 

http://bioinformatics.oxfordjournals.org/content/30/15/2105/suppl/DC1 

• For the Hi-C data of Belton et al.[5], we used contact frequency matrices from the file 

‘GSM1905065_yHiC-yJB1-R1_sk1-rmv_genome_H-10000-iced.matrix.gz-n2r.txt.gz’ 

available at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1905065 

• For the Micro-C XL data of Hsieh et al. [6], we considered the experimental condition 

corresponding to a 3% formaldehyde concentration and a DSG crosslinker and 

generated the contact frequency matrix after processing the paired-end sequencing 

file (Run SRR4000664) available at:  

https://www.ncbi.nlm.nih.gov/sra?term=SRX2000979  

 

F. Intrachromosomal distances on chromosome 4 

Our analyzed data contain a subset of previously unpublished measurements of 

intrachromosomal distances. These data consist in 12 distributions of distances between 

pairs of loci on the right arm of chromosome 4. The 12 pairs of loci were chosen in 

distinct regions of the chromosome arm (within the pericentromeric region or in the 

internal region of the chromosome arm), and the distance between the loci varied 

between 40 and 231 Kb. For each of the 12 pairs, we constructed a yeast strain with one 

locus fluorescent labelled in green by insertion of 128 Lac operators and expression of 

LacI-eGFP, and the other labelled in red by insertion of 256 Tet operators and 

expression of TetR-mRFP.  Cells were imaged live with a 60x oil immersion objective 

with a numerical aperture of 1.4 on a Nikon widefield microscope and using an Andor 

Neo sCMOS camera. We acquired 3D z-stacks of 35 frames with z-steps of 300 nm. 

Using a dual band filter set (eGFP, mRFP), we acquired two color channels 
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consecutively for each z position with an exposure time of 100 ms. 3D stacks were 

projected in 2D by maximum-intensity projection and distances between the red and 

green loci were measured automatically on manually selected cells using a custom-

made Fiji plugin. Several hundreds of cells were analyzed for each of the 12 pairs of loci. 

Example distributions are shown in Figure S8a-e. More details on these data will be 

provided in an upcoming manuscript (Herbert et al., in revision). 
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