
HAL Id: inserm-01517883
https://inserm.hal.science/inserm-01517883v1

Submitted on 3 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inferring the physical properties of yeast chromatin
through Bayesian analysis of whole nucleus simulations

Jean-Michel Arbona, Sébastien Herbert, Emmanuelle Fabre, Christophe
Zimmer

To cite this version:
Jean-Michel Arbona, Sébastien Herbert, Emmanuelle Fabre, Christophe Zimmer. Inferring the phys-
ical properties of yeast chromatin through Bayesian analysis of whole nucleus simulations. Genome
Biology, 2016, 18 (1), pp.81. �10.1186/s13059-017-1199-x�. �inserm-01517883�

https://inserm.hal.science/inserm-01517883v1
https://hal.archives-ouvertes.fr


Arbona et al. Genome Biology  (2017) 18:81 
DOI 10.1186/s13059-017-1199-x
RESEARCH Open Access
Inferring the physical properties of yeast
chromatin through Bayesian analysis of
whole nucleus simulations

Jean-Michel Arbona1,2, Sébastien Herbert1,2,3, Emmanuelle Fabre4 and Christophe Zimmer1,2*
Abstract

Background: The structure and mechanical properties of chromatin impact DNA functions and nuclear architecture
but remain poorly understood. In budding yeast, a simple polymer model with minimal sequence-specific
constraints and a small number of structural parameters can explain diverse experimental data on nuclear
architecture. However, how assumed chromatin properties affect model predictions was not previously
systematically investigated.

Results: We used hundreds of dynamic chromosome simulations and Bayesian inference to determine chromatin
properties consistent with an extensive dataset that includes hundreds of measurements from imaging in fixed and
live cells and two Hi-C studies. We place new constraints on average chromatin fiber properties, narrowing down
the chromatin compaction to ~53–65 bp/nm and persistence length to ~52–85 nm. These constraints argue
against a 20–30 nm fiber as the exclusive chromatin structure in the genome. Our best model provides a much
better match to experimental measurements of nuclear architecture and also recapitulates chromatin dynamics
measured on multiple loci over long timescales.

Conclusion: This work substantially improves our understanding of yeast chromatin mechanics and chromosome
architecture and provides a new analytic framework to infer chromosome properties in other organisms.

Keywords: Chromatin, Chromosomes, Nuclear architecture, Polymer models, Yeast
Background
The mechanical properties of chromatin and the spatial
arrangement of chromosomes play an important role in
genome functions, but in general remain poorly known
[1, 2]. The structure of the chromatin fiber has remained
elusive and controversial. The classical 30 nm structure,
in which nucleosomes are tightly stacked on top of each
other, is now called into question [3–9]. Chromosome
architecture has been intensely studied in recent years
using genome-wide chromosome conformation capture
(Hi-C), which provides precious quantitative information
about chromatin folding and has revealed biologically im-
portant features such as promoter-enhancer interactions
and chromosome partitioning into functional domains
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[10–15]. A key challenge is to build mechanistic models
that are able not only to explain these observations, but also
to predict the 3D organization of chromosomes and its al-
terations de novo. It is increasingly evident that polymer
physics provides an adequate framework for this purpose
[5, 16–26]. This is particularly clear for the extensively stud-
ied budding yeast nucleus [27–34]. We and others have
shown that many aspects of yeast nuclear architecture can
be reproduced in silico by modeling chromosomes as
generic, semi-flexible polymers, with only a small
number of sequence-specific constraints [35–37]. Such
models can also make predictions on functional fea-
tures, such as differences in DNA repair efficiency by
homologous recombination [37, 38].
Nevertheless, two important questions remain un-

answered. The first question relates to the mechanical
and structural properties of the chromatin fiber, includ-
ing its compaction and rigidity. The compaction C can
be defined as the number of base pairs per unit length
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along the fiber (bp/nm). The bending rigidity can be
measured by the persistence length P, the curvilinear dis-
tance along the fiber over which the direction (tangent
vector) of the fiber becomes uncorrelated, such that
more rigid fibers have higher P. Both parameters are key
to the mechanical behavior of the chromatin during
functional processes such as transcription and replica-
tion, but remain poorly characterized, and the very
structure of chromatin remains uncertain. Previous esti-
mates of C in yeast were in the range of 30–150 bp/nm
and estimates of P were in the range of less than 30 nm
to 200 nm or more [4, 12, 39–43].
Second, significant discrepancies still exist between

model predictions and experimental observations [35]. If
these discrepancies are due to errors in the model rather
than the data, one must determine if they reflect incor-
rect values of the basic mechanical parameters of the
model, including P and C, or rather reflect local effects
possibly associated to a functional process, such as chro-
matin decondensation during transcriptional activation
of a specific gene [27, 28, 44, 45]. Whereas the first type
of discrepancy might be remedied simply by adjusting
the global structural parameters, the second type of
discrepancy calls for a more complex model, in which
chromatin structure can change locally, e.g. depending
on gene expression. Thus, correcting for global param-
eter mismatches will make it easier to identify discrep-
ancies pointing to local modifications of chromatin
architecture that may relate to biological functions.
In this paper, we present a computational framework

that simultaneously addresses these two questions, using
hundreds of polymer simulations with different chroma-
tin parameters, combined with hundreds of experimental
data points from multiple independent studies. Our
analysis provides new constraints on the mechanical
properties of the chromatin fiber, as well as a consider-
ably more accurate predictive model of 3D nuclear
architecture and chromatin dynamics in yeast.

Methods
Framework to infer chromatin parameters from
whole-nucleus simulations
We begin with an overview of our analysis framework
(Fig. 1). Briefly, we systematically varied the parameters
Π of a whole nucleus chromosome simulation, which
include the chromatin compaction C and the rigidity P
(more parameters will be detailed below). We then
aimed to determine the parameter values for which the
model M(Π) agrees well with a range of experimental
data and to quantify the plausibility of these parameters.
The workflow comprises the following four components:
(1) a set of hundreds of independent simulations of all
chromosomes in the yeast nucleus, corresponding to
144 different parameter values Πi, (i = 1..144) (Fig. 1a);
(2) nine sets of experimental data on nuclear architec-
ture compiled from several distinct studies, each com-
prising many independent measurements Yk

E (k = 1…N,
where N is the number of measurements and “E” stands
for ‘empirical’), such as the mean distance between two
chromatin loci (Fig. 1c) or the mean contact frequency
between two chromosomes (Fig. 1e); (3) a module that,
for any given parameter value Π, computes the model
predictions Yk

M(Π) corresponding to these measurements,
by interpolating the predictions from discrete parameter
values Πi (Fig. 1b, d); and (4) an algorithm that samples
the parameter space and computes the posterior probabil-
ity density of the parameters for a given dataset (Fig. 1f)
or for multiple datasets taken together (Fig. 1g). We
describe each of these components in more detail below.

Whole-nucleus chromosome simulations and chromatin
parameters
We simulated the spatial configurations and dynamics
of chromosomes in the yeast nucleus using an ap-
proach similar to that described previously [35, 37]
(see Additional file 1: Supplementary Methods for details).
Briefly, our model simulated 16 randomly moving
yeast chromosomes, each of which was represented as
a chain of beads of diameter W, connected by non-
linear spring potentials. The number of beads followed
from the assumed compaction C and each chromo-
some’s genomic length (ranging from 230 Kb for
chromosome 1 to 1531 Kb for chromosome 4). Trip-
lets of consecutive beads were linked by a potential
that penalizes bending and whose strength followed
from the assumed persistence length P. The nucleus
was modeled as a confining sphere of radius RN =
1 μm. We included two additional constraints specific
to the yeast nucleus. First, budding yeast centromeres
are linked by a single microtubule to the spindle pole
body (SPB), a macromolecular complex embedded in
the nuclear envelope [27, 46]. We therefore introduced
a harmonic (spring-like) potential between the centro-
meric bead of each chromosome and a point on the
nuclear sphere representing the SPB, with an equilib-
rium length L. Second, telomeres are tethered to the
nuclear envelope by two redundant pathways [27, 47];
we therefore applied a purely radial short-range outward
force to the 32 telomeric beads to bring them in close
vicinity to the nuclear envelope. Third, for the ~1–2 Mb
chromosomal region encoding the ribosomal DNA
(rDNA), we used beads of a diameter WrDNA >W. This
was done to account for the steric constraints exerted by
the rDNA, which undergoes particularly intense transcrip-
tion and gives rise to the nucleolus [27, 48]. A short-range
repulsive potential prevented all beads and chromosome
chains from traversing each other. Starting from an arbi-
trary initial configuration of all chromosomes within the



Fig. 1 Main components of our computational framework for Bayesian inference of chromatin parameters from whole nucleus simulations.
a Simulations: we consider a number n =144 of different parameter values Πi = (Pi, Ci, Wi, Li), where Pi is the chromatin persistence length, Ci the
chromatin compaction, Wi the chromatin width, and Li the length of microtubules (see Table 1, Additional file 2). The discretization of the
parameter space is illustrated on the left (crosses), highlighting persistence length P and compaction C. Each Πi defines a separate model
Mi =M(Πi), for which we run two to six independent dynamic simulations of all 16 chromosomes in the nucleus with random initializations.
Three-dimensional snapshots are shown for a model with high P and high C (top) and a model with low P and low C (bottom). Each simulation
run calculates changes in chromosome configurations over millions of time steps, as illustrated for two time points t1 and tN (only chromosome 4

is shown). By sampling these simulation runs, we predict various observables, YMi
k , such as the average distance dMi

AB

� �
between two loci A and B,

or the average contact frequencies between chromosomes i and j. b For any value of the parameters Π (within the allowed range), an
interpolation scheme calculates the predicted value of the observables Yk

M(Π), e.g. 〈dAB
Π
〉 shown here as a heat map, from the discrete models Mi

(crosses). c Experimental data Yk
E, such as the average distance between loci A and B measured by imaging, 〈dAB

E 〉, are compared to the predictions
〈dAB

Π
〉 for all Π. d, e Similarly, contact frequencies between chromosomes i and j are predicted for all Π (here i=j) (d) and compared to measurements

from Hi-C experiments (e). f, g Parameter inference: given an experimental dataset, using the Bayes rule and Markov chain Monte Carlo sampling, we
calculate the posterior probability density of any subset of parameters, such as (P, C). Isocontour lines enclose the region of high probability. This
can be done for individual experimental data, e.g. 〈dAB

E
〉 (f), or for a combination of multiple datasets, e.g. mean distances between loci

and chromosome contact frequencies (g). The maximum a posteriori estimate of the parameters (MAP) defines a model that provides the best match
to the experimental data
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nucleus (Additional file 1: Figure S1a, b), we used Langevin
dynamics to simulate their movements, i.e. at each time
step, each bead was subjected to a randomly oriented
force, and its displacement was computed from the
equations of motion resulting from this force and those
derived from the abovementioned potentials. We let
the simulation run for ~109–1010 iterations to reach
equilibrium and sampled the trajectories to predict ob-
servables Yk

M(Π) such as the mean distance between two
loci or the average contact frequency between two chro-
mosomes (Fig. 1b, d; Additional file 1: Figure S1c, d;
Figure S2a, b).
Table 1 lists the main parameters used in our simulations,

including those that had the same value for all simulations
and those that we systematically varied, namely P, C, W,
and L. We hereafter refer to the latter four parameters as
“structural parameters” and note their combination Π = (P,
C, W, L). In our previous study, we used ΠWong = (PWong,
CWong, WWong, LWong) = (30 nm, 83 bp/nm, 20 nm,
380 nm) based on the assumption of a compact fiber
structure and early biophysical studies of chromatin
reconstituted in vitro [35, 43, 49]. However, as already
mentioned, the structural properties of the chromatin fiber
remain largely undetermined. We therefore varied these pa-
rameters over the following ranges, which encompass most
previous estimates [5, 39–43]: P: 27–252 nm, C: 25–
110 bp/nm, W: 30–60 nm, L: 200–400 nm. We discretized
the parameter space into 144 distinct values of Πi = (Pi, Ci,
Wi, Li) (Additional file 2). For each Πi, we ran two to six in-
dependent (replica) simulations with random initialization,
to assess the effect of purely statistical differences and
check for equilibration. In total, we run 473 independent
simulations, which we sampled every 104 iterations, result-
ing in hundreds of millions of different chromosome
configurations. We hereafter refer to these simulations as
“core simulations.”
Table 1 Simulation

Parameter Notation Unit

Chromatin persistence length P nm

Chromatin compaction C bp/nm

Chromatin fiber width W nm

Microtubule length L nm

rDNA diameter WrDNA nm

Radius of nucleus RN nm

This table lists the main parameters used in our model (first column), together with
indicates the range over which the parameters are varied (for parameters that are not
indicates values used in our previous model by Wong et al. [35]. The sixth column indic
obtained by our method using the whole set of experimental data. The seventh column
Additional file 2 lists all 144 models and their parameter values. More details on mode
aThis diameter corresponds to a net volume of the 150 rDNA beads that equals V =
between rDNA beads) of ~2 V ~30% of the nucleus. For the parameter mismatch a
volume fraction V = 5–30%, and an effective fraction of ~2 V = 10–60%
Compilation of experimental data on yeast chromatin
architecture
We gathered a large amount of quantitative measurements
on yeast nuclear architecture based on light microscopy in
live or fixed cells and on Hi-C. The microscopy data con-
tained mostly distances between pairs of loci on the same
chromosome (cis) or on different chromosomes (trans),
which were typically measured in hundreds or thousands
of individual cells [35, 39, 50, 51]. We also added newly
measured distances between 12 pairs of loci along the right
arm of chromosome 4, spanning pericentromeric, internal,
and subtelomeric regions (Additional file 1: Supplementary
Methods). The Hi-C data provided genome-wide maps of
contact frequencies between DNA segments averaged over
millions of cells [29, 30]. Most of the imaging and Hi-C
data were acquired and quantified by independent groups
[29, 30, 35, 39, 50, 51]. While these data contain many
thousands of individual measurements, we chose to
condense them into a more manageable set of summary
statistics. For example, instead of the entire distribution of
distances between two loci, we only considered the mean
(or median) distance over all cells. Similarly, we reduced
the Hi-C data to the following quantities: (1) average con-
tact frequencies of each chromosome with itself; (2) aver-
age contact frequencies of each chromosome with all other
chromosomes; (3) intrachromosomal contact frequencies
for different genomic distances, averaged over the entire
genome; (4) intrachromosomal contact frequencies relative
to the centromere, averaged over all chromosomes. Table 2
summarizes the experimental datasets and summary statis-
tics. Additional file 3 provides a detailed list of all image-
based measurements we have used. In the following, we sep-
arately pooled image-based measurements from fixed cells
(28 data points Yk

E) and live cells (126 data points) because
of the potentially important effect of fixation on nuclear
architecture. We also considered the two Hi-C studies
Range Wong 2012 MAP Best model

27–252 30 88 69

25–110 83 61 50

30–60 20 37 30

200–400 380 390 400

194a 200 NA 194

1000 1000 NA 1000

their notation (second column), and units (third column). The fourth column
varied but held fixed in all simulations, a single value is given). The fifth column
ates the maximum a posteriori (MAP) estimate of each inferred parameter as
lists the parameters of the “best model” used for Figs. 4 and 5. NA: not applicable.
l parameters are provided in Additional file 1: Supplementary Methods
14% of the nuclear volume, i.e. an effective volume (considering free space
nalysis, WrDNA was varied over a range of 138–251 nm, corresponding to a net



Table 2 Experimental data used for parameter inference

Dataset Observable Experimental technique Data points (n) Reference

O1 Median 3D distance between pairs of subtelomeric loci Imaging, live cells 62 [50]

O2 Median angle between locus, nuclear and nucleolar centroids Imaging, live cells 37 [31, 50]

O3 Median distance between chromosome 12 locus and nucleolus Imaging, live cells 15 [64]

O4 Median 2D distance between pairs of loci on chromosome 4 Imaging, live cells 12 this study

O5 Mean 3D distances between intrachromosomal pairs of loci on
several chromosomes

Imaging, fixed cells (FISH) 13 [51]

O6 Mode of 3D distances between intrachromosomal pairs of loci
on chromosome 14

Imaging, fixed cells (FISH) 8 [80]

O7 Mode of 3D distances between SPB and telomeres Imaging, fixed cell
(Immunofluorescence)

7 [80]

O8 Mean contact frequencies within chromosomes (16) and of each
chromosome with the other chromosomes (16) + Intrachromosomal
contact frequencies for genomic distances 25–85 Kb at 5 Kb intervals,
averaged over the genome (12) + relative to the centromere (12)

Hi-C 56 [29]

O9 Same Hi-C 56 [30]

Total 266

This table summarizes the nine experimental datasets used for parameter inference in this study. Additional data used for model validation only are: Hi-C data
from [62], Micro-C XL data from [63], and chromatin dynamics data from [64–66]. For more details, see Additional file 3 and Additional file 1: Supplementary Methods

Arbona et al. Genome Biology  (2017) 18:81 Page 5 of 15
[29, 30] separately because of potentially important
differences in protocols and data analysis (56 data
points each). In total, our compilation thus consisted
of 266 independent data points Yk

E, hereafter also
called “observables.” See Additional file 1: Supplemen-
tary Methods for more details.

Determining the probability density of chromatin
parameters by Bayesian inference
We aimed to explore the space of chromatin parameters
Π and to assign a probabilistic score to all possible
values of Π based on how accurately the corresponding
model M(Π) predicted a given experimental dataset D.
This approach is more informative than an optimization
method, which would only determine a single parameter
value Π*, irrespective of how well the model explains the
data for Π ≠Π*. Our method employed two main ingre-
dients: (1) a Bayesian formulation that computes the
(posterior) probability of an assumed parameter value Π
given the data D; and (2) a Monte Carlo Markov Chain
algorithm that samples the space of parameters Π.
The Bayes rule provides the posterior probability of Π

given D by: p(Π|D) ∝ p(D|Π)p(Π), where p indicates
probability density and p(A|B) the probability density of
A conditioned on B. Let us consider an experimental
dataset D = (Y1

E, …, YN
E ) consisting of N independent

measurements Yk
E. For example, Yk

E might represent the
mean distance between two loci A and B (Fig. 1c). For
each data point Yk

E, and for a given parameter value Π,
the corresponding model M(Π) provides a single pre-
dicted counterpart Yk

M(Π) (Fig. 1b, d). Both the experi-
mental measurements Yk

E and the model predictions
Yk
M(Π) are, however, affected by noise: distances measured
from images are necessarily corrupted by random
localization errors [50, 52, 53], while Hi-C data suffer from
counting noise due to limited sequencing depth, random
ligations, and other factors [54, 55]. Our model predic-
tions are also subject to random errors because they are
computed from finite samples of stochastic simulations
(Fig. 1a). For simplicity, we assume that the difference be-
tween each measurement Yk

E and the corresponding pre-
dictions Yk

M in the ideal case (i.e. assuming that the model
faithfully describes reality) obeys a Gaussian probability
density with variance σk

2. The variances σk
2 are usually

not known. Depending on the type of data Yk
E, they

can be expressed as functions of one or more add-
itional parameters Ξ (nuisance parameters), which
must be estimated along with the structural parame-
ters Π [56, 57]: p(Π, Ξ|D) ∝ p(D|Π, Ξ)p(Π)p(Ξ)
(where we assumed statistical independence of Ξ and
Π). For the structural parameters Π, we assumed flat
priors, i.e. constant p(Π) over the parameter range
mentioned above; the priors p(Ξ) for the nuisance param-
eters were different for each observable. See Additional
file 1: Supplementary Methods for details. Thus, for any
assumed value of the structural and nuisance parameters
Π and Ξ, and for a given dataset D, the above formu-
lation yielded a posterior probability p(Π, Ξ|D) (to
within a normalization constant).
In order to estimate p(Π, Ξ|D) over the entire par-

ameter space, we used a Monte Carlo Markov Chain
ensemble sampler that efficiently concentrated the ex-
ploration of the high-dimensional parameter space (Π,
Ξ) to the region of high posterior probability [58].
The posterior probability over the structural parame-
ters, p(Π|D) was then readily obtained by integrating
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p(Π, Ξ|D) over the nuisance parameters Ξ. Similarly,
the posterior probability for a single parameter, e.g.
chromatin compaction, p(C|D), or the joint probability for
a subset of parameters, e.g. p(P, C|D), were obtained by
integrating over the remaining parameters (Fig. 1f, g).
From the joint posterior probability density, we also
determined a single maximum a posteriori (MAP)
estimate of the parameters as: P̂ ; Ĉ

� � ¼ argmax p P;CjDð Þ
(Fig. 1f, g).
Results
Inference method recovers true chromatin parameters
from noisy simulated data
To assess our method’s ability to recover the correct
parameter values Π, and to better determine how differ-
ent observables depend on these parameters and can be
used to infer them, we first tested our method on syn-
thetic data. To create these synthetic data, we picked a
parameter value Π0 ¼ Πi0 among those of our core sim-
ulations (i0 ∈ [1, 144]) (Table 1 and Additional file 2);
from the corresponding simulation M0 ¼ MΠ0 , we then

computed predictions YM0
k k ¼ 1::266ð Þ corresponding to

all 266 observables mentioned above (Table 2). We then
added random noise to these predictions to simulate
experimental errors: YS

k ¼ YM0
k þ εk k ¼ 1::266ð Þ , where

εk is a normally distributed random number with mean 0
and variance (σk

S)2 (the superscript “S” denotes “simulation”).
We tested three different levels of noise, with the highest
level chosen such as to be consistent with or exceed the
noise in the experimental data (Additional file 1: Supple-
mentary Methods). We then used the noisy simulated data
DS = Yk

S(k = 1..266) instead of the real data as input to our
inference algorithm (Fig. 1c, e) and compared the inferred
posterior probabilities (Fig. 1f, g) to the true parameter
value Π0. We performed this comparison for five dif-
ferent values of Π0, chosen near the boundaries of
the explored parameter space (see Additional file 1:
Figure S3).
Figure 2a–j shows p(P, C|DS), the joint posterior prob-

ability for chromatin compaction C and rigidity P, com-
puted for different subsets of observables DS or all
observables together, for Π0 = (P0, C0, W0, L0) = (41 nm,
50 bp/nm, 45 nm, 300 nm), and assuming either low
(Fig. 2a–e) or high levels of noise (Fig. 2f–j). These plots
highlight how different observables constrain chromatin
compaction and rigidity. For example, it is apparent
from the elongated probability density in Fig. 2a that
intrachromosomal distances can be used to determine C
if P is known, or vice versa, but do not suffice to deter-
mine both parameters simultaneously. This is consistent
with the well-known behavior of ideal or real polymer
chains, where the mean square distance 〈R2

〉 between
two loci separated by genomic distance s depends on P
and C only via their combination P1 − υ/Cυ through the
relation 〈R2

〉 ∝ (P1 − υ/Cυ)2s2υ, (where υ = 0.5 and υ = 0.6
for an ideal and real chain, respectively [59]). However,
our analysis can also reveal less obvious constraints. For
example, Fig. 2b shows that unlike intrachromosomal
distances, distances between telomeres do in fact allow
to simultaneously determine P and C. The same holds
true for contact frequencies between chromosomes
(Fig. 2d). The probability densities obtained by combin-
ing all distances, or all distances and contact frequencies
are shown in Fig. 2c and e, respectively. For low levels of
noise, the computed posterior probability density based
on the combined data is sharply peaked at the true par-
ameter value Π0 (Fig. 2e). Picking the MAP parameters,
we obtain an accurate match to the true values C0 and
P0, with root mean squared (RMS) errors < 1 nm for P
and < 1 bp/nm for C, based on six independent simula-
tions, and for each of the five parameter values Π0

(Fig. 2e, k, l). At the highest level of noise we considered,
the posterior probability densities p(P, C|DS) broadened
for all sets of observables (Fig. 2f–j), as expected, imply-
ing that the parameters were less well constrained by the
data, but still contained the true value (P0, C0) within
the 95% percentile region. This was true for all five param-
eter values Π0 tested. We further quantified the MAP
estimation error as function of noise (Fig. 2k, l). While the
RMS error increased with noise, as expected, we found that
it always remained < 4 nm for P and < 2.5 bp/nm for C
(Fig. 2k, l). We obtained similar errors, when instead of
using a core simulation to generate the noisy input data, we
used an independent replica that had not been employed
for the interpolation in Fig. 1 (for (P0, C0) = (41 nm,
50 bp/nm)) (Additional file 1: Figure S4a, b, “replica”).
Thus, realistic levels of noise in the experimental data

should entail only moderate errors in determining
chromatin compaction and rigidity by our method.

Chromatin parameter inference is robust to moderate
model mismatch
To further assess the robustness of our parameter infer-
ence method, we tested the effect of a model mismatch,
i.e. when the data are not strictly consistent with any of
the assumed models (even discounting noise). To do
this, we generated synthetic data from a new simulation
with parameter values Π outside of the range explored
by our core simulations. Specifically, we increased or de-
creased the parameter WrDNA that specified the diameter
of the chromosome region representing the rDNA, in
such a way that the net nucleolar volume V changed
from V = 14% of the nuclear volume (its value in all core
simulations) to either V = 5%, 10%, 16%, 20%, or 30%
(Table 1). In absence of noise, the MAP estimation of P
and C, as computed from the combined data, fell within
7 nm and 11 bp/nm of the ground truth (RMS error),



Fig. 2 Validation of inference method on simulated data. This figure presents results of our parameter inference method when simulated data
are used as input instead of experimental data. a–j Inferred posterior probability densities for chromatin compaction C and persistence length
P for data generated by a model with parameters Π0 = (P0, C0, W0, L0) = (41 nm, 50 bp/nm, 45 nm, 300 nm). The blue and red contour lines enclose
regions corresponding to 68% and 95% of the probability mass, respectively. The red diamond indicates the true parameter values: (P0, C0) = (41 nm,

50 bp/nm). The green dot indicates the maximum a posteriori (MAP) estimate, i.e. the parameter values P̂ ; Ĉ
� �

for which the estimated posterior
probability density is maximum. Panels a–e were obtained from simulations with low levels of added noise, panels f–j from simulations with high noise
(Additional file 1: Supplementary Methods). Panel pairs (a, f), (b, g), (c, h), (d, i), and (e, j) each correspond to a different subset of simulated observables.
Panels a, f: probability densities obtained from distances between the pairs of loci corresponding to the experimental dataset O6 (see Table 2 and
Additional file 3). Panels b, g: the same, for distances between pairs of telomeres (observable O1). Panels c, h: the same, for all locus positioning data,
corresponding to observables O1–O7 combined. Panels d, i: the same, for contact frequencies between chromosomes (observables O8 or O9). Panels e,
j: the same, for all distance and contact data combined (all observables, O1–O9). k, l: Errors of MAP estimates relative to the simulated ground truth for
chromatin persistence length P (k) and compaction C (l). The root mean square (RMS) error is plotted for three different levels of noise and for five
distinct simulated models (corresponding to five different values of the parameters), as indicated in the legend
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respectively, except for the simulation with V = 30%
(Additional file 1: Figure S4a, b). In presence of added
noise, the RMS errors of MAP estimations increased,
but remained within 16 nm and 10 bp/nm even for
high noise, again except for V = 30% (Additional file 1:
Figure S4a, b). For V = 30%, errors became unaccept-
ably high (≈40 nm and ≈ 30 bp/nm for P and C,
respectively) (Additional file 1: Figure S4a, b). However,
this case corresponds to a nucleolus effectively occupying
almost 2V = 60% of the nuclear volume, which is
unreasonably large and leads to a considerably degraded
agreement of model predictions with the experimental
data (Additional file 1: Figure S4c).
These results suggest that our method to infer mech-

anical chromatin parameters is robust both to realistic
levels of noise and to reasonable parameter mismatch.

New constraints on mechanical chromatin properties
We then applied our inference method to the experimen-
tal data described above (Table 2 and Additional file 3).
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The posterior probability densities for persistence length P
and compaction C estimated by our method are shown in
Fig. 3, for different subsets of the data (Fig. 3a–f ), and all
datasets combined (Fig. 3g). Intrachromosomal distances
alone constrained the compaction C and persistence
length P to the vicinity of a curve given by: C ∝ P0.7

(Fig. 3a), but these data could not separately determine C
and P on their own, as expected from the above simula-
tion results (Fig. 2a). By contrast, also as expected (Fig. 2b),
distances between telomeres allowed to constrain both pa-
rameters to a much smaller range, namely C= 61 ± 6 bp/nm
and P = 56 ± 10 nm (mean ± standard deviation) (Fig. 3b).
When all imaging data were combined, a similar posterior
probability density was obtained, with C = 60 ± 5 bp/nm
and P = 63 ± 11 nm (Fig. 3d). Interestingly, imaging data
obtained in live and fixed cells resulted in similar prob-
ability densities, despite the potential artefacts caused by
fixation [50, 60] (Fig. 3c).
We next analyzed two independent Hi-C datasets [29, 30]

and found that they again led to very similar probability
densities (Fig. 3e). This is remarkable, given that these data
were obtained using different experimental protocols and
that both led to rather narrow densities. The probability
Fig. 3 Yeast chromatin parameters inferred from imaging and Hi-C data. Th
compaction C and persistence length P as inferred from a variety of experi
obtained for different subsets of experimental data (a–f) or the whole expe
enclose 68% and 95% of the probability mass. Individual panels correspond
between eight pairs of loci on chromosome 14 measured by imaging in fixed
Median 3D distances between 62 pairs of telomeres measured by imaging in
fixed cell experiments. Solid lines: combined data from live cell imaging (111
(28 data points, observables O5–O7). d All imaging data from fixed and live c
genome-wide contact frequencies measured by Hi-C data (see Table 2 and A
(56 data points; O8). Dotted lines: Hi-C data from [30] (56 data points; O9). f Co
Combination of all experimental data from imaging and Hi-C (266 data point
all the imaging data as in (d) (green), from the two Hi-C datasets as in (f) (blue
density obtained when combining both Hi-C datasets is
shown in Fig. 3f. Although the joint density obtained from
Hi-C does not strictly overlap with that determined by im-
aging, it is relatively close (Fig. 3d, f). For the compaction C,
the posterior density derived from the Hi-C data is 55 ±
2 bp/nm and overlaps substantially with that derived from
the imaging data (Fig. 3h). For the persistence length P, the
Hi-C data yielded an estimate of P = 83 ± 2 nm, an approxi-
mately 30% increase relative to the range P = 63 ± 11 nm de-
termined by imaging (Fig. 3i). This discrepancy can
potentially arise from multiple sources, including estimation
errors due to mismatch of other parameters (see above),
measurement errors exceeding our estimates, differences in
data processing, or biological differences related to the dif-
ferent experimental protocols used in imaging or Hi-C. For
example, a fixation-induced shrinkage of the nucleus with-
out alteration of chromatin properties should result in an
underestimation of compaction and an overestimation of
persistence length. This might explain why the Hi-C data
alone predicted lower C and higher P than the imaging data
alone (Fig. 3h, i). If we ignored these discrepancies and com-
bined all 266 experimental data points, we obtained the
posterior density shown in Fig. 3g, based on which the
is figure shows the posterior probability densities of chromatin
mental datasets. a–g joint posterior probability densities for (P, C)
rimental dataset (g), as detailed below. The two contour lines shown
to the following experimental datasets: (a) modes of 3D distances
cells (observable O6, Table 2). The dashed yellow curve has C ∝ P0.7. b
live cells [50] (O1). c Combined set of data from imaging, in live cell or
data points, O1–O4); dotted lines: combined data from imaging fixed cells
ells pooled together (O1–O7; 139 data points). e Summary statistics from
dditional file 1: Supplementary Methods). Solid lines: Hi-C data from [29]
mbination of the two Hi-C datasets [29, 30] (116 data points; O8, O9). g
s; O1–O9). h, i Probability densities for C (h) and P (i), obtained either from
) or from the combination of imaging and Hi-C data as in (g) (red)
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compaction and persistence lengths are most likely to fall
within the following ranges: C = 61 ± 4 bp/nm, P = 88 ±
4 nm (Fig. 3h, i). More conservative estimations were
obtained when taking into consideration the discrep-
ancy between the Hi-C and the imaging data, which
our method does not account for, and using parameter
ranges that span the above confidence intervals deter-
mined from both datasets separately. This led to an in-
crease of the range for the persistence length to P = 52–
85 nm, while that for the compaction remained similar at
C = 53–65 bp/nm. These numbers provide new con-
straints on the average properties of chromatin in yeast
and constitute a main result of this study (see
“Discussion”). We note that in contrast to the compaction
and rigidity parameters C and P, the diameter of the chro-
matin fiber, W, was not strongly constrained by the data
(Additional file 1: Figure S5).

Improved predictions of relative and nuclear locus positions
In addition to constraining chromatin parameters, our
analysis yielded a model of the yeast nucleus that matches
experimental data significantly better than our previous
model [35]. To assess this, we chose the core model with
the parameters closest to MAP estimates obtained from
the combined data, namely the model with C = 50 bp/nm
and P = 69 nm (Table 1, “best model”). With this model,
we obtained a much better agreement between predicted
and observed distances for 62 pairs of telomeres, as
reflected by a Pearson correlation of r = 0.75 and an RMS
error of 86 nm, compared to r = 0.64 and 173 nm, respect-
ively, with the previous model [35] (Additional file 1:
Figure S6). Furthermore, our improved model also faith-
fully recapitulated a new set of 55 distance measurements,
including 12 new measurements between pairs of loci
along the right arm of chromosome 4 (Fig. 4a). Interest-
ingly, for a given genomic separation between the loci, our
model predicted consistently larger distances for the peri-
centromeric region than for the internal region and this
was indeed observed experimentally (Fig. 4b). This differ-
ential stretching of the pericentromeric chromosome re-
gion can be attributed in part to repulsion between the 32
chromosome arms, which are all confined by their centro-
mere to the vicinity of the SPB. Indeed, in simulations of
chromosome 4 where all other chromosomes were
removed, the difference between pericentromeric and in-
ternal regions was reduced to less than half (Additional
file 1: Figure S7). This behavior is qualitatively similar to
the stretching of polymers in a polymer brush, where
chains are grafted at one of their extremities on a com-
mon planar surface [59, 61].
We further compared the entire distributions of pre-

dicted distances to experimental measurements, for five
intrachromosomal and four interchromosomal locus pairs
[50] (Additional file 4). As shown in Additional file 1:
Figure S8, the agreement between predictions and mea-
surements was good or very good, even though only the
median distances were used for parameter inference. This
further highlights the model’s ability to accurately predict
the entire statistical distributions of locus positions.
Our improved model also provides a better fit to the nu-

clear territories occupied by individual loci, as measured
by the median angle between the locus, the nuclear center,
and the nucleolar centroids [31, 50]. In our previous
model, the predicted angles correlated well with the mea-
sured angles (Pearson’s r = 0.87), but were systematically
underestimated by ~18° [35]. With our new model, the
shift reduced to –3° and the correlation slightly improved
to r = 0.92 with a RMS error of 8.6° (Fig. 4c).

Improved predictions of genome-wide contact maps
We also compared the predicted genome-wide contact
frequency maps to the two Hi-C datasets used for par-
ameter inference above [29, 30] (Fig. 4d, e, Additional
file 1: Figure S9a–c). When the contacts were binned at
the highest resolution of 5 Kb, our improved model
achieved a correlation of r = 0.65 or r = 0.85, with these
data [29, 30] (Additional file 1: Figure S9f ). This
exceeded the correlation between the two Hi-C datasets
themselves (r = 0.6) (Additional file 1: Figure S9f). The
correlation of predicted contacts with either Hi-C data-
set further improved when increasing the genomic
bin, and exceeded r = 0.9 for bins of 70 Kb (Additional
file 1: Figure S9f ). To better assess our model’s pre-
dictive power, we further tested it against two add-
itional genome-wide contact maps: a distinct Hi-C
study by Belton et al. [62] (Fig. 4f ), and a dataset
obtained using Micro-C XL, a recently described vari-
ation of the Hi-C technique that uses alternative
cross-linking agents instead of formaldehyde and
DNA digestion by micrococcal nuclease instead of
restriction enzymes [63] (Additional file 1: Figure S9e).
Correlations between model and data were even higher
for the Belton et al. Hi-C data and were only slightly lower
for the Micro-C XL data (Additional file 1: Figure S9f).
Since these two datasets were not used for parameter
inference, this comparison further demonstrates the
predictive power of our model.
The predicted mean contact frequencies among the

16 chromosomes also agreed very well with measure-
ments from the three Hi-C data (Additional file 1:
Figure S10a–d, f–h). We also analyzed the intra-
chromosomal contact frequencies as function of genomic
distance. We separately considered the genome-wide
average or an average restricted to contacts involving a
centromere (blue and green curves in Additional file 1:
Figure S11, respectively). The measured contact frequen-
cies decay faster in the centromeric region than elsewhere
in the genome and this was also predicted by the



Fig. 4 Comparing model predictions to static experimental data. This figure compares predictions from our simulation with the parameters
P = 69 nm, C = 50 bp/nm, W = 30 nm, L = 400 nm (“best model”, Table 1) to different experimental data. a predicted vs measured distance
statistics between pairs of loci (Table 2, observables O1, O3–O7). Each of the 117 dots corresponds to a different pair of loci. Blue circles: distances
between telomere 4R and other telomeres [50]; green circles: distances between telomere 10R and other telomeres [50]; red circles: distances
between telomere 6R and other telomeres [50]. Blue squares: distances between pairs of loci on chromosome 4. Cyan diamonds: distances
between SPB and telomeres [39]. Red diamonds: intrachromosomal distances for pairs of loci on chromosomes 6 and 14 [39]. Black squares:
intrachromosomal distances for pairs of loci on chromosomes 4, 5, and 7 [51]. Red squares: distances between loci on chromosome 12 and
the nucleolar center [64]. The Pearson correlation coefficient between predictions and measurements is r = 0.96 and the RMS error is 92 nm.
b Predicted and measured median 2D distances between 12 pairs of loci on chromosome 4 as function of their genomic separation (in Kb).
Diamonds show experimental measurements, solid curves are model predictions. Blue dots are for pairs of loci involving a pericentromeric locus
(5 Kb from the centromere). Green and red dots are for pairs of loci involving a locus in the internal region of the chromosome arm (at 854 Kb
and 1185 Kb from the centromere, respectively). The solid blue curve shows the predicted distance between the peri-centromeric locus and other
loci on the same chromosome arm. The red curve shows the predicted distance between loci in the internal region of the chromosome arm.
c Predicted vs. measured median angle (in degrees) between chromatin loci and the line joining the nuclear and nucleolar centers [31, 50]. Each dot
corresponds to a single chromatin locus. The Pearson correlation between predictions and measurements is r= 0.92 and the RMS error is 9 degrees.
d–f Genome-wide contact frequency matrices, binned at 30 Kb, as predicted by the model (d) or obtained from Hi-C experiments in [30] (e) and [62] (f).
Bright pixels indicate high frequencies, dark pixels indicate low frequencies. A logarithmic scaling was applied to reveal lower frequency contact patterns
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simulation (Additional file 1: Figure S11). This effect is
consistent with the peri-centromeric stretching observed
on intrachromosomal distances above (Fig. 4b). The
model’s agreement with the MicroC-XL data was also
significant, though considerably less good (Additional
file 1: Figure S10e, i), because this protocol appears
to overestimate interchromosomal and long-range intra-
chromosomal contacts relative to Hi-C, perhaps due
to an excess of random ligations (Additional file 1:
Figure S10j, S11).
Model recapitulates subdiffusive chromatin dynamics for
multiple loci and time scales
Finally, although the model parameters were entirely
inferred from static data—i.e. measurements from
fixed cells or single snapshots of live cells—we de-
cided to test our model’s ability to predict chromatin
dynamics. We therefore compared the mean-squared
displacements (MSD) of single loci, predicted by our
simulation, to time-lapse microscopy data acquired in
three recent studies [64–66] (Additional file 5) (Fig. 5).



Fig. 5 Comparing model predictions to chromatin dynamics data. This figure shows predicted (solid lines) and measured (dots) mean-square
displacements (MSD) of single chromatin loci as function of time interval. a MSD of six loci on chromosome 4 and the MAT locus on chromosome 3,
over time intervals of 1–150 s (main plot, data from [65]) or 1–10 s (inset, data from [66]). For each of the two datasets, a single time step parameter
was fitted once to align simulation time with experimental time. The genomic distance of each locus to the centromere is indicated in the legend.
b–e MSD of four loci on four different chromosomes, over time intervals in the range of 16 ms to 100 s, on a double logarithmic scale. The chromosome
number and the genomic distance of the locus to the centromere are indicated on top of each panel. Data (dots) are measurements from time-lapse
microscopy in [64]. Green curves are model predictions. Dashed black lines show a subdiffusive power law MSD ∝ t0.5 as expected from the Rouse
model [22, 37, 41]
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In order to map simulation time to physical time, we fit-
ted a single scaling parameter once for each of the three
datasets [64–66]. Figure 5a shows the predicted and
measured MSD between 1 s and 150 s or between 1 s
and 10 s for seven different loci on the right arm of
chromosome 4 (4R) and for the MAT locus on chromo-
some 3 [65, 66]. The distances of loci to the centromere
were in the range of 12–985 Kb, spanning over 90% of
the 1050 Kb long chromosome arm 4R except for the
immediate vicinity of the centromere and telomere. As
apparent from Fig. 5a, the model approximately repro-
duced the measured MSD and recapitulated the ob-
served ordering, i.e. the fact that loci at larger genomic
distance from the centromere moved over longer dis-
tances during the same time interval. Figure 5b–e shows
measured MSD for four loci on four different chromo-
somes (including the rDNA-carrying chromosome 12,
whose spatial configuration is quite different from the
other chromosomes [64]) over time intervals in the
range of 16 ms to 100 s. As previously pointed out, the
MSD obeyed a subdiffusive power law with an exponent
~0.5, roughly consistent with the Rouse polymer model
[18, 37, 41, 44, 64]. The model reproduced this behavior
relatively well over almost four orders of magnitude of
time. Discrepancies between predictions and measure-
ments were similar to or smaller than internal discrep-
ancies within the experimental datasets (Fig. 5b–e).
These results confirm the ability of our model to
correctly predict the dynamic behavior of chromatin,
even though its structural parameters were inferred ex-
clusively from static data.

Discussion
In this paper, we described a new approach to infer mech-
anical parameters of chromatin using a whole nucleus simu-
lation of chromosomes. Compared to methods that
estimate hundreds or thousands (or more) parameters to
reproduce Hi-C contact data or other genome-wide data
[17, 24, 25, 67, 68], our model assumes only a small number
of structural parameters, giving it high predictive power.
Our Bayesian formulation and sampling approach allow to
determine the region of parameter space consistent with the
data and to assign probabilities to parameter values. This
approach thereby provides information about the uncertain-
ties associated to the inferred parameters for each dataset
or, equivalently, about how strongly the data constrain the
parameters. We applied our method to a large set of experi-
mental data on yeast nuclear architecture. This analysis led
to two main outcomes: new constraints on yeast chromatin
and a better model of yeast nuclear organization.
First, we derived new constraints on yeast chromatin

compaction and rigidity, with implications for chromatin
structure. Although several previous studies have
attempted to determine these parameters from imaging
or Hi-C data [5, 39–42], they typically used either a sin-
gle experimental dataset (e.g. only distances between
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loci, which are insufficient to unambiguously determine
compaction and rigidity simultaneously, as shown in
Figs. 2a and 3a) and/or used simpler polymer models
that ignored important aspects of nuclear organization,
such as tethering of centromeres and telomeres, or
entropic repulsion between chromosomes. Accordingly,
estimates of compaction C and persistence length P from
previous studies spanned a wide range: 30–150 bp/nm
and <30–200 nm, respectively. By contrast, our analysis is
based on a much more varied and complete dataset com-
piled from multiple independent studies, which include
distances between loci in cis and trans, nuclear locus terri-
tories, and two Hi-C datasets. We analyzed these data
using a chromosome model that accounts for nuclear con-
finement, steric hindrance among chromosomes, tethering
at centromere and telomeres, and the nucleolar compart-
ment. This more elaborate model accounts for non-trivial
features of chromosome organization, such as stretching
of peri-centromeric chromatin (Fig. 4b). Most importantly,
our analysis supports a relatively narrow range of values
for chromatin compaction C (53–65 bp/nm) and
significantly constrains the bending persistence length
P (52–85 nm) in yeast chromatin.
Given a nucleosome repeat length of 167 bp in yeast

[69], this estimated compaction corresponds to approxi-
mately four nucleosomes per 11 nm turn of the DNA
double helix. This has implications for the possible
structures of the chromatin fiber and can be confronted
to two textbook structures: the 30 nm fiber, in which
the ≈ 11 nm diameter nucleosomes are tightly packed
together in a compact 3D structure of ~30 nm diam-
eter, and the beads-on-a-string structure, where consecu-
tive nucleosomes are arranged in a much looser
~10 nm diameter fiber. The classical 30 nm fiber has a
compaction of ~11 nucleosomes per 11 nm, much larger
than our estimate above [70]. Because of its short nucleo-
somal repeat length, the yeast chromatin fiber can be ex-
pected to adopt a somewhat looser ~20 nm (rather than
30 nm) diameter structure, with a compaction of approxi-
mately six nucleosomes per 11 nm [69, 70]. This is, how-
ever, still too compact to agree with our estimates. Thus,
our results cast doubt on the existence of a compact 20–
30 nm fiber throughout the yeast genome. They comple-
ment previous studies questioning the existence of 30 nm
fibers in other organisms [4, 71, 72]. On the other hand, a
stretched 10 nm fiber, with a compaction of approximately
one nucleosome per 11 nm, is insufficiently compact to fit
our estimates [73]. Thus, the possibility arises that the
chromatin fiber has a structure quite different from both
textbook structures.
As a caveat, since our model rests on the assumption

of a homogeneous chromatin fiber throughout the gen-
ome (except for the rDNA region), our estimates only
pertain to the average properties of the fiber. The
chromatin fiber is potentially heterogeneous and may
consist of alternating stretches with different compaction
and rigidity. Hi-C data on the human genome, for ex-
ample, indicate that chromosomes are partitioned into
“close” and “open” regions of chromatin on the order of
10 Mb, most readily identified as blocks of negative
and positive values in contact correlation matrices
(Additional file 1: Figure S12a) [15]. In contrast, cor-
relation matrices of budding yeast Hi-C data [62] at
genomic resolutions of 10 Kb remain quite homoge-
neous at high positive correlations, except in the peri-
centromeric region where correlations are strongly
negative (Additional file 1: Figure S12b). Although
this pericentromeric pattern might first be interpreted
as a signature of chromatin heterogeneity, it is in fact
recapitulated by our homogeneous fiber model
(Additional file 1: Figure S12c), confirming that homo-
geneity is a valid assumption at this genomic scale. Never-
theless, heterogeneities at smaller scales, such as rapid
alternations between compact and less compact chroma-
tin might in principle lead to detectable structures in the
contact matrix (Additional file 1: Figure S13a, c). Such
signatures are hard to identify in the Hi-C data [62]
(Additional file 1: Figure S13d), although they may be
present in the raw Micro-C XL data (Additional file 1:
Figure S13e). However, reliably distinguishing these signa-
tures from potential biases [54, 74, 75] is challenging, and
none of the observables used for parameter inference in
our study is sensitive to such small-scale heterogeneities
(Additional file 1: Figure S14). Although large-scale
heterogeneities are not supported by the Hi-C data, we
therefore cannot rule out small scale heterogeneities, e.g.
rapidly alternating stretches of compact 20–30 nm fibers
and loose 10 nm fibers. For such a heterogeneous struc-
ture, assuming the above compaction values, we can esti-
mate that roughly half of the linear length of the
chromatin fiber (ignoring the non-rDNA yeast genome)
would be structured as a compact 20–30 nm fiber and the
other half as a 10 nm beads-on-a-string fiber. Accounting
for the different compactions, these proportions corres-
pond to 86% and 14% of the genome, respectively. Our
modeling approach cannot currently map these potential
regions to the genome. Extending our method to heteroge-
neous fibers at small (<5 Kb) genomic scales would imply
estimating thousands of parameters at the risk of overfit-
ting and loss of predictive power. Nonetheless, future
heterogeneous models that avoid overfitting might leverage
state-of-the art genomic contact data and high resolution
imaging data to shed more light on potential structural
variations of the chromatin fiber [12, 24, 42, 60, 76].
In addition to new insights into average yeast chromatin

structure, our analysis yielded a set of models that provide a
better explanation of experimental data than our previous
model [35]. In particular, for parameters that maximize the
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posterior probability, the model agrees well with measured
distances between loci (means and distributions), intranuc-
lear gene territory positions, and several aspects of Hi-C
data, including Hi-C data that were not used for parameter
estimation. Moreover, unlike Monte-Carlo simulations or
structural ensembles obtained by optimization [24, 36], our
model can predict the dynamic behavior of chromatin, in
good agreement with observations. Based on these re-
sults, it is now possible to make accurate predictions
of absolute and relative locus positions, movements
and contact frequencies throughout the yeast genome.
This in turn has implications for a quantitative under-
standing of functional processes such as DNA repair
by homologous recombination and mating type
switching in yeast [37, 38, 77, 78].

Conclusion
In summary, our work provides new insights into yeast
chromatin fiber structure, and proposes a substantially im-
proved predictive model of yeast nuclear architecture and
dynamics, both of which will help to advance our under-
standing of structure-function relations in the nucleus.
The computational analysis method proposed here should
also be applicable to characterizing chromatin structure
and chromosome organization in many other organisms.
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