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Abstract

Transcranial Magnetic Stimulation (TMS) established itself as a powerful technique for probing and treating
the human brain. Major technological evolutions, such as neuronavigation and robotized systems, have
continuously increased the spatial reliability and reproducibility of TMS, by minimizing the influence of
human and experimental factors. However, there is still a lack of efficient set-up procedure, which prevents
the automation of TMS protocols. For example, the set-up procedure for defining the stimulation intensity
specific to each subject is classically done manually by experienced practitioners, by assessing the motor
cortical excitability level over the motor hotspot (HS) of a targeted muscle. This is time-consuming and
introduces experimental variability. Therefore, we developed a probabilistic Bayesian model (AutoHS) that
automatically identifies the HS position. Using virtual and real experiments, we compared the efficacy of
the manual and automated procedures. AutoHS appeared to be more reproducible, faster, and at least as
reliable as classical manual procedures. By combining AutoHS with robotized TMS and automated motor
threshold estimation methods, our approach constitutes the first fully automated set-up procedure for TMS
protocols. The use of this procedure decreases inter-experimenter variability while facilitating the handling
of TMS protocols used for research and clinical routine.
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Highlights

• Automatized set-up procedures would facilitate TMS experiments and increase reproducibility

• We developed a Bayesian model aiming at automatically finding the motor hotspot

• Implementation of this model in a robotized TMS system allows the automatic search for the motor
hotspot

• Definition of the motor hotspot is significantly improved in terms of speed and reproducibility
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1. Introduction1

Transcranial Magnetic Stimulation (TMS) is a non-invasive brain stimulation technique (Barker et al.,2

1985 ; Hallett, 2000). Applied alone or coupled with other neuroimaging techniques (Bestmann and Feredoes,3

2013), its application are now numerous in both fundamental (Rogasch and Fitzgerald, 2013 ; Bortoletto4

et al., 2015) and clinical research (Ragazzoni et al., 2013 ; Lefaucheur et al., 2014 ; Lefaucheur and Picht,5

2016).6

In order to standardize procedures and consequently reduce inter-subject variability in response to TMS,7

the field has recently embraced major technological evolutions. Neuronavigation systems dedicated to TMS8

(Herwig et al., 2001) significantly improved its spatial precision and reproducibility (Julkunen et al., 2009 ;9

Weiss et al., 2013) and TMS-robotized systems enabled the automation of coil positioning (Finke et al.,10

2008 ; Kantelhardt et al., 2009 ; Ginhoux et al., 2013). In addition to improving spatial precision and11

reproducibility compared to manual positioning (Ginhoux et al., 2013), robotized TMS paves the way for12

new acquisition protocols, such as automated cortical mapping procedures (Harquel et al., 2016a). It is thus13

likely that the future of TMS resides in the full automation of protocols, partly enabled by robotics.14

Every TMS protocol begins by a mandatory set-up procedure, which aims at defining the stimulation15

intensity to be employed on the cortical target (Rossi et al., 2009 ; Herbsman et al., 2009 ; Wassermann16

and Epstein, 2012). This intensity has to be defined specifically for each subject because it depends on17

individual neuroanatomy. The procedure consists in assessing the resting (or active) motor threshold (rMT,18

or aMT) by measuring the muscular activity evoked by the stimulation of the motor hotspot (HS) over the19

primary motor cortex (M1). Stimulation intensities are then most often expressed as a percentage of this20

threshold, in order to conform to safety guidances and to standardize stimulation power between subjects21

(Herbsman et al., 2009).22

Depending on its definitions (Meincke et al., 2016), the HS corresponds to the cortical target over M123

where TMS evokes the lowest MT (Rossini et al., 1994), or the largest motor evoked potentials (MEPs)24

on the targeted muscle (van de Ruit et al., 2015). While efficient automated MT estimation methods have25

already been developed and are used since then (Awiszus, 2003 ; Awiszus and Borckardt, 2011), it is not the26

case for HS hunting. In practice, the HS position is manually set by experienced practitioners, even though27

Meincke et al. (2016) recently developed the first automated HS hunting procedure using the mapping of28

MTs. This method appeared to be effective in automatically assessing the HS position, and producing29

insightful data for motor mapping protocols. However, its substantial duration (over one hour) prevents30

its practical use in clinical settings and in most TMS experiments. Although quicker (about ten minutes),31
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manual set-up procedures also have limitations: i. they represent an additional source of inter-experimenter32

variability (Gugino et al., 2001 ; Cincotta et al., 2010 ; Sollmann et al., 2013), ii. they require well-trained33

TMS practitioners, and iii. they rely on the observation of MEP mean amplitudes which are highly variable34

(Wassermann, 2002 ; Jung et al., 2010).35

In order to overcome these limitations, we propose here an automated HS hunting procedure (AutoHS)36

based on a Bayesian model. AutoHS aims at localizing the HS in a faster, more reliable and more reproducible37

way compared to a manual HS hunting performed by TMS experimenters. The present paper describes how38

we implemented HS hunting in a Bayesian model, and how we tested our method on virtual data and39

validated it against manual HS hunting performed by four TMS experts on 19 healthy volunteers. We40

finally discuss our method and its relevance for progressing towards fully automated set-up procedures for41

TMS protocols.42

2. Materials & Methods43

We describe first the Bayesian model of AutoHS in detail and second the experimental procedure used44

to test and compare AutoHS to manual methodology. Throughout this work, the targeted muscle for the45

HS hunting procedure is the first interosseous muscle (FDI).46

2.1. Bayesian model of AutoHS47

2.1.1. Overview48

AutoHS is a probabilistic procedure, as is classical in the domain of multisensor data fusion in robotics49

(Bessière and Lebeltel, 2008). Its objective is to estimate the HS position, using the history of stimulated50

sites and recorded MEP amplitudes.51

AutoHS is built in two steps, applying the Bayesian programming methodology (Bessière et al., 2013).52

The first step consists in defining the joint probability distribution over five variables, including the HS53

position. From this joint probability distribution, the second step consists in applying Bayesian inference,54

so as to compute the probability distribution over HS positions, conditioned on previous observations. This55

procedure is complemented by a “smart” prospective method, that considers the most promising next cortical56

position to be stimulated, in terms of information gain (Baek et al., 2016), in order to find the HS as fast57

as possible. AutoHS automatically stops and settles on the HS position once enough information has been58

gathered.59

The method was implemented using Matlab (The Mathworks Inc., USA) and was run concurrently with60

the neuronavigation and the EMG recording systems. The default values of the model variables used in this61
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work are reported throughout this section. These values have been estimated during pre-tests conducted on62

real motor mapping datasets not shown in this report. Their robustness are discussed later (see Discussion).63

2.1.2. Model description64

The structure of the Bayesian model is defined by specifying the joint probability distribution over the65

five following variables.66

HS represents the spatial position of the HS. The model makes the assumption that the 3D stimulation67

space can be projected to a 2D stimulation grid placed on the scalp surface over the motor cortex68

(Figure 1a). HS is thus a two dimensional variable expressed in a Cartesian coordinate system. Its x69

and y values are continuous over the stimulation grid area, so that (xHS , yHS ) ∈ ([1;Nx], [1;Ny]), with70

Nx and Ny being the number of discrete points in the stimulation grid. This work uses a square grid,71

so that Nx = Ny = 7. The spacing between points is set to 7 mm, leading to a 4.2 cm sided square.72

This spacing affords a good spatial resolution regarding cortical mapping, while still making sure to73

be twice above navigation precision (around 3 mm, including camera measurement uncertainty and74

MRI registration error).75

AutoHS makes the initial assumption that the FDI HS is located on the hand knob of the precentral76

gyrus (primary motor cortex, M1). The prior probability distribution of HS over the stimulation space77

is thus a 2D-Gaussian distribution centered on this location:78

P (HS ) ∝ exp

(
−

(
(x− xHK )2

2σ2
prior

+
(y − yHK )2

2σ2
prior

))
, (1)

where xHK and yHK are the coordinates of the hand knob, and σprior is the spatial spread of the79

distribution that quantifies the prior precision (Figure 1b). We use here σprior = 2 (in grid units),80

leading to a spatial spread of 1.4 cm.81

Si is the position of the coil at the ith stimulation, i going from 1 to the total number of stimulated82

positions T . Si is also a two dimensional variable expressed in a Cartesian coordinate system. How-83

ever, its x and y values are discrete and correspond to the nodes of the stimulation grid, so that84

(xi, yi) ∈ ({1, 2, . . . , Nx}, {1, 2, . . . , Ny}).85

µi is the mean amplitude observed from N MEPs on Si. µi is a discrete variable over the domain of possible86

MEP amplitudes DMEP (in µV). Here, we set DMEP = {10, 20, . . . , 4000} µV.87
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Here, µi is meant to follow a Gaussian distribution such that88

P (µi) ∝
1

σi
√

2π
exp

(
− (µ− µi)2

σ2
i

)
, (2)

where σi is the standard deviation measured over the N recorded MEP amplitudes (Figure 1c). This89

work uses 5 MEP recordings per stimulation point, so that N = 5. If no MEP was induced after 390

consecutive stimulations, µi was set to 0 and the model moved to the next iteration.91

µHS represents the expected mean amplitude measured on the HS. Here, in accordance with the HS defini-92

tion (see 1), AutoHS makes the assumption that µHS represents the maximal mean MEP amplitude93

that can be measured over the whole simulation space. µHS is a discrete variable over the domain of94

possible MEP max amplitudes Dmax (in µV). Here, we set Dmax = {250, 500, . . . , 4000} µV.95

Moreover, the model assumes that MEP amplitudes µi decrease as a function of the distance between96

the stimulated position Si and the HS position HS (Figure 1d):97

µi = µHS exp

(
−

(
(xi − xHS )2

2σ2
sp

+
(yi − yHS )2

2σ2
sp

))
. (3)

σsp is the standard deviation parameter of the 2D Gaussian pattern for MEP amplitude modulation98

(Eq. (3)). It represents the spatial spread of the muscle representation on the stimulation grid (Fig-99

ure 1d). σsp is a discrete variable over the domain of possible muscle representation sizes Dsp (in grid100

units). Here, we set Dsp = {0.2, 0.4, . . . , 2}.101

The joint probability distribution over the five above variables is then defined as follows:102

P (HS µHS σsp S1:T µ1:T ), (4)

where S1:T and µ1:T denotes the series of variables Si and µi from the first to the last stimulated position.103

The joint probability distribution is simplified, by the appropriate conditional hypotheses assumptions, in104

order to obtain a product of simpler probability distributions:105

P (HS µHS σsp S1:T µ1:T ) = P (HS ) P (µHS ) P (σsp)

T∏
i=1

P (S1:T )

T∏
i=1

P (µi | A), (5)

where A, for notational simplicity, is the conjunction of variables HS , µHS , σsp and Si. The priors on µHS106

and σsp are kept uninformative because of high inter-subject variability regarding these values. P (µHS )107
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Figure 1: Main components and hypotheses of the AutoHS model. a: stimulation grid used for hunting and for expressing
point coordinates. b: Probabilistic prior concerning HS position, centered on the hand knob of the primary motor cortex M1
(precentral gyrus). c: Probability distribution of MEP amplitudes, estimated on N EMG recordings. d: MEP mean amplitude
(µi) modulation as a function of the distances dX and dY between Si and HS along the X and Y-axis respectively.

and P (σsp) thus are uniform distributions over their respective domains. The prior on the stimulation108

position Si is a Dirac distribution centered on the position selected during the previous iteration (see 2.1.5).109

S1 is initialized on the center of the stimulation grid. Finally, P (µi | A) corresponds to the probability110

of measuring the MEP mean amplitude µi given the coordinates of the stimulated site Si and HS , the111

estimated maximal amplitude µHS and spatial spread σsp of the muscle representation. We can write our112

knowledge µi given A in P (µi | A), by merging Eq. (2) and (3), so that:113

P (µi | A) ∝ 1

σi
√

2π
exp

(
− (µ− µi)2

σ2
i

)
(6)

∝ 1

σi
√

2π
exp

−
(
µ− µHS exp

(
−
(

(xi−xHS )2

2σ2
sp

+
(yi−yHS )2

2σ2
sp

)))
σ2
i

 .
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2.1.3. Question and inference114

The objective of AutoHS is to estimate the position of the HS, given all the MEP mean amplitudes µ1:T115

observed after stimulating cortical positions S1:T . However, this is not possible without jointly inferring116

µHS and σsp , since these variables are also conditioning the probability P (µi | A). Therefore, the joint117

probability P (HS µHS σsp | µ1:T S1:T ) is computed, which is a four-dimensional probability distribution.118

Bayesian inference yields (see appendix for the complete derivation):119

P (HS µHS σsp | S1:T µ1:T ) ∝ P (HS )

T∏
i=1

P (µi | A). (7)

Once this distribution is evaluated, we compute its center of gravity, and the estimates for the HS x and y120

dimensions are its first two coordinates.121

Because P (HS µHS σsp | µ1:T S1:T ) is four dimensional, it is not easily displayed. For visualization, we122

thus compute and show the marginal distributions over each variable, that can be derived from Eq. (7):123

P (HS | µHS σsp S1:T µ1:T ) ∝ P (HS )
∑
µHS

∑
σsp

T∏
i=1

P (µi | A)

P (µHS | HS σsp S1:T µ1:T ) ∝ P (HS )
∑
HS

∑
σsp

T∏
i=1

P (µi | A)

P (σsp | µHS HS S1:T µ1:T ) ∝ P (HS )
∑
µHS

∑
HS

T∏
i=1

P (µi | A)

(8)

2.1.4. Stop criteria124

If the inference on HS can be done after each stimulation i, the total number of stimulations T is a priori125

unknown, and depends on the information gained during the whole process. The level of information at the126

ith iteration is assessed through the entropy hi of the joint distribution inferred in Eq. (7):127

hi = −
∑
HS

∑
µHS

∑
σsp

P (HS µHS σsp | S1:i µ1:i)ln(P (HS µHS σsp | S1:i µ1:i)). (9)

By definition, the entropy hi starts at its theoretical maximum hmax and decreases throughout the HS128

hunting process as the model gains information. An increase of entropy during the process would incidentally129

reveal the violation of at least one of the model hypothesis.130

A first stop criterion can then be set up by defining a threshold level to be reached by hi. This threshold131
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is expressed as a proportion of hmax. The process thus stops after the ith iteration whenever:132

hi < α hmax, (10)

with α ∈ (0; 1).133

However, the situation where hi never reaches this threshold also has to be considered. The occurrence134

of this bad-case scenario depends on the match between the recorded data and the model hypothesis, as well135

as on the variability of the data (σi). The second stop criterion is thus based on the first derivative dhi/di.136

The process stops whenever the model does not get any further information from the data, i.e.:137

dhi
di

< β, (11)

where β is a real number close to 0. To prevent false-alarms, i.e. temporary decreases of information gain,138

the criterion has to be satisfied on two consecutive iterations. The default values used in this work are139

α = 0.3 and β = 0.2.140

2.1.5. Smart planning of Si+1141

AutoHS integrates a smart selection of the next stimulation position Si+1. Although any procedure of142

position selection within the stimulation grid would be possible, a prospective choice of Si+1 allows the143

model to converge more rapidly to the HS.144

To do so, the model estimates future entropy resulting from the virtual stimulation of each position:145

∀Si+1 | (xi+1, yi+1) ∈ ({1, . . . , Nx}, {1, . . . , Ny}),

146

hi+1 = −
∑
HS

∑
µHS

∑
σsp

P (HS µHS σsp | S1:i+1 µ1:i+1)ln(P (HS µHS σsp | S1:i+1 µ1:i+1)), (12)

where µi+1 is directly estimated using Eq. (3) and the current knowledge at iteration i about HS , µHS147

and σsp , and σi+1 is equal to σi. AutoHS finally chooses the cortical position Si+1 inducing the maximal148

entropy decrease between iterations i and i+ 1:149

Si+1 | max
Si+1

(hi − hi+1). (13)
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In order to avoid intensive stimulation over the same cortical positions, each point of the grid was limited to150

two non-consecutive iterations during the whole hunting procedure. The model selected the point leading151

to the next best entropy decrease in case of conflict with the previous rule.152

2.2. Experimental procedure153

2.2.1. Subjects154

Nineteen right-handed healthy volunteers (14 males, aged 29.6 ± 10.1 years old) participated in the155

protocol. They all gave their informed and written consent prior to the experiment and received payment156

for their participation. None of them had either history of psychiatric or neurological disorders, or history157

of alcohol or substance abuse. They were free of any medicinal treatment likely to modulate their motor158

cortical excitability levels. MRI and TMS acquisitions were performed at IRMaGe MRI and Neurophysiology159

facilities (Grenoble, France). The ethical committee of Grenoble University Hospital (ID RCB: 2013-A01734-160

41) approved this study, which has been registered on ClinicalTrials.gov (number NCT02168413).161

2.2.2. Protocol design162

Subjects went through two stimulation sessions, separated by a delay of one week. Each session consisted163

of the two tested TMS set-up procedures: manual and automatized. The order of the procedures was164

counterbalanced between subjects and sessions. Each procedure consisted in one hotspot-hunting step165

followed by a resting motor threshold (rMT) assessment. Ten baseline MEPs were also recorded using an166

intensity of 120% rMT, in order to asses the influence of the procedures on its variability. In one of the two167

sessions, an extensive motor mapping was done either before, between or after the two procedures.168

2.2.3. Anatomical MRI processing169

Prior to the stimulation sessions, a cerebral anatomical T1-weighted MRI was acquired at 3T (Achieva170

3.0T TX, Philips, Netherlands) for each subject. The MRI data were entered in the TMS neuronavigation171

system (Localite GmbH, Germany) for post-processing. First, the anatomical hotspot (HSanat) for the172

right FDI muscle was defined according to its classical location in the hand knob of the left precentral gyrus173

(primary motor cortex) (Yousry et al., 1997). Second, a grid of stimulation positions was defined as a square174

of seven by seven points centered on HSanat and oriented with respect to the central sulcus (Figure 1a).175

This grid was automatically generated on the 3D segmented cortex using the dedicated function of the176

neuronavigation software. The distance between points on the cortical surface was set to 7 mm, resulting in177

a 17.64 cm2 stimulation area. The X-axis was in the lateral-median direction, its origin being at the most178
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lateral point, while the Y-axis ranged from the most anterior point to the most posterior one. All spatial179

coordinates reported throughout this manuscript were projected to and expressed in this 2D-Cartesian180

coordinate system.181

2.2.4. Manual set-up procedure182

The manual set-up procedure (mSUP) was performed by an experienced TMS practitioner. Four local183

experimenters (three neurophysiologists and one psychiatrist) participated in this study. They were ran-184

domly distributed and counterbalanced between subjects and sessions, so that they never processed the185

same subject twice. The experimenters were blind to the other set-up procedures.186

In order to reduce inter-experimenter variability, normalized guidelines were followed throughout the187

experiment. First, the HS hunting session had to start on HSanat using an a priori stimulation intensity188

of 55 % of the maximal stimulator output. A minimum of three MEPs had to be recorded on each tested189

stimulation point. The experimenters were free to increase or decrease the stimulation power during HS190

hunting. Finally, they were asked to continuously control the coil angles so that the coil was tangential to191

the scalp surface and the stimulation angle was perpendicular to the central sulcus. Once experimenters192

considered they found the HS position, they were asked to maintain the coil in its position during rMT and193

baseline measurements using the neuronavigation marker.194

2.2.5. Automatized set-up procedure195

The automatized set-up procedure (aSUP) was completed by the robotized TMS system together with196

AutoHS (Figure 2). The procedure began with an initial threshold rMT anat estimated on HSanat. HS197

hunting then started on HSanat, using an exploration intensity I of 110% of rMT anat. Since the measured198

rMT increases while moving away from the HS, this intensity always ensured a supraliminal stimulation199

level while preventing from stimulating too much, in the case where HSanat was too far from the actual200

HS position. On each stimulated position, five MEP amplitudes (see 2.1) were recorded and entered into201

AutoHS. Upon computation completion, AutoHS provided the next cortical position to be stimulated. This202

position was then manually selected in the neuronavigation system (see 2.2.7), in order to put the robotized203

coil on it. Once over the HS position defined by AutoHS, the robot maintained the coil on it during rMT204

and baseline measurements.205

2.2.6. Motor mapping206

An extensive motor mapping procedure was done on each subject during one of the two stimulation207

sessions. Motor mapping was randomly done before, between or after the two procedures. It consisted in208
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Figure 2: Automatized set-up procedure. The supraliminal stimulation intensity I used for HS hunting is first derived from
an initial rMT estimated on HSanat. HS hunting is then iteratively performed by AutoHS, in closed loop with the robotized
TMS and the EMG recording systems. Once one of the stop criteria has been satisfied, the model settles the TMS coil over
the estimated HS where the actual rMT is assessed.

the recording of ten MEPs on each point of the 7*7 stimulation grid using the robotized system. If the209

stimulation failed to evoke a consistent MEP (> 50 µV ) in three consecutive trials, the coil was moved on210

to the next site. The stimulation intensity was set to 120 % of the lowest rMT found (by either mSUP or211

aSUP) for the corresponding subject.212

2.2.7. TMS parameters213

TMS was delivered by a butterfly coil (2*75 mm) MagPro Cool B65-RO (MagVenture A/S, Denmark)214

plugged into a MagPro X100 stimulator system (MagVenture A/S, Denmark). Biphasic pulses were delivered215

using a randomized inter-stimuli interval (ISI) between three and five seconds during mSUP, aSUP and motor216

mapping. A ten-second ISI was used during the baseline assessment of mSUP and aSUP. The coil position217

and orientation with respect to the individual cortical anatomy were controlled using a neuronavigation218

system (Localite GmbH, Germany). Every target and entry points were defined to be normal to the scalp219

surface. A robotized system (Axilum Robotics, France) was used during aSUP and motor mapping. All220

rMTs were assessed automatically using the PEST procedure (Awiszus and Borckardt, 2011) on 30 trials.221
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2.2.8. EMG parameters222

The electromyographic activity of the first dorsal interosseous muscle of the dominant hand (right) was223

recorded using EMG electrodes placed in a belly-tendon montage. EMG data were amplified, band-pass fil-224

tered (50-6000 Hz), and finally sampled at 12 KHz using a Dantec Keypoint portable EMG recording system225

(Natus Medical Inc., USA). The EMG activity was recorded in a -200ms to +600ms window surrounding226

stimulation onset.227

2.3. Data processing228

2.3.1. Data of interest229

The following data were investigated for each procedure:230

• the 2D-coordinates of the HS (in x and y) for each session, reported using a doubled spatial resolution231

grid (3.5 mm between points instead of 7 mm),232

• the HS shift between the first and second session (in mm), defined as the Euclidean distance between233

the two HS:
√∑

x,y (HS 1 −HS 2)2,234

• the rMT (in % of maximal stimulator output),235

• the procedure duration,236

• the mean and standard deviation of the measured baseline.237

2.3.2. EMG data238

EMG data were processed using CortExTool, a Matlab toolbox developed in our lab and freely available to239

the community (Harquel et al., 2016b). Data were first band-pass filtered (50-600 Hz), and trials containing240

any muscular activity in the pre-stimulus period were rejected. MEPs were then semi-automatically detected,241

and their peak to peak amplitudes were extracted. Motor maps showing the MEP mean amplitudes on each242

stimulation point were generated using a spline 2D interpolation between points (seven iterations).243

2.3.3. Virtual data244

Virtual data were generated using the real MEP distributions recorded during motor mapping. For each245

stimulation position Si, N MEPs were drawn from a Gaussian distribution N(µSi
, σ2
Si

), where µSi
and σSi

246

corresponded respectively to the mean and standard deviation of the 10 MEPs recorded on Si during motor247

mapping. In order to assess the influence of the parametrical form of the real MEP distribution on the248
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HS hunting performance, amplitudes were multiplied by random values drawn from an uniform distribution249

U(1 − ε, 1 + ε) where ε represented a noise factor. Three noise factors were tested: 0 (no noise), 0.5, and250

0.9 (strong noise). High values modified the mean and standard deviation, while significantly increasing the251

skewness and kurtosis of the distribution. Each MEP amplitude yi was thus calculated as follows:252

y′i ∼ N(µSi
, σ2
Si

)

ni ∼ U(1− ε, 1 + ε)

yi = y′i × ni.

2.3.4. Statistics253

The results were analyzed through Bayesian statistics. Data were processed using JASP software (JASP254

Team (2016)), as well as modified scripts from Kruschke (2014) using R language (R Core Team, 2016)255

together with the rjags library. Three basic and standard tests were used: the Bayesian tests equivalent256

to paired t-tests, repeated measures ANOVAs, and linear regressions. Prior and likelihood functions were257

modeled using Gaussian or Cauchy distributions (the normality of processed data was systematically checked258

using Shapiro-Wilk tests). Prior distributions for paired comparison between mSUP and aSUP were kept259

wide (i.e. uninformative) and centered on 0, as no previous comparison between aSUP and mSUP was ever260

done before. Posterior distributions were computed using a Markov Chain Monte Carlo procedure (10,000261

iterations). The convergence and length of the chains were systematically inspected (following the method262

detailed in Kruschke (2014)). The posteriors were reported in the text using 95% highest density intervals263

(HDI 95). HDI 95 indicates the most probable values for a tested parameter. Evidence of observed effects was264

provided using Bayesian factors (see Mulder and Wagenmakers (2016) for an extensive review on this topic):265

BF 01, BF 10 (which is the multiplicative inverse of BF 01), and BF incl denoted the level of evidence of the266

null hypothesis, the alternate hypothesis (non-signed difference), and the inclusion of a specific parameter267

in a model (ANOVA) respectively. Bayes factors were interpreted following the cut-offs proposed by Jeffreys268

(1998) (values between 1 and 3 denoted absence of evidence to anecdotal evidence, values between 3 and 10269

denoted moderate evidence, etc.).270

3. Results271

All subjects went through the entire experiment without any major problem. The average MRI co-272

registration error, as calculated by the neuronavigation software, was 1.97 ± 0.30 mm. Two subjects were273

13



excluded from the experimental comparison, as experimenters did not follow the stimulation angle constraint.274

Results regarding the reliability and reproducibility of AutoHS on virtual data are first described, followed275

by the experimental comparison between automatized and manual procedures.276

3.1. Model validation277

AutoHS was tested on virtual data using either 3, 5, 7 or 10 recorded MEPs per stimulation position,278

and 3 noise factors (ε = 0, 0.2, 0.9). 100 virtual motor maps were generated for each subject and parameter279

set, leading to a total of 20,400 maps. Overall, it appeared that the model found the HS position in a fast280

and reliable way, while being more reproducible and less prone to noise than global maximum detection281

procedures.282

Model reliability283

The model converged to the HS position for all virtual maps and parameter sets after 13.5±3.3 iterations,284

i.e. stimulation positions (10.7±1.4 for N = 5 and ε = 0, using the model’s default value on noiseless data).285

Figure 3a and 3b show in detail the proceedings of the model on one representative virtual motor map. As286

expected, the entropy h rapidly decreased during HS hunting, while the marginal distributions peaked toward287

their final estimations of HS position, µHS and σsp values. The motor mapping data used in this example is288

plotted in Figure 3c. The estimated MEP maximum (µHS = 1, 750 µV ) was close to the recorded maximum289

(1, 689 µV ), and the spatial spread of the muscle representation was correctly estimated (σsp = 8.4 mm) by290

the model.291

Spatial reproducibility292

A comparison between the spatial reproducibility obtained with AutoHS and with the classical HS293

hunting procedure was performed by computing the spatial spread of HS positioning on 100 virtual motor294

maps for each subject (Figure 4). The classical HS hunting procedure is usually based on the observed MEP295

amplitude, and defines the HS as the cortical position where maximal muscle contraction is induced. To296

simulate such a procedure, virtual data were analyzed using a global maximum detection procedure, which297

settled the HS on the point showing the absolute maximum MEP mean amplitude over the complete motor298

maps (49 points). The spatial spread was defined as the mean standard deviation of HS positions in both299

axes. The center of gravity (COG) of the motor maps was also computed using x =
∑

(xµ)/
∑
µ, and300

y =
∑

(yµ)/
∑
µ as coordinates, with µ being the mean MEP amplitude for each point of the grid.301

Overall, the HS spatial spread was smaller using AutoHS (2.8 ± 0.8 mm) than the global maximum302

detection procedure (3.9± 1.6 mm), as stated by the main effect of the method (BF incl = + inf, HDI 95 =303
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Figure 3: Inferred probability distributions throughout AutoHS, for one virtual motor map of a representative subject (S16).
a: (top) Evolution of the marginal distribution Pm(HS) (as defined by Eq.(8)) over time. Iteration 0 represents the prior
distribution P (HS). (bottom) Entropy as a function of iterations i. AutoHS settled on the HS position after the 7th stimulation
position, inducing an entropy under the defined threshold αhmax (see text). b: From left to right, evolution over time of the
marginal distributions Pm(σsp) and Pm(µHS ) respectively. For this example, AutoHS estimated µHS = 1, 750 µV and
σsp = 8.4 mm. c: Final motor mapping. The black area corresponds to the spatial distribution (1 σ ellipse) of the HS positions
found during the 100 simulations (N = 5, ε = 0).

[1.0; 1.4] mm). As expected, the number of recorded MEPs by stimulation points as well as the noise factor304

modulated the reproducibility of both methods. HS hunting procedures performed better using more data305

(main effect of N , BF incl = + inf) and noise-free data (main effect of ε, BF incl = 4e+11). It appeared that306

the global maximum search procedure was more sensitive to the noise parameter than AutoHS (interaction307

effect, BF incl = 1e+7), whereas both methods seemed to be equally influenced by the number of MEPs308

(BF 01 = 5.56). Figure 4a shows two representative examples of this finding. On the top row, the size of the309

dispersion ellipses was modulated by the number of recorded MEPs for both procedures. On the bottom310

row, the HSs defined as global MEP maxima tended to spread away from their original position (i.e. without311

noise) as the noise factor increased, whereas those inferred by AutoHS remained the same. Figure 4c shows312
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Figure 4: Reproducibility of HS positioning on virtual motor maps, using AutoHS or maximal mean MEP amplitude (Max). a:
Results obtained on two representative subjects (S10 and S13). The black and white areas represent the spatial distribution (1 σ
ellipse) of the HS found by AutoHS and Max procedures for 100 simulations respectively. The distributions are superimposed
on motor maps showing the mean MEP amplitude on each point. The top and bottom rows show the influence of N (number
of recorded MEPs per stimulation site) and ε (noise factor) parameters on the generated motor maps respectively. b: Group
result showing the mean HS spatial spread (size of the spatial distribution, see text) observed using AutoHS (black bars) and
Max (white bars) procedures for 100 simulations. Data are grouped in X-axis by N and ε parameters. c: Spatial distribution
of the HS found by AutoHS (black) and Max (white) for all subjects, using 10 noise-free MEPs per point. The center of gravity
(COG) is represented by a white cross.

the dispersion of HS positions found by global maximum detection procedure and AutoHS, together with313

the COG, for all subjects using 10 noiseless MEPs per point (N = 10 and ε = 0).314

3.2. Experimental comparison between automatized and manual procedures315

HS shift316

Figure 5a shows all the HS positions inferred by both methods on all subjects and sessions, superimposed317

on corresponding motor maps. The mean HS shifts were 10.1 ± 6.7 mm for mSUP and 8.2 ± 5.4 mm for318

aSUP (Figure 5b). The paired comparison of these two distributions failed to draw any conclusion regarding319

their difference (BF 10 = 0.4, BF 01 = 2.4).320

The average distributions of MEP amplitude surrounding HS were computed for each procedure by321

averaging the normalized motor maps (i.e. by dividing each point of the maps by their maximum) centered322
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Figure 5: Experimental comparison of mSUP and aSUP regarding the reproducibility of HS positioning. a: HS positions
assessed by mSUP (blue) and aSUP (orange) for all subjects and sessions. The positions are superimposed on motor maps
showing the mean MEP amplitude on each point. The black stars indicate positions inferred within the same session as motor
mapping (MM session). The two supplementary maps (bottom right) represent the average distributions of MEP amplitude
surrounding HS inferred by aSUP (left) and mSUP (right). b: HS shift (Euclidean distance between HS found in the two
sessions) as a function of procedure. mSUP and aSUP distributions are colored in blue and orange respectively. Pair-wise
comparisons are highlighted using segments.

on the HS inferred within the same session. The average maps were consequently scaled between 0, no MEP323

activity found in any subject, and 1, maximum MEP activity found in all subjects (Figure 5a). aSUP tended324

to define HS in the center of a 2D Gaussian shape peaking at 0.71, whereas the HS map inferred by mSUP325

was more blurry and spread out towards the anterior direction, leading to a smaller peak value of 0.55.326

rMT327

Figure 6a presents the results regarding rMTs assessed from mSUP and aSUP, for all subjects and328

sessions. The Bayesian repeated measure ANOVA indicated that rMTs were moderately similar between329

procedures (BF 01 = 3.31). The mean observed rMT was 46.4 ± 7.5% for mSUP and 45.7 ± 7.1% for330

aSUP. rMTs were strongly correlated between the two sessions for both methods (Figure 6c). However,331

the most probable values of the correlation and its evidence were higher for aSUP (HDI 95(ρ) = [0.73; 0.97],332

BF 10 = 6e4) than for mSUP (HDI 95(ρ) = [0.43; 0.91], BF 10 = 185). A Bayesian ANOVA on rMTs assessed333

during mSUP using experimenters as fixed factor, and subjects and sessions as noise factors, provided334

moderate evidence that the experimenters did not influence rMT (BF 01 = 3.45).335
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Figure 6: Experimental comparison of mSUP and aSUP performances based on rMTs and procedure durations. mSUP and
aSUP distributions are colored in blue and orange respectively. Paired-wise comparisons are highlighted using segments. a:
distributions of inferred rMT (top) and procedure durations (bottom) using mSUP and aSUP, for all subjects and sessions. b:
distributions of mSUP values for each of the four experimenters compared to the aSUP values (top: rMT, bottom: procedure
duration). c: inter session correlation between rMTs for aSUP (top) and mSUP (bottom), where a sample of credible regression
lines are plotted.

Estimated duration336

Figure 6a shows the comparison between the duration of mSUP and aSUP, for all subjects and sessions.337

The theoretical duration of aSUP was simulated by considering AutoHS as fully implemented in the TMS338

acquisition loop (Figure 3), using an ISI of 5 seconds and an interval of 3 seconds between stimulation339

positions, compensating for the robotized arm movement. Both durations included the rMT assessment340

time and thus represented the time of the whole set-up procedures, from the first TMS pulse to the final341

rMT outcome. It appeared that aSUP lasted shorter than mSUP (HDI 95 = [1.6; 4.6] min, BF 10 = 273).342

On average, mSUP lasted 11.5± 3.7 min while aSUP lasted 8.3± 1.7 min. A Bayesian ANOVA was run on343

the mSUP duration using experimenters as fixed factor, and subjects and sessions as random factors. No344

conclusion could be drawn regarding the influence of the experimenters on the procedure time (BF incl =345

1.16,BF 01 = 0.87).346
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Baseline measurements347

The baseline means were 999 ± 848 µV for mSUP and 852 ± 609 µV for aSUP. There was a moderate348

evidence that they did not differ between methods (BF 01 = 3.6 for the method effect). The average baseline349

standard deviations were 526 ± 363 µV for mSUP and 462 ± 369µV for aSUP, and did not differ between350

methods (BF 01 = 4.6).351

4. Discussion352

This work provides the first proof of concept for a practical and fully automatized set-up procedure353

dedicated to TMS protocols. The core element of this procedure is a Bayesian model, AutoHS, which guides354

the HS hunting. Results of both simulations and experimental comparison against classical methodologies are355

promising. The automatized procedure appears to be at least as reliable as the manual one, while being more356

reproducible and significantly shorter than the necessary processing time of this step. Moreover, this work357

challenges the classical hotspot definition, and supports the need for future developments, optimizations,358

and extensions of the model to other experimental fields in TMS.359

4.1. Robustness of the model360

The hypothesis regarding the relationship between recorded MEP amplitudes and distance to the HS361

may be one of the most influential factor on model performance. It is based on the assumption that muscle362

representations are centered symmetrically around the HS. Even though this hypothesis appeared to be363

violated with varying degrees in most of the subjects, it did not prevent the model to systematically converge364

towards reliable and reproducible solutions. However, assuming that targeted muscles are restricted to uni-365

modal representations may be erroneous for any kind of HS hunting procedure. The functional organization366

of the primary motor cortex is more complex than a successive arrangement of muscle representations along367

the central sulcus (Schieber, 2001). While S1 somatotopy has a discrete and segregated layout of body368

part representations, M1 in contrast displays a more integrated and overlapping functional organization.369

Recent invasive stimulation studies on both animals and humans clearly identified representations of several370

synergies and multijoint movements over the motor cortex (Graziano and Aflalo, 2007 ; Desmurget et al.,371

2014 ; Giszter, 2015). The conception of M1 as a simple body plan is shifting to a more complex picture that372

includes action representations (Graziano, 2016). Our motor mapping data (see S1, S4, S5, S9 and S10), as373

well as many examples in the literature, suggest that the FDI representation is far from being uni-modal in374

some subjects (see the motor or MT maps shown in Gugino et al. (2001) ; Neggers et al. (2004) ; Sparing375
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et al. (2008) ; Meesen et al. (2011) ; van de Ruit et al. (2015) ; Meincke et al. (2016)). Additionally, significant376

muscular contractions can also be induced when stimulating pre-motor areas (Ahdab et al., 2016), which are377

sometimes included in the most anterior part of the stimulation space, depending on the gyri configuration378

(see S3, S6, S11 and S15). Despite the fact that the spatial spread of the electrical field induced by TMS379

might be limiting for revealing such complex multiple representations in most of subjects, choosing multi-380

modal distributions for muscle representations may optimize the method for the rest of them. Testing our381

procedure with more focal coils could also allow to better observe and take into account this phenomenon.382

The assumption of Gaussianity regarding MEP distributions has been extensively tested on virtual data.383

The model appeared to be very robust to its violation, i.e. when MEP distributions were not Gaussian.384

As shown in Figure 4a and b, the reproducibility of the method stayed unaffected by increasing noise385

factors, contrary to the global maximum search procedure. As a trade-off, the convergence speed was386

however reduced from 11 (perfect Gaussian distributions) to 17 iterations (noisy distributions) on average.387

The prior regarding the HS position had little influence on model performance. By choosing a large value388

for σprior (14 mm), the prior was kept uninformative so that its influence was minimized compared to389

the iterative exploration process. Recorded data supported this choice, as only one subject (S14) showed390

maximal contractions exactly on the anatomical prior for HS position. For these particular cases, choosing a391

lower value for σprior could then increase the convergence speed (about 3 iterations for σprior = 4 mm). On392

average, choosing a wider or a narrower prior distribution would slightly decrease or increase the convergence393

speed respectively, depending on the distance between the real and anatomical HS, i.e. depending on the394

goodness of the prior.395

Variable domains should always cover the most probable physiological values regarding MEP amplitudes,396

or spatial spreads of muscle representations. Choosing domains larger than the proposed defaults would397

enable the model to cover more particular cases. However, recording maximum MEP amplitudes higher than398

4 µV , or spatial muscle representations larger than 14 mm, are highly improbable using the proposed stimu-399

lation intensity. Choosing more precise domains, i.e. using smaller steps between values, would theoretically400

make the probabilistic inference more precise, while consequently increasing computing time significantly.401

Finally, the values defining the stop criteria are always representative of the trade-off between procedure402

precision and duration. Higher values for the entropy thresholds (α and β) would allow decreasing procedure403

time, as they would be reached faster, while lowering the reproducibility of the calculation (see the example404

depicted in Figure 3a).405
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4.2. Redefining the HS406

By developing AutoHS, we sightly revisited the interpretation of the most commonly used HS definition.407

Theoretically, the HS is the site where TMS induces maximal contractions over a targeted muscle. Most408

TMS experimenters generally assess HS by finding the position of the global maximum within the stimulation409

space, by computing the mean of several trials for each site. In contrast, AutoHS looks for the probabilistic410

position of this maximum. By fully taking inter-trial variability into account, probabilistic methods are more411

reliable than global maximum search procedures and are less prone to outliers. This is especially important412

given the high trial-to-trial variability of MEP amplitude and our results on virtual data strongly support413

the beneficial contribution of the probabilistic approach to HS determination. We found that the average414

HS shift was significantly reduced between virtual sessions with AutoHS, especially when data were noisy.415

Interestingly, our procedure led to a good solution between the global maximum of the motor maps and its416

center of gravity. Like the COG, it tended to position the HS in the center of large muscle representations417

(see for example Figure 4c, subjects S3, S4, S9, S11), while it rather converged to global maximum position418

for narrower motor maps (see S16 and S17).419

The optimization in HS positioning had a direct effect regarding the reproducibility of outcomes during420

the experimental comparison with manual methods. The automatized set-up procedure showed improved421

inter-session reproducibility regarding the measured rMT. Experimental results also confirmed that it was422

more reliable than the manual procedure in finding a position inducing maximal contractions. The aver-423

age motor maps presented in the bottom right part of Figure 5a are especially meaningful. Overall, the424

automatized method sets the HS over the maximum contraction point at a higher rate than the manual425

one. However, our work failed to bring strong evidence for an improvement of the measured outcomes reli-426

ability, i.e. smaller rMT and baseline variability, due to a high inter-subject variability between procedure427

performance. Three non-exclusive hypotheses can be posited to explain the lack of result regarding relia-428

bility. First, as suggested by the small BF values, further data have to be acquired in the future in order429

to accumulate more evidence in favor of one or another hypothesis. Second, the current neuronavigation430

system precision, about 3 mm when adding the registration error and the camera precision (1 mm), and431

TMS spatial resolution might not have the ability to detect fine differences in HS shift induced by AutoHS432

compared to classical approaches. Using smaller coils and more precise camera might be two solutions for433

solving these issues respectively. Finally, our model is still not fully optimized regarding its hypotheses434

and stop criteria. Developing better and more adaptable priors about MEP spatial distribution, as well435

as lowering the thresholds for stop criteria could improve the reliability of HS positioning and measured436
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outcomes, while slightly increasing the number of needed stimulation targets, as a trade-off (see 4.1).437

4.3. Future developments438

This initial study paves the way for future optimizations and developments of AutoHS, by reconsidering439

some of the hypotheses of the model, including angle estimation in its process, and extending its principle440

to other experimental fields.441

First, the subject anatomy and gyral geometry should be better taken into account in the stimulation442

space. The model should first include the scalp-to-cortex distance and adapt the stimulation intensity to it443

(Stokes et al., 2005), as it may vary within the stimulation space. Second, even if the square grid used in this444

work covered most of the precentral gyrus, the exploration space would be optimized using a non-cartesian445

stimulation grid exactly following the gyrus shape towards the X-axis. A recent study showed that TMS446

could better discriminate between muscles when following the gyral geometry compared to following its447

main direction (Raffin et al., 2015). Second, the parametrical form of the distribution of MEP amplitudes448

knowing the positions of HS and the stimulation point (P (µi | A)) is simplistic and non-optimal for several449

subjects, especially for those presenting a bi-modal distribution (see above). Less constrained parametrical450

forms could be tested. For instance, introducing covariance terms in the 2D Gaussian would allow capturing451

decrease of MEP amplitudes not geometrically aligned with the grid; using Gaussian mixtures would allow452

capturing multi-modality; etc.453

Second, the model should estimate the optimized stimulation angle within its process. As shown in454

previous studies, the stimulation angle may have a strong influence over the inferred rMT on some subjects455

(Richter et al., 2013). Using a single stimulation angle (perpendicular to the precentral gyrus) might be456

limiting here, even if it is theoretically supposed to be the most adapted. Two factors might at least457

influence the optimal stimulation angle within an actual experiment: errors in the MRI registration and458

complex modulations of the induced electrical field geometry by neuro-anatomical properties (Thielscher459

et al., 2011 ; Janssen et al., 2015). In this study, two subjects were excluded of the experimental comparison460

as experimenters did not follow the angle constraint (disparities of 30 and 50◦), inducing a rMT difference of461

±10 % between the two procedures (opposite in direction). It appeared then that the pre-defined stimulation462

angle was not optimal in at least one case. In future developments of the method, the stimulation angle463

should become a variable of the model and be estimated during HS hunting.464

Finally, the core principle of the model can be applied beyond the specific HS hunting problem, i.e.465

in any experimental procedure aiming at finding a cortical target optimized using TMS readouts. More466
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specifically, it can be adapted to find the probabilistic origin of any a priori known distribution of TMS-467

induced readouts over a stimulation space. In principle, the TMS readouts can be either behavioral or468

neurophysiological. For example, the model could be modified for developing a phosphene tresholding469

procedure over the occipital cortex (Dugué et al., 2011 ; Herring et al., 2015). It could also be turned into470

a functional area hunting procedure, by estimating the stimulated cortical target best able to modulate the471

performance of a specific cognitive task. Finally, the model could also be applied in concurrence with other472

brain imaging technique, like electroencephalography (EEG). Under this condition, it would allow to find473

stimulation areas optimizing the emergence of any EEG components, such as evoked potentials or induced474

oscillations, in order to help the characterization of specific outcomes or biomarkers in various clinical or475

fundamental issues (see Farzan et al. (2016) for a recent review). Such procedure would also be especially476

useful in future closed-loop approaches combining TMS and electrophysiology (Bergmann et al., 2016), that477

aim at adapting the stimulation parameters based on readouts in real time.478
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7. Appendix486

The derivation leading to Eq. (7) used during Bayesian inference is :

P (HS µHS σsp | S1:T µ1:T )

=
P (HS µHS σsp S1:T µ1:T )

P (S1:T µ1:T )
[Bayes theorem]

=
1

Z1
P (HS µHS σsp S1:T µ1:T ) [P (S1:T µ1:T ) = Z1 (constant)]

=
1

Z1
P (HS ) P (µHS ) P (σsp)

T∏
i=1

P (Si)

T∏
i=1

P (µi | HS µHS σsp Si) [by definition of the joint]

=
1

Z1Z2
P (HS )

T∏
i=1

P (Si)

T∏
i=1

P (µi | HS µHS σsp Si) [P (µHS )P (σsp) = Z2 (uniforms)]

=
1

Z1Z2
P (HS )

T∏
i=1

P (µi | HS µHS σsp Si) [P (Si) = 1 (Dirac)]

∝ P (HS )

T∏
i=1

P (µi | HS µHS σsp Si) �

∝ P (HS )

T∏
i=1

P (µi | A) (14)

recalling that A is the conjunction of variables HS , µHS , σsp and Si.487
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