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Abstract

Background: Gene expression data can be compromised by cells originating from other tissues than the target
tissue of profiling. Failures in detecting such tissue heterogeneity have profound implications on data interpretation
and reproducibility. A computational tool explicitly addressing the issue is warranted.

Results: We introduce BioQC, a R/Bioconductor software package to detect tissue heterogeneity in gene expression
data. To this end BioQC implements a computationally efficientWilcoxon-Mann-Whitney test and provides more than
150 signatures of tissue-enriched genes derived from large-scale transcriptomics studies.
Simulation experiments show that BioQC is both fast and sensitive in detecting tissue heterogeneity. In a case study
with whole-organ profiling data, BioQC predicted contamination events that are confirmed by quantitative RT-PCR.
Applied to transcriptomics data of the Genotype-Tissue Expression (GTEx) project, BioQC reveals clustering of samples
and suggests that some samples likely suffer from tissue heterogeneity.

Conclusions: Our experience with gene expression data indicates a prevalence of tissue heterogeneity that often
goes unnoticed. BioQC addresses the issue by integrating prior knowledge with a scalable algorithm. We propose
BioQC as a first-line tool to ensure quality and reproducibility of gene expression data.
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Background
Gene expression data has become indispensable in
modern drug discovery. It reveals biological processes
underlying pathogenesis and sheds light on mode-of-
action and potential safety liabilities of drug candidates.
However, its value in catalyzing new medicines is shad-
owed by limited reproducibility [1]. From the (re-)analysis
of a large number of internal and external studies we
observe that tissue heterogeneity, defined as unintended
profiling of cells of other origins than the target tissue of
profiling, is a common source of variance that exacerbates
the irreproducibility.
Many factors can cause tissue heterogeneity in gene

expression profiling experiments. Some are attributed to
underlying physiological or pathological processes, for
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example infiltration of immune cells into solid organs or
tumors. Some are associated with the challenge of dissect-
ing adjacent tissues such as coronary artery and cardiac
muscle. In other cases heterogeneity is due to human
errors such as contamination or mislabeling. Independent
of root causes, tissue heterogeneity in gene expression
data should be identified as early as possible to pre-
vent it impacting downstream analysis. No software tool,
however, fulfills this purpose to our best knowledge.
Various computational approaches may address the

issue and they can be broadly classified into unsu-
pervised and supervised algorithms. Unsupervised algo-
rithms, such as principal component analysis (PCA) and
its variants, may detect tissue heterogeneity without prior
knowledge [2]. Nonetheless unsupervised algorithms are
only sub-optimal in this setting because (a) they can-
not reveal likely sources of heterogeneity, (b) they cannot
work with single sample, and (c) their application is
limited to cases where few samples are heterogeneous,
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since otherwise it becomes difficult to distinguish hetero-
geneous from homogeneous samples.
Supervised algorithms overcome these restrictions by

incorporating prior information such as sets of preferen-
tially expressed genes [3] or reference profiles of purified
cells [4]. While several supervised methods are available
to quantitatively estimate the composition of cell types
(reviewed in [5]), their application in first-line quality con-
trol is limited because most tools rely on a substantial
amount of prior information which is often not avail-
able, for instance profiles of each single cell type that
may present. In addition, these tools often use complex
models such as expectation-maximization or quadratic
programming which demand significant computational
resources and therefore are hardly scalable to large-scale
datasets, for instance the Genotype-Tissue Expression
(GTEx) project [6, 7] which contains more than 8500
profiles in its current (6th) version.
To allow efficient and sensitive detection of tissue

heterogeneity, we introduce the software package BioQC.
It takes gene expression data as input, performs statisti-
cal tests with tissue-enriched gene signatures that come
with the package, and reports enrichment scores of more
than 150 tissue signatures for each sample. High scores
of tissues other than the target tissue of profiling indi-
cate heterogeneity and consequently possible infiltration
or contamination events.

Implementation
BioQC follows the supervised approach: it provides sets
of genes that are preferentially expressed in one or few
tissues (tissue-enriched genes hereafter), and an efficient
algorithm to test enrichment of tissue-enriched genes in
expression data.

Tissue-enriched genes
We derived 155 sets of tissue-enriched genes (tissue sig-
natures hereafter) from four datasets: the Neurocrine
Biosciences (NB) CNS dataset [8], the GNF Gene Expres-
sion Atlas [9], both based on the Affymetrix microar-
ray technology, and sequencing-based RNASeq Atlas
[10] and Illumina BodyMap 2.0 (GEO Accession Num-
ber GSE30611 [11]). For preprocessing we normalised
microarray signals with the MAS5 method [12] and con-
verted sequencing read counts into the unit of copies per
million reads [13]. Expression signals are averaged in case
more than one samples are available for each tissue. Both
sequencing-based datasets are merged by removing batch
effects using a linear model in order to achieve a wide
coverage of tissues comparable with microarray-based
datasets.
Gini index [14] was used to identify tissue-enriched

genes. Given anm×n expressionmatrix withm genes and
samples of n tissues, Gini index for gene i is defined as

Gi = 1
n

(
n + 1 − 2

(∑n
j=1(n + 1 − i)x′

ij∑n
j=1 x′

ij

))
, (1)

where x′
ij is the jth value in the non-descending ordered

vector of xi· (i = 1, . . . ,m, j = 1, . . . , n). Gini index
ranges between 0 and 1, depending on whether the gene is
ubiquitously and uniformly present or absent in all tissues
(G = 0) or is exclusively expressed in one tissue (G = 1)
or in between (0 < G < 1).
We consider gene i enriched in tissue j if Gi � 0.7 and

xij ranks among the top three in xi·. Signatures of iden-
tical tissues derived from both microarray datasets are
merged, while microarray-based and sequencing-based
signatures are kept separate so that users can benefit from
the high sensitivity offered by the sequencing technology.
Users can define their own signatures using other datasets
with functionalities implemented in BioQC or with other
statistical methods.

Validation of tissue-enriched genes
We took a three-tier approach to validate the tissue sig-
natures. First, in order to assess their robustness against
batch effects, we applied surrogate variable analysis [15]
to both GNF and NB datasets to detect uncaptured
batch effects (not applicable to sequencing-based datasets
where only one sample is available for each tissue). Based
on batch-effect-corrected data, we generated a new set
of signatures using the procedure described above. We
applied the BioQC algorithm using both signature sets to
the GTEx gene expression database [7] and found that
the results are highly similar (Additional file 1: Figure S1),
which suggests that the BioQC tissue signatures are robust
with regard to potential batch effects in the source data.
Next, we used biological knowledge to test the validity

of the tissue signatures using Roche Controlled Vocab-
ulary (RCV hereafter), a recently developed, simplified
ontology system of annotating human genes with biolog-
ical processes defined by the Gene Ontology consortium
[16]. We applied the BioQC algorithm, using both tissue-
enriched gene sets and RCV gene sets, to the GTEx
dataset, and found that for many tissues that are included
in GTEx, expected tissue signatures are co-enriched with
relevant biological processes. For instance, most tissue
signatures associated with the nervous system are co-
clustered with genes associated with neuronal biological
processes (Additional file 1: Figure S2). The observa-
tion suggests that the tissue signatures are biologically
relevant.
Last but not least, to test the validity of using Gini index

to identify tissue signatures, we applied an independent
algorithm, limma [17], to the GTEx dataset (limma was
prefered to negative-binomial-model based methods such
as DESeq2 and edgeR due to computational efficiency and
the compatibility of results).We identified signatures of 29
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tissues that are present in GTEx using very stringent fil-
ters. For those tissues that are present in the BioQC tissue
signatures, we observed moderate to strong overlapping
and comparable peformance with BioQC on a large collec-
tion of gene expression data (manuscript in preparation).
It suggests that BioQC tissue signatures are consistent
with signatures generated from an independent dataset by
an alternative statistical method.

The algorithm of BioQC
BioQC implements a computationally efficient Wilcoxon-
Mann-Whitney test (Wilcoxon test hereafter) [18]. The
algorithm is accelerated by (a) an approximate test pro-
cedure, (b) implementation of the core algorithm in C
programming language, and (c) elimination of futile sort-
ing operations. Improvement that we made over stan-
dard implementations is detailed in Additional file 2:
Document 1.
Given a gene expression profile and a tissue signature,

BioQC tests by default whether expression of genes in
the signature ranks higher than expression of genes not
in the signature. Users can test negative enrichment or
two-sided (either positive or negative) enrichment, too.
BioQC reports an enrichment score of each tissue sig-

nature for each sample in the form of |log10p| (abso-
lute log 10-transformed p-value of Wilcoxon test). Given
expression profiles of n samples as input and s tissue sig-
natures, BioQC outputs an s × nmatrix with scores rang-
ing between 0 (no enrichment) and theoretically positive
infinity (strong enrichment). By examining BioQC results
and comparing them with target tissues of profiling users
can inspect heterogeneity and generate hypotheses about
the causes.
Although this work focuses on its application to detect

tissue heterogeneity, we note that BioQC can be used as a
generic gene-set enrichment analysis tool (manuscript in
preparation).

Results
We apply BioQC to simulated and real-world datasets to
demonstrate its use. All computations are performed on a
single thread of a 4-core laptop with 8G memory running
R-3.2.0 in 64-bit LinuxMINT (version 16) if not otherwise
specified.

Simulation studies
We performed three simulation experiments to study the
efficiency and sensitivity of BioQC.

Simulations withmodel-generated data
The first simulation study probes the speed of BioQC.
We propose a simple model to generate random gene
expression profiles of approximately 22,000 genes with
each gene following the normal distribution N (0, 1). We

let the model generate five datasets with varying sample
sizes (n = 1, 5, 10, 50, 100), applied BioQC and timed the
runs. For benchmarking we applied the native implemen-
tation of Wilcoxon test in R (function wilcox.test) to the
same dataset.
Both implementations delivered identical numeric

results and their memory use is comparable. However,
while it takes the native implementation 20 minutes to
analyze 100 profiles, it takes BioQC just about one second
(Fig. 1a left panel). Quantitatively BioQC accelerates the
Wilcoxon test by a factor between 500 and 1000 for gene
expression data (Fig. 1a right panel). The results suggest
that BioQC is computationally efficient and applicable for
large-scale datasets even on laptop computers.
Next, we investigated the sensitivity of BioQC towards

expression changes of tissue-enriched genes. To this end,
we adapted the simple model used above: while keeping
random-number generators of other genes unchanged,
expression levels of genes in a randomly chosen signature
(ovary with 43 genes) were drawn from a series of distri-
butionsN (μ, 1) with μ varying from 0 to 3. We generated
ten samples for each distribution and applied BioQC.
We observed that the average enrichment score of ovary

increases steadily as μ increases (Fig. 1b left panel), and
as soon as μ reaches or exceeds 1, the ovary signature
ranks first among all signatures in all simulated samples
(Fig. 1b right panel). Repeated experiments with other
tissue signatures produced consistent and comparable
results (data not shown). In other words it is sufficient for
a tissue signature to rank first if average expression of its
genes increases by one standard deviation. It suggests that
BioQC is sensitive to even mild changes in expression of
tissue-enriched genes.
We note nevertheless that the sensitivity test above suf-

fers from the limitations that (a) the distributions of gene
expression are not physiological and (b) elevated expres-
sion of tissue-enriched genes is not quantitatively associ-
ated with severity of contamination. To corroborate our
findings we next performed simulations with real-world
data.

Simulation with real-world data
We simulated tissue heterogeneity in silico with a tran-
scriptomics study in Canis lupus familiaris (domestic
dog) by Briggs et al. [19]. In this study the authors con-
structed a compendium of canine normal tissue gene
expression, which includes 39 samples of 10 tissues from
four dogs (four samples of liver, kidney, heart, lung, cere-
brum, lymph node, spleen, jejunum, and skeletal muscle;
three samples of pancreas).
Prior to simulation experiments we first applied

BioQC to the dataset to test whether its results match
information provided by the authors. In [19], the authors
performed hierarchical clustering of both canine and
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Fig. 1 Results of simulation studies a Speed benchmark. Left panel: running time of BioQC and R-nativeWilcoxon test with simulated datsets of
increasing sample sizes. Right panel: ratio of running time between the two implementations. b Sensitivity of BioQC revealed by simulations with
model-generated data. Left panel: whisker-box-plot of BioQC enrichment scores of the selected gene set (Y-axis) against the average expression
differences of genes in the set compared with genes not in the set (X-axis). Right panel: whisker-box-plot of ranks of enrichment scores. c Sensitivity
of BioQC revealed by simulations with real-world data. Left panel: Enrichment scores of cardiac-muscle- and small-intestine-enriched genes as canine
heart and jejunum samples are mixed with varying weights. Right panel: Ranks of enrichment scores plotted against varying weights

human data and reported a ’remarkable similarity’ of
normal tissue gene expression profiles between the two
organisms. Indeed, BioQC confirmed the consistency
in 36 (92%) cases in which canine tissues reported
by the authors match the highest-ranking human tis-
sues reported by BioQC (Table 1 in Additional file 3:
Document 2). Among the three discrepant cases, one
was originally labeled as prefrontal cortex but found by

BioQC to resemble the spinal cord most (sample ID
GSM502573), and the other two samples were labeled as
lung but found most similar to monocytes (GSM502594
and GSM502596). Interestingly, the authors’ findings
seem to be supportive of our observations: GSM502573 is
an apparent outlier in the PCA analysis (Fig. 1a in [19]),
and the authors noted that average profiles of canine lung
and spleen samples, unlike other tissues, do not cluster
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together with respective human tissues in hierarchical
clustering and show similarity with each other (Fig. 2a
in [19]).
While it remains unknown what causes the observed

heterogeneity, for the purpose of simulation the
three samples were excluded. We then calculated an
average expression profile for each tissue using the
remaining 36 samples and simulated contamination by
creating weighted linear combination of expression pro-
files of pairs of tissues, a procedure referred to as mixing
hereafter.
Mathematically, given the expression profile of tis-

sue A (YA) and B (YB), mixing generates a new pro-
file Y = ωYA + (1 − ω)YB with ω ∈ [ 0, 1]. As ω

approaches 1, the new profile mimics contamination of A
by B; when ω approaches 0, it mimics contamination of
B by A.

To illustrate the idea we applied BioQC tomixed profiles
of heart and jejunum and visualize the results in Fig. 1c. As
the weight of heart increases, enrichment score of small
intestine decreases while that of cardiac muscle increases.
With as little as 10% contamination by heart in jejunum,
enrichment score of cardiac muscle is above 3.0 (corre-
sponding to p < 10−3 of Wilcoxon test) and ranks 4th
out of 155 tissue signatures. With 25% contamination,
enrichment score of cardiac muscle exceeds 7.0 and ranks
second. These results suggest that BioQC is very sensitive
towards heart contamination in jejunum.
Intriguingly, we observe an asymmetry in the sensi-

tivity: it takes about 20-30% jejunum contamination in
the heart sample to make the enrichment score exceed
3.0 or rank among the top ten. The asymmetry is
likely caused by the relatively high expression of heart-
enriched genes compared with small-intestine-specific

Fig. 2 BioQC detects pancreas contamination of mouse kidney samples a Enrichment scores (ES) of kidney and pancreas signatures. b Normalised
microarray signals of pancreas-enriched genes (zero mean and one standard deviation per gene). c Expression of amylase and elastase detected by
qRT-PCR, with indices of contaminated samples labeled. AU: Arbitrary Unit
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genes in the respective tissue (Figure 4 in Additional file 3:
Document 2). Despite of the asymmetry, we observe a
strong leap of small-intestine signature’s rank as its pro-
portion further increases. In practice when one of several
heart samples is contaminated by jejunum, an aberrant
higher rank of the jejunum signature can be a warning sign
of tissue heterogeneity to the software user.
Following this example, we mixed all pairs of canine tis-

sues and found that on average BioQC is able to detect
heterogeneity with 20% or more contamination (enrich-
ment score � 3.0 or rank � 10, Figure 3 in Additional
file 3: Document 2). Tissues like liver and heart with highly
expressed enriched genes can be more easily detected
as sources of contamination with the proportion as low
as 12%.
In summary, simulation studies with model-generated

and real-world data demonstrate that BioQC is scalable
and sensitive in detecting tissue heterogeneity. Since the
simple statistical models that we used may not fully cover
the complexity of tissue heterogeneity, we now turn to test
BioQC with further real-world gene expression datasets.

Case study with whole-organ profiling data
We applied BioQC to a dataset generated in a Roche
research program. In this study twenty-five mouse whole-
kidney samples were taken after diverse treatment reg-
imen including operation and medication (details in
Additional file 4: Document 3). Genome-wide gene
expression profiling was performed with Affymetrix
Mouse Genome 430 2.0 microarray.
Results of BioQC are visualized in Fig. 2a. As expected,

kidney-enriched genes ranked first among all tissue sig-
natures in all samples. In three samples (index 23,
24 and 25), however, the pancreas signature scored
much higher than in other samples. As we examined
genes in the signature, we observed substantial expres-
sion of many genes including insulin (INS), glucagon
(GCG), and pancreatic carboxypeptidase A1 (CPA1) in
the three samples (Fig. 2b). This made us suspect
that these samples might be contaminated by traces of
pancreas.
To validate the hypothesis, we quantified expression

of amylase (AMY1A) and elastase (CELA1), both highly
expressed in pancreas and absent in kidney according to
GTEx [7] and Human Protein Atlas [20], with quantitative
RT-PCR. We could indeed detect specific and substan-
tial expression of both genes in the samples suspected
of contamination (Fig. 2c). Based on these results, we
decided to exclude the three samples from downstream
analysis. Exploratory analysis reveals that if the hetero-
geneity was overlooked and the contaminated samples
were not removed, several pancreas-enriched genes would
erroneously show strong differential expression in certain
comparisons (Figure 4 in Additional file 3: Document 2).

In summary, the case study underlines the power of
BioQC to detect tissue heterogeneity in gene expression
data.

BioQC applied to GTEx gene expression data
Finally we assessed tissue heterogeneity in a small subset
of GTEx gene expression data by applying BioQC to small-
intestine samples (n=40). BioQC revealed three clusters of
samples based on enrichment of tissue signatures (Fig. 3a).
Cluster 1 is highly enriched of the small-intestine sig-
nature and almost devoid of enrichment of signatures
of other tissues (Fig. 3b). Samples in cluster 2 display
decreased enrichment of the small-intestine signature
and increased enrichment of the lymphocyte signature
(Figs. 3c and d). Surprisingly, samples in cluster 3 show
enrichment of neither small-intestine nor lymphocyte
signature, but increased expression of muscle-enriched
genes (Fig. 3e). It is noteworthy that exploratory analysis
showed no significant association between the cluster-
ing and any of the clinical parameters reported by the
GTEx consortium (age, sex, death causes, etc.; χ2 test,
significance threshold α = 0.05).
Causes underlying the heterogeneity are obscure to us

and may require substantial efforts to be clarified. How-
ever, one may speculate that an over-representation of
intraepithelial lymphocytes or Peyer’s patch, due to either
physiological or pathological courses, may contribute to
the enrichment of the lymphocyte signature in samples
of cluster 2. Enrichment of the muscle signature in clus-
ter 3 may be caused by over-proportional mucosa or
other cells of muscle’s origin. Despite the uncertainty of
causes, gained information of sample heterogeneity can
enhance the quality of downstream analysis. For example,
results of BioQC can be injected into a weighted statisti-
cal model to identify genes that are preferentially present
in small intestine, which may reveal specific cell-surface
receptors that allow tissue-targeted drug delivery. Depri-
oritising samples outside of cluster 1 is likely to improve
the specificity of identified targets.
In summary, BioQC reveals clustering of samples and

tissue heterogeneity of different severity in a subset of
GTEx data. Researchers using GTEx and similar resources
are advised to perform quality control with BioQC before
pursuing further analysis of data.

Discussions and conclusions
While the impact of some factors underlying tissue het-
erogeneity may be minimized by taking greater care in
experiment design, tissue dissection, and sample han-
dling, factors such as immune cell infiltration are unlikely
controllable. If overlooked, tissue heterogeneitymay cause
gene expression studies irreproducible because the het-
erogeneity is unlikely to be identical in an independent
experiment.
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Fig. 3 BioQC reveals sample clustering and tissue heterogeneity of small-intestine samples in GTEx a Tissue enrichment scores reported by
BioQC when applied to small-intestine samples in GTEx. Samples are shown in columns and clustered by correlation-based hierarchical clustering.
Ten tissue signatures with the highest average scores are shown in rows. Expression profiles of selected tissue signatures (with bold row names) in
representative samples (in yellow boxes) are visualized below. The representative samples are labeled by the last five digits/letters of respective GTEx
sample identifiers. b–eWhisker-box-plots of genes enriched in small intestine, lymphocytes, and cardiac muscle in representative samples. Each dot
represents one signature gene. Dash lines indicate RPKM equal to one which represents an arbitrary threshold of low gene expression. RPKM: Reads
Per Kilobase per Million mapped reads

Therefore we propose applying BioQC as a first-line
quality control to detect tissue heterogeneity. BioQC tests
enrichment of tissue-enriched genes sample-by-sample
and suggests possible sources of heterogeneity, both
of which are not possible for unsupervised methods
like PCA. Compared with other supervised methods,
BioQC comes with the required prior information and
is extremely efficient. Extrapolating from the observa-
tion that BioQC needs about one second to analyze 100
genome-wide gene expression profiles, we estimate that
it would take BioQC only about six hours to analyze
the entire GEO database, which collects about 2.0 mil-
lion gene expression profiles as of November 2016, with
one CPU-thread (excluding the time of downloading, pre-
processing, etc.). In light of its favorable scalability and
sensitivity, we believe BioQC is suitable for small- and
large-scale gene expression studies.
We expect tissue signatures to be applicable across

closely related species as it was shown elsewhere that
within mammalians the expression patterns of protein-

coding genes are more conserved between species than
between major organs [21, 22]. The human derived tis-
sue signatures are already applied successfully to tissue
expression data from multiple vertebrate model species
including macaque, pig, dog, rodents, and zebrafish (data
not shown). The simulation study using dog tissue expres-
sion data exemplifies such an analysis.
We have integrated BioQC in our gene expression

analysis pipeline since three years to routinely detect tis-
sue heterogeneity in internal and external studies. It has
raised warning flags in many datasets independent of the
target tissue of profiling, organism, experiment design,
profiling platform and laboratory. While a few suspects
were validated such as the ones in our case study, most
findings were regrettably not followed up due to limited
capacity and material unavailability. With more expres-
sion profiling data generated worldwide everyday, we wish
that BioQC can help experimentalists and data analysts
alike to improve the quality and reproducibility of gene
expression studies.
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Availability and requirements
Project name: BioQC;
Project home page: http://accio.github.io/BioQC/;
Operating systems: Unix, Linux, Mac OS and Windows;
Programming language: GNU-R and C;
Other requirements: R and Bioconductor installation;
Licence: GPL-3.

Additional files

Additional file 1: Supplementary Figures. (PDF 592 kb)

Additional file 2: Supplementary Document 1. This document can also
be assessed on the BioQC website under [27] respectively. (ZIP 98 kb)

Additional file 3: Supplementary Document 2. This document can also
be assessed on the BioQC website under [28] respectively. (ZIP 305 kb)

Additional file 4: Supplementary Document 3. This document can also
be assessed on the BioQC website under [29] respectively. (ZIP 325 kb)

Abbreviations
GEO: The gene expression omnibus database; GTEx: The genotype-tissue
expression project; PCA: Principal component analysis; RT-PCR: Reverse
transcription polymerase chain reaction
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