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Abstract 31 

The bioavailability of many carotenoids has been assessed, but little attention has been given to 32 

the metabolism of these antioxidant compounds during digestion. The isomerization and loss of 33 

lutein, lycopene, and β-carotene incorporated into a lipid-rich liquid meal was determined in vitro 34 

through the gastric, duodenal, and jejunal phases in the presence and absence of digestive enzymes, 35 

and in the presence and absence of known oxidizing agents often found in mixed meals 36 

(metmyoglobin in red meat and ferrous sulfate in supplemental iron). Carotenoids were quantitated 37 

using HPLC-PDA. In the absence of enzymes, lutein and lycopene were lost during earlier phases 38 

of the digestive process. In the presence of enzymes, lutein and lycopene were robust through the 39 

gastric and duodenal phases, with statistically significant losses of 40% and 20%, respectively, 40 

observed only during the jejunal phase. Regardless of the presence or absence of enzymes, an 41 

initial 25% of β-carotene was lost during the gastric phase, but no further loss was observed. 42 

Ferrous sulfate had no significant impact on any carotenoid level. Metmyoglobin had no impact 43 

on lutein, but significantly reduced lycopene and β-carotene levels by 30% and 80%, respectively, 44 

by the end of the jejunal phase. No significant isomerization was observed between the initial and 45 

jejunal phases for any of the carotenoids. 46 

  47 
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1. Introduction 48 

The consumption of carotenoid-containing foods has been associated with a reduced risk of 49 

developing a number of different types of diseases, such as various types of cancer1 and 50 

cardiovascular disease.2 The contribution of oxidative stress to these and other chronic conditions 51 

has been well established.3–5 Thus, for many years, the prevailing hypothesis was that carotenoids 52 

absorbed from carotenoid-containing foods exerted antioxidant and singlet oxygen quenching 53 

effects in vivo, ultimately leading to a reduction in chronic diseases.6–8  54 

However, low carotenoid concentrations in areas where oxidative damage is a concern9, as well as 55 

inconsistent results from high-dose clinical studies, have called into question the plausibility of 56 

this hypothesis.10–12  57 

In contrast, higher carotenoid concentrations found in the lumen of the gastrointestinal tract 58 

(i.e. after the consumption of a carotenoid-containing meal) more convincingly support the theory 59 

that these compounds may act as antioxidants in the gut.13,14 In fact, work from our group15–18 and 60 

others19,20 has demonstrated the capacity of carotenoids to confer protection to unsaturated fatty 61 

acids under gastric and micellar (i.e. duodenal-like) conditions. Carotenoids also have a 62 

notoriously low bioaccessibility21 and bioavailability22 relative to other fat-soluble antioxidants 63 

like tocopherols23 and omega-3-fatty acids.24 It is possible that at least a portion of this low 64 

bioavailability may be due to loss of the carotenoid via oxidation during the digestive process. 65 

Indeed, carotenoids are known to be sensitive to increased temperature, pro-oxidative species, and 66 

an acidic pH, three factors found during digestion.13,14 Furthermore, foods are consumed and co-67 

consumed in a multitude of combinations. The essential metal iron is present in various oxidation 68 

states and complexes in the diet, and has also been shown to be a strong carotenoid oxidizing 69 
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agent.15 The oxidation effect of iron may be perpetuated in the presence of unsaturated fatty acids, 70 

where lipid peroxidation products can ultimately co-oxidize carotenoids in solution.16      71 

There is still no prevailing consensus on the mechanism(s) of action of non-provitamin A 72 

carotenoids once absorbed in the human body. More recent theories suggest that carotenoids may 73 

serve as “pro-bioactives”, i.e. the parent carotenoid consumed from a fruit or vegetable may be 74 

chemically or enzymatically converted into a biologically active metabolite(s) that ultimately 75 

exerts a disease-protective effect.25,26 This hypothesis is further supported by the fact that non-76 

provitamin A metabolites of the most commonly consumed carotenoids, i.e. β-carotene, lycopene, 77 

and lutein, have been identified in blood plasma and various fruits, vegetables, and food 78 

products.27–29 It is not clear if these products were 1) absorbed directly from the foods themselves, 79 

2) formed during digestion, 3) formed after parent carotenoid absorption, or a combination thereof.  80 

To better understand the fate of carotenoids during digestion, in vitro methods were employed 81 

to study carotenoid stability after each phase (initial, post-gastric, post-duodenal, and post-jejunal). 82 

Three of the most widely consumed carotenoids were chosen for study: lutein, β-carotene, and 83 

lycopene. Experiments were carried out both with and without digestive enzymes to better 84 

understand their influence. Finally, the impact of different dietary iron sources (i.e. ferrous sulfate 85 

commonly prescribed as an iron supplement, and metmyoglobin as the primary source of oxidized 86 

iron in red meat) were also investigated. 87 

2. Materials & Methods 88 

2.1 Materials – For digestion experiments, food-grade lutein powder (product number 1EAA6165; 89 

69% lutein by weight, as determined by molar extinction coefficient of all-trans lutein and HPLC-90 

PDA analysis; geometrical isomer breakdown: 95% all-trans- and 5% cis-lutein) and food-grade 91 

lycopene-containing oleoresin (product number 1EAA9272; 4.5% lycopene by weight as 92 
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determined by molar extinction coefficient of all-trans-lycopene and LC-PDA analysis; 93 

geometrical isomer breakdown: 78% as all-trans-, 11% 5-cis- and 11% other-cis-lycopene) were 94 

kindly donated by Simona Birtic of Naturex (Montfavet, France). Fluka brand β-carotene (≥ 97% 95 

pure; geometrical isomer breakdown: 96% all-trans- and 4% cis-β-carotene) from Sigma-Aldrich 96 

(Saint-Quentin-Fallavier, France) was used both for digestion experiments and for analytical 97 

quantitation. White granular sugar and 100% sunflower oil were purchased from a local 98 

supermarket (Auchan, Avignon, France). Food-grade phospholipid (Ovolife IF 50, containing 50% 99 

w/w phospholipid derived from egg yolk with a maltodextrin excipient) was kindly donated by 100 

Lecico, Inc. (Hamburg, Germany). Deionized water was obtained through filtration via a Millipore 101 

Q-Plus. HPLC grade methyl tert-butyl ether (MTBE) and LC-MS grade methanol were purchased 102 

from Fisher Scientific (Illkirch, France). Ammonium acetate (≥ 98% pure, reagent grade), pepsin 103 

(pepsin A, from porcine gastric mucosa), bile extract (porcine origin), pancreatin (from porcine 104 

pancreas), mucin (type III, from porcine stomach), α-amylase (from Bacillus subtilis), myoglobin 105 

(≥ 90% from equine heart), sodium chloride (NaCl), sodium citrate tribasic dehydrate, sodium 106 

bicarbonate, calcium chloride dihydrate, potassium phosphate, disodium 107 

ethylenediaminetetraacetic acid (EDTA); Fluka brand potassium chloride, Extrasynthese brand 108 

lycopene (analytical grade), and Sigma brand pyrogallol (>99%) were purchased from Sigma-109 

Aldrich (Saint-Quentin-Fallavier, France). Hydrochloric acid (HCl) was purchased from VWR. 110 

Tardyferon® was used as the source of ferrous sulfate (Boulogne, France). O-TRENSOX® (used 111 

to chelate metmyoglobin30) was a kind gift from Gisele Gellon.  112 

2.2 Carotenoid in oil preparation for the test meals – β-Carotene (2 mg) or powdered lutein (3.1 113 

mg) were added to 0.6 g sunflower oil, while the lycopene oleoresin (63 mg) was combined with 114 

0.84 g sunflower oil.  The oil mixtures were stirred overnight in the absence of light and under 115 
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argon. Note that the quantity of each carotenoid-containing product mixed with oil was dosed to 116 

deliver approximately 1.0 mg of carotenoid in 0.3 g oil. 117 

2.3 Test meal preparation - Quantities of the test meal ingredients are shown in Table 1. Water 118 

and sugar were first mixed together in a beaker until the sugar was dissolved. The phospholipid 119 

containing powder (Ovolife IF 50) was added to the mixture and homogenized using a Heidolph 120 

Silent Crusher M (Schwabach, Germany) operated at 24,000 rpm for 2 min. Sunflower oil was 121 

then added and the mixture was again homogenized using the same conditions, followed by probe 122 

sonication using a Q700 QSonica (Newton, USA) with 40% amplitude and 30 sec sonication 123 

followed by 30 sec rest, repeated 8 x in sequence. After the removal of 18 mL of solution (which 124 

served to provide 3 “control” meals), the carotenoid in oil was added to the test meal remaining in 125 

the beaker. The meal was again homogenized and probe sonicated as described before.  126 

2.4 Ferrous sulfate (FeII) solution – A Tardyferon® tablet containing 80 mg of iron was powdered, 127 

and 20% of the final powder weight was added to 45 mL of a 0.9% aq. NaCl solution. The solution 128 

was homogenized for 30 sec and then bath sonicated for 10 min to enhance dissolution (final 129 

concentration = 5.7 mM FeII/6 mL). 130 

2.5 Metmyoglobin (MbFeIII) solution – The Sigma product myoglobin (MbFeII) was dissolved in 131 

water and tested via UV-Visible spectrometry to indeed confirm by λmax that the product had been 132 

completely oxidized to metmyoglobin (MbFeIII)31. MbFeIII (21 mg) was dissolved in 10 mL of a 133 

0.9% aq. NaCl solution (final concentration = 40 μM MbFeIII /2 mL).  134 

2.6 Inhibitor solutions – Inhibitor solutions were prepared to halt any further chemical degradation 135 

of the digesta samples during extraction. The pyrogallol solution (used to quench samples of the 136 

digesta of carotenoid alone) was prepared by dissolving 125 mg pyrogallol in 25 mL water. The 137 

Na2EDTA solution (to quench the carotenoid + FeII digesta) was made by dissolving 140 mg 138 
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Na2EDTA and 100 mg pyrogallol in 20.2 mL of water. The O-TRENSOX® solution (to quench 139 

carotenoid + MbFeIII digesta) was made by dissolving 8.6 mg O-TRENSOX® and 100 mg 140 

pyrogallol in 20.2 mL of water. 141 

2.7 Digestion with enzymes – Following the initial in vitro digestion method of Garret et al.32, 142 

modifications were made as previously described33, as well as the addition of a jejunal phase. Each 143 

digestive condition with carotenoid was tested in triplicate, and the test beakers were placed on a 144 

magnetic stir plate in an oven (in the absence of light) at 37 °C during each phase. The digestions 145 

were prepared by adding 6 mL of test meal (delivering 80 μg carotenoid) to 32 mL of a 0.9% aq. 146 

NaCl solution (carotenoid alone), 30 mL of a 0.9% aq. NaCl solution containing 2 mL of the 147 

MbFeIII solution (carotenoid + MbFeIII), or 26 mL of a 0.9% aq. NaCl solution containing 6 mL of 148 

the FeII solution (carotenoid + FeII). The buccal phase (10 min), gastric and duodenal phases (each 149 

30 min) were mimicked as previously described.33 The jejunal phase was mimicked by adjusting 150 

the pH to 7 by adding ~1.2 mL 0.9M aq. NaHCO3 and digesting for 30 min. In addition, during the 151 

duodenal and jejunal phases, the beaker headspace was backfilled with argon to displace any air 152 

and thus any dioxygen molecules. Samples (0.5 mL) were taken immediately after the test meal 153 

was added to the digestion beaker (t = 0), and after the gastric, duodenal, and jejunal phases, and 154 

quenched with an equivalent volume of their respective inhibitor solutions. 155 

2.8 Digestion without enzymes– The procedures were followed as described above, with the 156 

exception that the respective digestion buffers alone were added in place of the buffers with 157 

enzymes. 158 

2.9 Sample extraction – To each sample already combined with inhibitor solution, methanol (0.5 159 

mL) was added and the vial was shaken for 1 minute. Next, hexane was added (2 mL), the sample 160 

vortexed for 1 min. The upper hexane phase was transferred to a clean glass vial, and 161 
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dichloromethane (2 mL) was then added to the remaining sample. The sample was again vortexed 162 

(1 min), and then centrifuged for 2 min at 3,000 rpm (Jouan MR1822, ThermoFisher Scientific, 163 

Walham, MA, U.S.A.) to induce a clean phase separation. The lower dichloromethane phase was 164 

removed and pooled with the hexane extract and dried under a stream of argon at 30°C. Dried 165 

extracts were stored at -20°C for no more than 2 days before analysis. 166 

2.8 HPLC Analysis – Extracts were redissolved in 50 μL MTBE, to which 50 μL of MeOH was 167 

added and samples were briefly sonicated (< 5 sec) in a sonication bath for dissolution. Samples 168 

were analyzed using an HP1100 (Agilent Technologies, Santa Clara, CA, U.S.A.) HPLC system 169 

equipped with a photodiode array detector. Lutein and β-carotene samples were separated using a 170 

YMC C30 column (150 mm x 2.0 mm, 3 μm particle size) using a previously published liquid 171 

chromatography method34 employing solvent A (80:18:2 MeOH/water/2% aq. ammonium acetate) 172 

and solvent B (20:78:2 MeOH/MTBE/2% aq. ammonium acetate), but halting the gradient at 26 173 

min and injecting 10 μL. Note that this method separated all-trans-β-carotene and all-trans-lutein 174 

from cis geometrical isomers (9-cis-β-carotene was putatively determined by coincident PDA 175 

spectra and elution order just after all-trans-β-carotene35, while all other cis-isomers of β-carotene 176 

and all cis isomers of lutein were determined by PDA spectra and elution prior to the all-trans 177 

configuration). Lycopene samples were separated using a method designed to partially separate 5-178 

cis-lycopene (which elutes just after the all-trans configuration on a C30 column36) from all-trans-179 

lycopene, as well as other cis-isomers (which elute prior to the all-trans configuration). A YMC 180 

C30 column (150 mm x 4.6 mm, 3 μm particle size) column was employed using the same solvent 181 

system as above, with the following gradient: beginning at 40% B, increasing linearly to 80% B 182 

over 23 min, holding at 80% B for 1 min, returning to 40% B over 3 min. The column was held at 183 

a cooler temperature of 20°C (which afforded better separation of the lycopene isomers37), the 184 
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flow rate was 1.3 mL/min, and 10 μL samples were injected. Carotenoids were quantitated using 185 

external calibration curves generated from authentic standards by integrating the peak areas at 445 186 

nm (lutein), 450 nm (β-carotene), and 471 nm (lycopene). Total carotenoid calculated at each step 187 

incorporated any previous digesta volume change (with the addition of enzyme/buffer solution and 188 

previous sample removal) over the course of the experiment.  189 

2.10 Statistical Analysis - Data was analyzed using R statistical software38. A mixed factorial 190 

design with repeated measures ANOVA was employed to test the fixed factors of meal (between 191 

subject factor with 3 levels consisting of control, metmyoglobin, and ferrous sulfate), digestion 192 

phase (within subject factor with 4 levels i.e. initial, gastric, duodenal, and jejunal), and 193 

meal*digestion phase, on carotenoid level (dependent variable).  The error factor controlled for 194 

within flask variability. A P value < 0.05 was considered statistically significant. Post-hoc analysis 195 

was performed using the Bonferroni correction for multiple comparisons to determine statistically 196 

significant interactions within the same meal over multiple digestion phases, and between meals 197 

at the same digestion phase. 198 

3. Results  199 

Figure 1 reveals the loss of lutein in the 3 different meals during the course of in vitro digestion. 200 

In the absence of enzymes (Figure 1A), approximately 25% of the initial lutein was lost during the 201 

gastric phase regardless of the meal (i.e. control, metmyoglobin, or ferrous sulfate). During the 202 

duodenal and jejunal phases, no additional loss of lutein was observed with lutein alone or lutein 203 

+ ferrous sulfate. Only in the presence of metmyoglobin was an additional 20% of lutein lost during 204 

the duodenal phase. Figure 1B reveals that lutein was more robust through the gastric and duodenal 205 

phases of digestion when enzymes were present, with no difference observed between conditions 206 
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or phases. However, by the jejunal phase, the results mimicked that of the experiment without 207 

enzymes, and a total of 60% of the lutein remained regardless of meal.  208 

Figure 2 demonstrates the loss of lycopene during digestion. In the absence of enzymes (Figure 209 

2A), gradual loss of lycopene was observed at each stage, resulting in a 35% overall loss post-210 

jejunal phase. The presence of metmyoglobin or ferrous sulfate did not significantly alter lycopene 211 

degradation at any digestion stage. In comparison, the experiment with enzymes (Figure 2B) 212 

revealed no change in lycopene levels with lycopene alone or lycopene + ferrous sulfate until the 213 

jejunal phase, where a ~20% loss was observed. In contrast, a more pronounced lycopene loss was 214 

observed after the duodenal and jejunal phases (12% and 19%, respectively) in the presence of 215 

metmyoglobin.  216 

The loss of β-carotene during digestion is shown in Figure 3. In the absence of enzymes 217 

(Figure 3A), an immediate 20% post-gastric loss of β-carotene was observed under all meal 218 

conditions, but there was no further significant β-carotene loss when alone or together with ferrous 219 

sulfate during the rest of the experiment. In contrast, an additional 20% of β-carotene was lost in 220 

the presence of metmyoglobin during the duodenal phase. In the presence of enzymes (Figure 3B), 221 

a 25% loss of β-carotene when alone was observed post-gastric phase, but no additional significant 222 

loss was observed through the duodenal and jejunal phases. When ferrous sulfate was added 223 

together with β-carotene, this resulted in a ~40% β-carotene loss during the gastric phase, but no 224 

further loss through the duodenal and jejunal phases was observed. By comparison, when 225 

metmyoglobin was added to β-carotene, a 50% β-carotene loss was observed during the gastric 226 

phase and a further 30% loss from initial β-carotene level during the duodenal phase of digestion. 227 
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No significant change in % cis-isomers was observed between the starting material and the 228 

jejunal phase for any of the 3 carotenoids tested.  Thus, the bars in Figures 1, 2, and 3 represent 229 

total carotenoid (i.e. the summation of all-trans + cis isomers) at each stage.  230 

4. Discussion 231 

The relative susceptibility of these three carotenoids to loss under various conditions of 232 

digestion presents some intriguing results. We begin by comparing the behavior of carotenoids 233 

alone digested without enzymes, as compared to carotenoids digested with enzymes (solid bars, A 234 

vs. B in Figures 1, 2, and 3). Our experiments clearly reveal that a greater percentage of lutein and 235 

lycopene survived the gastric and duodenal phases of digestion in the presence of enzymes, as 236 

compared to the experiments without enzymes. In the experiments with enzymes, lipases and bile 237 

salts work in concert to reduce the size of emulsified lipid droplets and create mixed micelles 238 

during the duodenal phase.39 In contrast, the digestion experiments without enzymes were 239 

performed to better understand the impact of chemical conditions alone on carotenoid degradation. 240 

Thus, these experiments contained the emulsified test meal throughout each phase. Studies on the 241 

stability of β-carotene40,41 and lutein40 emulsions have demonstrated that carotenoid stability is 242 

directly proportional to lipid droplet size. Consequently, we expected the larger emulsified lipid 243 

droplets produced in the experiments without enzyme to be more protective than small particle 244 

micelles in the experiments with enzymes. Therefore, it was initially quite surprising to observe 245 

no difference in β-carotene degradation, and a more rapid lutein and lycopene degradation in the 246 

experiments without enzymes. However, the enzyme experiments also contained various proteins, 247 

such as amylase during the initial sample treatment, pepsin added during the gastric phase, and the 248 

porcine pancreatin preparation added during the duodenal phase. Previous in vitro studies have 249 

demonstrated that certain whey proteins further protect β-carotene41 and lutein40 from degradation 250 
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in emulsification model systems, as these proteins are believed to rest at the interface between the 251 

lipid droplet and the aqueous solution.41 Similarly, a whey-protein encapsulated lycopene has been 252 

shown to successfully deliver lycopene in humans, presumably via at least partial protection of 253 

lycopene through gastro-intestinal conditions.42 In short, our results suggest that protein solutions 254 

confer additional protection to lutein and lycopene against chemical oxidation during the gastric 255 

and duodenal phases of digestion, but any advantage gleaned from protein is lost during the jejunal 256 

phase (likely due to carotenoid transfer to and retention in less-protective micelles).  257 

β-carotene was equally susceptible to degradation, regardless of the absence or presence of 258 

enzymes (solid bars, Figure 3A vs. 3B). It should be noted that these experiments with β-carotene 259 

were repeated (with the repeat experiments also performed in triplicate), with the same average β-260 

carotene level and variability observed each time. Previous research has demonstrated that the % 261 

carotenoid transferred from emulsion lipid droplet to micelle is inversely proportional to 262 

carotenoid hydrophobicity, with lutein > β-carotene > lycopene.39 Thus, we would expect that any 263 

“emulsion effect” would more dramatically impact lutein as compared to β-carotene. Similarly, 264 

we would anticipate that protein confers the same type of protection to β-carotene as compared to 265 

lutein or lycopene.41 Thus, it is not clear why no difference in β-carotene was observed regardless 266 

of the absence or presence of enzymes.   267 

 Of those tested, lycopene alone was found to be the most stable carotenoid through the 268 

entire digestive process with enzymes, with a 20% loss overall. In contrast, 40% of lutein alone 269 

and β-carotene alone were lost during their respective digestions with enzymes. The lycopene and 270 

β-carotene results are in good agreement with Blanquet-Diot et al., who reported a 20% and ~30% 271 

loss, respectively using a dynamic in vitro digestion model.43 In contrast, Courraud et al., reported 272 

a 50% loss of β-carotene after the gastric phase, and a further 20% loss during the intestinal 273 
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phase44. These differences in β-carotene stability are likely due to Courraud et al.’s direct 274 

application of β-carotene dissolved in acetone to the mimicked digesta, and a much lower pH of 2 275 

used during a prolonged gastric phase.44 Lutein loss was similar to that reported by Courraud et al. 276 

in raw spinach.44 Other studies by Blanquet-Diot et al., and Chitchumroonchokchai et al., observed 277 

no change in lutein levels over the course of in vitro digestion43,45. It is likely that the use of a 278 

tomato food matrix43 and the absence of a jejunal digestion phase45 are the source of this 279 

divergence. 280 

Regardless of the presence or absence of enzymes, ferrous sulfate had no additional impact 281 

on carotenoid loss during the experiments (white bars, Figures 1, 2, and 3). Previous work by our 282 

group has demonstrated that in a gastric-like micellar model, increasing levels of ferrous iron 283 

relative to β-carotene (0-10 equivalents) result in increasing levels of β-carotene oxidation, as 284 

compared to no iron. However, excess levels of ferrous iron relative to β-carotene (50 equivalents) 285 

resulted in an initial oxidative loss of β-carotene over 5-10 min, but surprisingly less β-carotene 286 

oxidation through 120 min. It was postulated that when ferrous iron is present in excess, various 287 

perferryl and ferryl intermediates are formed, which further react with ferrous iron to produce high 288 

levels of a diferric ether product, which is inert.15 The dose of ferrous sulfate and carotenoid used 289 

in this study were calculated to reproduce a plausible scenario of a single iron tablet prescribed as 290 

a supplement (delivering 80 mg of divalent iron) consumed with a meal containing 20 mg 291 

carotenoid. Under these conditions, the iron to carotenoid equivalent is 37 for meals containing 292 

lycopene or β-carotene + ferrous sulfate, and 39 for meals containing lutein + ferrous sulfate. Based 293 

upon our results, we speculate that the ferrous sulfate levels were sufficiently high to result in the 294 

formation of inert diferric ether, resulting in no additional carotenoid oxidation in these groups. It 295 
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is also possible that the gelatin coating and maltodextrin excipient of the iron tablet exerted a 296 

protective carotenoid effect during the initial phase of digestion.46  297 

The concentration of metmyoglobin used in our studies (40 μM) is reflective of the quantity 298 

expected from the consumption of a 255 g (9 oz.) beef steak (estimated to deliver 30-50 μM 299 

metmyoglobin).47–49 In the in vitro experiments with enzymes, metmyoglobin had no impact on 300 

lutein stability (striped bars, Figure 1B), but a more pronounced impact on carotene stability 301 

(striped bars, Figures 2B and 3B), especially that of β-carotene. These results are in good 302 

agreement with similar work observing the capacity of various carotenoids to inhibit 303 

metmyoglobin-induced peroxidation of linoleic acid in an emulsion model.16bitory concentrations 304 

at 50% of maximal linoleic acid peroxidation (IC50) values were measured, and were shown to 305 

follow the order of β-carotene > lycopene > xanthophylls derived from bacteria.16 In other words, 306 

a larger concentration of β-carotene was needed to protect linoleic acid relative to the other 307 

carotenoids. Further measures of the peroxide kinetics suggested that this difference may lie in the 308 

fact that carotenes sit in the center of the lipid droplet, and thus their only mechanism of defense 309 

is to halt further fatty acid peroxide propagation. In contrast, bacterial xanthophylls sit at the lipid-310 

water interface and likely inhibit peroxidation initiation altogether.16 It is not clear why β-carotene 311 

was more sensitive than lycopene to metmyoglobin-induced oxidation. It is possible that at the 312 

concentrations of lycopene used, lycopene microcrystals may have formed in the digesta mixture50, 313 

which may have conferred physico-chemical protection, while β-carotene likely remained 314 

dissolved.  315 

We intentionally used un-stripped sunflower oil in all of our experiments to create a 316 

realistic liquid beverage that would be safe for use in a human clinical study. However, the 317 

endogenous tocopherols and tocotrienols present likely protected carotenoids and reduced losses 318 
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due to oxidation, as studies have previously demonstrated that alpha-tocopherol protects 319 

lycopene51,52, β-carotene53, and lutein40 from various forms of oxidation in emulsion systems.  320 

It should be noted that under typical digestive conditions (i.e. with enzymes), levels of lutein 321 

alone and lycopene alone were not significantly different from the initial meal through the 322 

duodenal phase. Immunohistochemical staining demonstrates the presence of apical membrane 323 

transporters SR-B1 and CD-36 in the duodenum and jejunum of humans54, with Western blotting 324 

showing significantly higher SR-B1 protein expression in the duodenum55 and higher expression 325 

of CD-36 in the jejunum56 of rodents. Thus, we anticipate a fair portion of lutein and lycopene to 326 

be absorbed in the duodenum (before degradation), and any resulting loss in the jejunum would 327 

probably have a limited impact on overall bioavailability. However, our results suggest that partial 328 

degradation of β-carotene alone under these types of meal conditions may ultimately reduce the 329 

quantity of β-carotene that is bioavailable.  330 

We noted no significant change from the initial % cis isomers to the % cis isomers remaining 331 

in jejunal phase. These results are in good agreement with previous studies using static in vitro 332 

digestion, which have demonstrated that the % cis isomer contribution to total carotenoid content 333 

is well maintained for lycopene57,58, lutein59, and β-carotene.60  These results are further 334 

corroborated with human studies on gastric digesta for lycopene and β-carotene.61 The same 335 

human study also investigated duodenal digesta, and found no change in lycopene but a slight 336 

increase in % cis β-carotene (relative to starting % cis β-carotene).61 We would attribute this 337 

disparity to the dynamic nature of absorption in humans, and transporter selectivity for all-trans-338 

β-carotene.62     339 

While our primary objective was to understand carotenoid loss during digestion, we also 340 

anticipated observing carotenoid degradation products in our samples. Indeed, the extraction and 341 
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HPLC-PDA methods employed for the analysis of β-carotene- and lycopene-meal digesta would 342 

have revealed the presence of β-apo-carotenals and apo-lycopenals, respectively, if they had been 343 

present in sufficiently high quantities for PDA detection. Furthermore, previous work by our group 344 

has demonstrated that under certain mimicked conditions of gastric digestion and in the presence 345 

of metmyoglobin, β-apo-carotenals can be observed by PDA.15 However, no oxidation products 346 

were observed in any of the samples in this study. This discrepancy with previous work may be 347 

due to the previous use of non-biological surfactants (Tween 20 and Brij 35) to create micelle-like 348 

conditions.15 Similarly, aldehydes have the capacity to react irreversibly with proteins to form 349 

Schiff bases63 and thus it is possible that aldehyde products were formed in our study, but were 350 

not able to be extracted due to protein sequestration. While apo-carotenaldehydes were not 351 

observed, the loss of lutein and lycopene in the jejunal phase, and the immediate loss of β-carotene 352 

in the gastric phase, indicate that at least some derivatives were created. Further work is needed to 353 

identify these products, and to determine if they are absorbed, and/or if they might have biological 354 

effects in the jejunum or colon. 355 

In conclusion, some of the chemical factors that reduce carotenoid stability in an in vitro 356 

emulsion model are counteracted in the presence of digestive enzymes. In the presence of enzymes, 357 

lutein and lycopene were robust to the effects of the digestive process throughout the gastric and 358 

duodenal phases, with the most pronounced losses occurring during the jejunal phase. β-carotene 359 

was most susceptible to degradation during the gastric phase, but no further loss was observed. 360 

Our data suggests that a commonly prescribed dose of supplemental iron consumed with a 361 

carotenoid-containing meal does not have an impact on carotenoid stability. However, co-362 

consumption of red meat with lycopene- or β-carotene-containing foods is likely to reduce the 363 

quantity of carotenoid available for absorption, and may generate carotenoid oxidation products. 364 
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Further work is needed to determine which products are produced, and whether they have 365 

biologically relevant actions. 366 

  367 
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Table 1. Composition of the test meals 559 

Water 90 g 

Sucrose  9 g 

Phospholipid containing powdera, b 150 mg 

Sunflower oil 3 g 

Carotenoid-oil preparationb 0.3 g 

a) Delivering 75 mg of phospholipid derived from egg, to match the 1:40 ratio of 560 
phospholipid to lipid representative of a western diet64. 561 

b) See Materials and Methods for additional details. 562 
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 565 

Figure 1. Loss of initial lutein through the gastric, duodenal, and jejunal phases of digestion in 566 

the absence (A) and presence (B) of digestive enzymes. Bars represent average % lutein ± 567 

standard deviation (n=3 for each meal).  Different letters indicate statistically significant 568 

differences within the same meal at different digestion phases (P < 0.05). There was no 569 

significant difference between meal types at any of the digestion phases (P < 0.05). 570 
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 572 

Figure 2. Loss of initial lycopene through the gastric, duodenal, and jejunal phases of digestion 573 

in the absence (A) and presence (B) of digestive enzymes. Bars represent average % lycopene ± 574 

standard deviation (n=3 for each meal). Different letters indicate statistically significant 575 

differences within the same meal at different digestion phases (P < 0.05). Statistically significant 576 

differences between meal types in the same digestion phase are noted with an asterisk, described 577 

below.  578 

*Significantly different from Lycopene + FeII after the same digestion phase (P < 0.001) 579 

**Significantly different from Lycopene Alone and Lycopene + FeII after the same digestion 580 

phase (P < 0.0001)  581 
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 583 

Figure 3. Loss of initial β-carotene through the gastric, duodenal, and jejunal phases of digestion 584 

in the absence (A) and presence (B) of digestive enzymes. Bars represent average % β-carotene ± 585 

standard deviation (n=3 for each meal). Different letters indicate statistically significant 586 

differences within the same meal at different digestion phases (P < 0.05). Statistically significant 587 

differences between meal types in the same digestion phase are noted with an asterisk, described 588 

below.  589 

*Significantly different from β-Carotene + FeII after the same digestion phase (P < 0.005) 590 

**Significantly different from β-Carotene Alone after the same digestion phase (P = 0.006) 591 

***Significantly different from β-Carotene Alone and β-Carotene + FeII after the same digestion 592 

phase (P < 0.0001)  593 
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