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Abstract

This paper addresses the question of effective connectivity in the human cerebral

cortex in the context of epilepsy. Among model based approaches to infer brain

connectivity, spectral Dynamic Causal Modelling is a conventional technique for

which we propose an alternative to estimate cross spectral density. The proposed

strategy we investigated tackles the sub-estimation of the free energy using the

well-known variational Expectation-Maximization algorithm highly sensitive to

the initialization of the parameters vector by a permanent local adjustment of

the initialization process. The performance of the proposed strategy in terms of

effective connectivity identification is assessed using simulated data generated by

a neuronal mass model (simulating unidirectional and bidirectional flows) and

real epileptic intracerebral Electroencephalographic signals. Results show the

efficiency of proposed approach compared to the conventional Dynamic Causal

Modelling and the one wherein a deterministic annealing scheme is employed.
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1. Introduction

Epilepsy is one of the most common neuronal diseases and concerns about 1%

of the population. It results in a temporary dysfunction of the electrical brain

activity, the epileptic seizure, arising from sudden abnormal electric discharges,

known as paroxysmal discharges. These discharges occur repeatedly in one or

several brain regions. Depending on the involved cortical areas, the clinical

symptoms associated with the epileptic discharges vary from one patient to

another and can lead to physical and mental impairments. The majority of

epileptic patients can be successfully treated with drugs, which prevent the

occurrence of epileptic seizures or attenuate their frequency. Now, in case of drug-

resistant epilepsies a surgical intervention is required to remove the epileptogenic

zone (EZ) and consequently stop, or at least attenuate, the occurrence of seizures,

under the constraint that post-surgical deficits are limited [1]. In practice,

seizure activities are not systematically limited to the EZ and are distributed or

modulated in distal and distinct brain structures. Hence, identifying the brain

structure (network) responsible for the seizure onset is crucial in a pre-surgery

phase even if it stands as a difficult task. The complexity of the problem relies

on the fact that the cerebral network causing the epileptic seizure is patient-

dependent and the relationship between this network and the EZ is still not

controlled. Compared to neuroimaging techniques (MRI, PET), intracerebral

Electroencephalography (iEEG) is the most suited technique to characterize the

rapid dynamics in a seizure activity thanks to its high temporal resolution, which

permits to capture very fast neuronal dynamics related to the epileptic seizure.

Therefore, this technique is considered as gold standard for EZ identification

and allows a more precise brain exploration in spite of its invasiveness. Causal

influences in-between network’s nodes (cortical regions) are crucial in identifying

the EZ. Characterizing the propagation information inside the brain refers to

effective connectivity [2], i.e. to the causal effects exerted by one neural system

over another one.

Quantifying effective connectivity goes back to the pioneer work of Wiener
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in 1956 who recognized the importance of temporal ordering in identifying

the direction of the information flow [3]. Later, in 1969, Granger [4] gave the

logarithmic implementation of Wiener’s idea in the context of AutoRegressive

(AR) models of stochastic processes with an application to econometric. Since

then several causality measures have been developed such as directed coherence

[5], frequency Geweke’s Causality [6] and directed transfer function [7] to cite

a few. Besides, other approaches in the scope of information theory have

also been considered to infer effective connectivity such as transfer entropy [8].

However, the aforementioned methods are known to be model-free techniques as

no assumption on any specific underlying physiological model or prior knowledge

concerning spatial or temporal underlying relationships is made. Therefore,

considering such assumption would be relevant to understand how connected

brain regions are coupled for a specific function generation such as epileptic

seizure onset [9].

Dynamic Causal Modelling (DCM) [10] has been proposed as a powerful

tool to quantify effective connectivity. It is a model-based method, which

consists in looking for the best model underlying the observed data. Inferring

the best model is performed in a Bayesian model selection framework where

each model structure corresponds to an alternative hypothesis about how the

observed data are generated. The best model in a Bayesian framework is the one

with the maximum model evidence (i.e. the log probability of the data given

the model being tested) among all plausible models in the predefined model

space. It is worth mentioning that the model space is defined according to the

plausible generative models that could interpret the observed data. Generally,

a state space representation consists of a state representation combined with

a linear/nonlinear function that maps the state representation’s inputs to the

observation space (outputs). In the context of fMRI [11] this state representation

is the well-known motion equation while it stands for a neural mass or field

model when EEG or MEG data are observed [12]. Furthermore, DCM is used

to interpret both real and complex-valued data features. More particularly,

Friston et al. [13] have proposed DCM for complex-valued data features based
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on Power Spectral Density (PSD) of local field potential data. This is performed

by resorting to a linearization of the generative model around its steady state

[14, 15]. Recently, DCM gains more interest in quantifying effective connectivity

in the context of epilepsy. Therefore, several models have been proposed as

generative of the epileptic signals such as neural mass-like models [16] and cortical

microcircuit ones [17, 18]. Typically, the Variational Bayes (VB) scheme [19] is

used to estimate the evidence of each model defined in the model space. From a

numerical point of view, the model evidence is expressed in terms of free energy

and it is then computed by maximizing, under some assumptions, the latter

[20]. Generally, the well-known variational Expectation-Maximization (EM)

algorithm is used to do such maximization. However, despite its efficiency, the

EM algorithm and its variational version are highly sensitive to the initialization

which results in potential sub-estimation of the model evidence. A Deterministic

Annealing (DA) scheme [21, 22] and Markov chain Monte Carlo samplers [23]

have been proposed to deal with such an issue. The key idea underlying this DA

scheme is the use of a posterior parametrized by a ”temperature” parameter to

control the annealing process included in the Bayesian/variational EM method.

More particularly, the maximization of the log-likelihood function is reformulated

as minimizing the thermodynamic free energy based on statistical mechanics

analogy to add temperature parameter [21, 22]. This DA scheme tracks the

optimum of the considered objective function from high temperature wherein

the objective function is smoothed (i.e. it has one global optimum) to low

temperature wherein the shape of the objective function gradually approaches

the one of the original objective function.

In this paper a local adjustment strategy tackling the initialization issue of

the EM algorithm in the context of DCM and denoted by L-DCM is proposed.

It is a generalization of our earlier work [16] towards a robust estimation of the

model evidence. The proposed strategy is based on an adjustment of the initial

parameters in the variational EM algorithm, locally, using the current estimation

of the model parameters. The efficiency of the proposed L-DCM is evaluated in

the context of simulated and real iEEG recordings in the context of drug-resistant
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Fig. 1. Two potentially coupled populations popj and popk [16].

epilepsy. Furthermore, the behaviour of the proposed strategy is compared to

both the conventional DCM and the DCM when the DA scheme is employed

[22], noted from now on as D-DCM. It is noteworthy that the simulated iEEG

signals are generated using a physiology-based model of neural mass populations

[24] developed in our team.

2. Physiology-based model

The electrical activities of potentially coupled brain regions are simulated

using nonlinear time continuous Stochastic Differential Equations (SDE)

according to [24]. The output of a neuronal population is seen as a nonlinear

transformation of the local mean field activity by a quasi-static transfer function

(see [24] for more details). Each neural population consists of three sub-

populations, a major one standing for excitatory interneurons (main pyramidal

cells) and two sub-populations corresponding to inhibitory interneurons, that

mutually interact by positive or negative feedback via intrinsic coupling

parameters Ci, i = 1, ..., 7 as depicted in Fig. 1. Considering two populations

popl, l ∈ {j, k}, each one is modeled using the above-mentioned neural-mass

model and the dynamic of the hidden states of each population is mathematically

described by a set of 16 one-order differential equations as follows:

5



ẋi,l(t) = xi+5,l(t) i = 1, 2, . . . , 5

ẋ6,l(t) = AlaS (x13,l(t))− 2ax6,l(t)− a2x1,l(t)

ẋ7,l(t) = AlaC2S (x14,l(t))− 2ax7,l(t)− a2x2,l(t)

+Ala (ul(t) +Kll′x11,l′(t))

ẋ8,l(t) = BlbC4S (x15,l(t))− 2bx8,l(t)− b2x3,l(t)

ẋ9,l(t) = GlgC7S (x16,l(t))− 2gx9,l(t)− g2x4,l(t)

ẋ10,l(t) = BlbS (x15,l(t))− 2bx10,l(t)− b2x5,l(t)

ẋ11,l(t) = x12,l(t)

ẋ12,l(t) = AladS (x13,l(t))− 2adx12,l(t)− a2dx11,l(t)

ẋ13,l(t) = x7,l(t)− x8,l(t)− x9,l(t)

ẋ14,l(t) = C1x6,l(t)

ẋ15,l(t) = C3x6,l(t)

ẋ16,l(t) = C5x6,l(t)− C6x10,l(t)

(1)

where S (x (t)) = 2e0
1+exp(r0(V0−x(t))) is the sigmoid function. The noise input

of each population, denoted by ul(t), l ∈ {j, k}, summarizes all exogenous

contributions and is given by: ul (t) = 90+30wl (t), where wl (t) ∼ N (0, αl),

such that wj (t) and wk (t) are independent [24]. The directional connection

from popl to popl′ , which reflects the number of axonal links, is characterized by

the coupling parameter Kl′l, {l, l′} ∈ {j, k}, l′ 6= l. According to the coupling

parameters {Kkj ,Kjk} (see Fig. 1), a model space of four possible model

structures describing the relation between the two populations under test can

be figured out:

M1: No connection (Kkj = Kjk = 0);

M2: Unidirectional relation from popj to popk (Kkj > 0,Kjk = 0);

M3: Unidirectional relation from popk to popj (Kjk > 0,Kkj = 0);

M4: Bidirectional connection (Kjk > 0,Kkj > 0).

The parameters controlling the intrinsic activity of a given population popl

(normal background versus epileptic state) are given by the parameters vector
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θl =
[
θAl , θBl , θGl , θKll′ , θαl

]T
, where the superscript T stands for the transpose

operator and the parameter θKll′ reflects a possible causal effect from popl′ to

popl, l
′ 6= l. In case of two independent populations (i.e. the case of model M1),

θKll′ is dropped and we write θl = [θAl , θBl , θGl , θαl ]
T

instead. Consequently,

θ =
[
θ

T

jθ
T

k

]T
denotes the vector of all model parameters to be estimated. Prior

values of the components of the vector θl are given in Table 1. The other set of

parameters figured in (1), i.e. {a, ad, b, g, r0, V0, e0}, is assumed to be constant

as in [24]. Regarding the population output, yl (t), l ∈ {j, k}, it reflects the

membrane potential of pyramidal cells, which can be considered as a zero-mean

iEEG signal, and is computed as the difference between x13,l (t) and its time

average x13,l, l ∈ {j, k}:

yl (t) = x13,l (t)− x13,l (2)

3. Methodology

This section is devoted to describe the proposed L-DCM algorithm with the

aim of getting the best model evidence by maximizing the PSD of the observed

data. Both techniques, the proposed L-DCM and the conventional DCM, employ

the VB scheme for such maximization. However, the proposed L-DCM method

further includes a local adjustment strategy to well-condition the starting point

of the variational EM algorithm in the maximization step.

Table 1. Prior on model parameters for popl, ` ∈ {i, j} [16]

Parameters Prior Distribution

Synaptic gain excitation Al Al = 5exp (θAl) , θAl ∼ N (0, 1/16)
Dendritic slow inhibition Bl Bl = 3exp (θBl) , θBl ∼ N (0, 1/16)
Somatic fast inhibition Gl Gl = 20exp (θGl) , θGl ∼ N (0, 1/16)
Extrinsic connections Kll′ Kll′ = 500exp

(
θKll′

)
, θKll′ ∼ N (0, 1)

Input white noise variance αl αl = exp (θαl) , θαl ∼ N (0, 1/64)
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3.1. Towards a PSD maximization

Initially, DCM and L-DCM optimize the model structure by estimating its

parameters based on the computation of the data’s PSD. For two potentially

coupled populations, the physiology-based model described by (1) and (2) can be

represented in a set of 2×16 first-order differential equations and a two-component

output vector summarized in a state space representation as: ẋ (t) = f (x (t) ,θ) +Du (t)

y(t) = L (x (t)− x)
(3)

where x is the time average of x (t) and

xl (t) = [x1,l (t) , ..., x16,l (t)]
T ∈ <16×1

x (t) =
[
xT
j (t) xT

k (t)
]T ∈ <32×1, fl (x (t) , θl) ∈ <16×1

f (x (t) , θ) =
[
f T
j (x (t) ,θj)f

T

k (x (t) , θk)
]T ∈ <32×1

D ∈ <32×2, (D)7,1 = Aja, (D)23,2 = Aka

L ∈ <2×32, (L)1,13 = 1, (L)2,29 = 1

u (t) = [uj (t) , uk (t)]
T ∈ <2×1, y (t) = [yj (t) , yk (t)]

T ∈ <2×1

where (Z)k1,k2 denotes the (k1, k2)-th entry of the matrix Z ∈ {D,L}. Both

the input and the output matrices, namely D and L, respectively contain

only two non-zero entries. Due to the sigmoid function defined previously,

the function f (x (t) , θ) is nonlinear and, consequently, the system output

y (t) results from a nonlinear transformation of the input u (t). Therefore a

linearization of (3) around the equilibrium state x0 (θ) ∈ <32×1 is performed.

Note that the equilibrium point, if it exists, is defined as the solution of the

equation 0 = f (x0,θ) + Du0 (t) with u0 (t) = [90, 90]
T

[24], otherwise the

steady state trajectory generally stays on a limit cycle, and we set x0 ' x [16].

Following [14], the system in (3) is linearized using first-order Taylor expansion

as follows:  δẋ (t) = = (x0) δx (t) +D1w (t)

y (t) = Lδx (t)
(4)
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where δx (t) = x (t)− x0, = (x0) = ∂f(x(t),θ)
∂x(t) |x(t)=x0

∈ <32×32 is the Jacobian

matrix of f (·,θ) computed at x = x0, D1 = 30×D and w (t) = [wj (t) , wk (t)]
T
.

Considering the Laplace transforms in (4), we get: sδX (s) = = (x0) δX (s) +D1W (s)

Y (s) = LδX (s) = H(s,θ)W (s)
(5)

where H(s,θ) = L(sI −= (x0))
−1
D1 ∈ <2×2 is the frequency transfer function,

s =
√
−1ω, ω = 2πν (ν is the frequency bin) and I is the identity matrix.

The analytical expression of the PSD of the signal vector y (t) denoted by

g (ν,θ) ∈ <2×2 can be quantified by the transform function H(s,θ) and the

input PSD denoted by αl, l ∈ {j, k}, such that:

g (ν,θ) = Y (s)×Y H (s)=H (s,θ)

 αj 0

0 αk

HH (s,θ) (6)

where the superscript H is the conjugate transpose operator. Therefore, given

the parameters θ of the generative model, it is easy to compute the analytical

expression of the PSD [15]. In practice, the PSD is computed using the SPM

spectral toolbox with a 12-pole AR process [15]. In this case, this PSD, called

measured PSD, is denoted by g̃ (ν) ∈ <2×2. Thus, the following equation holds:

g̃ (ν) = g (ν,θ) + ε (ν) (7)

where ε (ν) ∈ <2×2 is the sampling error matrix such that ε (ν) ∼ N (0,Σν(λ)),

Σν stands for the covariance matrix and λ denotes the vector of channels

variances. According to (7), it is obvious that estimating the PSD is, up to some

sampling error, directly linked to the estimation of the optimal model parameters.

An optimal model, among all plausible models in the predefined model space, is

designed as the one with the maximum PSD, (i.e. maximal g̃ (ν)). Maximizing

the measured PSD is typically performed with a VB scheme using the variational

EM algorithm as extensively detailed in the next subsection. Defining an optimal

model structure underlying the observed signals is performed by maximizing the
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likelihood of g̃ (ν) given a model structure, noted by p (g̃ (ν) |Mm). However,

since g (ν,θ) and consequently g̃ (ν) are nonlinear in the parameter vector θ

due to the sigmoid function, the likelihood p (g̃ (ν) |Mm) is not conjugate to the

Gaussian priors on the parameters [19]. Hence, a classical Bayesian estimation

of the parameters requires computing an integral of the probability density

which is, in turn, a hard task especially for high dimensional case. To cope with

this issue, the VB scheme has been proposed [16] wherein the log-likelihood,

ln p (g̃ (ν) |Mm), is indirectly approximated by the so-called free energy [20]:

ln p (g̃ (ν) |Mm) =Fm +KL (q (θ) , p (θ|g̃ (ν) ,Mm)) (8)

In the above equation, KL is the Kullback-Leibler divergence, p (θ|g̃ (ν) ,Mm)

is the posterior parameter distribution of the parameters vector θ, q (θ) ∼

N
(
θ̂,Σθ̂

)
is the approximate posterior distribution of θ which follows a normal

distribution with mean vector θ̂ and covariance matrix Σθ̂. According to (8), it

is obvious that maximizing the log-likelihood, ln p (g̃ (ν) |Mm), is equivalent to

maximizing the free energy given a model structure, Mm. Note that maximizing

the free energy implies a minimization of the Kullback-Leibler divergence term.

Maximizing the free energy, Fm, is usually done in an iterative way using the

variational EM algorithm whose main steps are summarized below [20]:

Initialization θ0 =
[
θT
0,j θ

T

0,k

]T
, θ̂ = θ0, λ, Σθ̂

Repeat until convergence or a maximum no. of iterations is reached

E− Step : (θ̂,Σθ̂) = max
(fixλ)

Fm(θ̂,λ,Σθ̂)

M− Step : λ = max
(fix θ̂,Σθ̂)

Fm(θ̂,λ,Σθ̂)

end

Fm = Fm(θ̂,λ,Σθ̂)

(9)

In the above pseudo-code, recall that λ is the vector of channels variances, θ0 is

the initial vector for variational EM algorithm.
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3.2. The proposed strategy

The variational EM algorithm is known to be highly sensitive to the

initialization and so it may lead to sub-estimation of the free energy and

consequently to a misestimation of the model parameters. To circumvent this

problem, a local adjustment initialization strategy is adopted in this paper.

When applied this local adjustment strategy for the DCM technique, it gives

rise to the L-DCM method. The latter mainly consists in refining the variational

EM estimation by employing several sweeps of the variational EM algorithm

with initial guess denoted by θ
(r)
0 adjusted for each r-th sweep. To improve

the estimation quality of the PSD for each population involved in the model

structure being tested, an adequate criterion must be introduced. To this end,

we first define, for each population, a threshold, Thll, and a prediction error,

Erll, l ∈ {j, k}:

Thll = 1
Nν

ν
(l)
b∑

ν=ν
(l)
a

γ2g̃ll(ν)
2

Erll = 1
Nν

ν
(l)
b∑

ν=ν
(l)
a

(
gll

(
ν, θ̂
)
− g̃ll (ν)

)2 (10)

gll

(
ν, θ̂
)

stands for the estimation of the analytical PSD obtained by substituting

the model parameter estimate θ̂ using the variational EM algorithm in (9)

and Nν is the sum of frequency bins in the frequency interval
[
ν
(l)
a , ν

(l)
b

]
associated with the l-th population and comprising the spectral power features

of interest, where ν
(l)
a = ν

(l)
m − 10, ν

(l)
b = ν

(l)
m + 10 with ν

(l)
m standing for the

frequency bin corresponding to the maximum measured PSD. Also, γ stands

for a weighting coefficient (confidence parameter) fixed empirically to 10%

to guarantee an acceptable variation in a limited frequency band interval

(including, according to (10), the maximum measured PSD), between the

measured PSD g̃ll(ν) and the estimated one gll

(
ν, θ̂
)

computed according

to (6) using the estimate θ̂. According to (10), a good estimation of the PSD

gll

(
ν, θ̂
)

is obtained when Erll ≤ Thll, l ∈ {j, k}. However, in case this

inequality is not fulfilled, three situations can be figured out: situation 1©:

Erjj ≤ Thjj , Erkk > Thkk; situation 2©: Erjj > Thjj , Erkk ≤ Thkk; situation

11



3©: Erjj > Thjj , Erkk > Thkk. To cope with those situations, the proposed

L-DCM algorithm refines the variational EM estimation results by performing

few supplementary well-conditioned variational EM sweeps. More precisely, the

initial guess of each sweep is adjusted by taking into account i) the estimation

results of the previous variational EM sweep, ii) the encountered situation

(i.e. 1© or 2© or 3©) and iii) the model structure, Mm, m ∈ {1, 2, 3, 4} under

consideration. The key idea of the adjustment strategy consists in identifying, for

the (r + 1)-th variational EM sweep, r ∈ {1, 2, ..., R} where R is the maximum

number of sweeps, the vector component(s) θ̂
(r)
l , l ∈ {j, k}, of θ̂(r) responsible

for the given situation (i.e. 1© or 2© or 3©). The identified component(s) is(are)

then adjusted by adding a random vector dropping from zero-mean normal

distribution with predefined variance. The (r + 1)-th variational EM sweep is

run with the initial point θ
(r+1)
0 equal to the adjusted model parameter(s) vector.

For the sake of clarity, let us consider the two following illustrative examples.

Example 1: Consider the case of maximizing the free energy given the model

structure M1. Assume that the situation 1© ( i.e. Erjj ≤ Thjj , Erkk > Thkk)

occurs for the r-th variational EM sweep. In this case, the initial parameter

concerning the vector component θ̂
(r)
j for the first population popj is considered

as a suitable starting point, whereas the one related to the second population

(i.e. popk) is not so and therefore should be adjusted. Consequently, the initial

guess to estimate the model parameter vector for the (r + 1)-th variational EM

sweep is defined as follows:

θ
(r+1)
0 =

 θ
(r+1)
0,j

θ
(r+1)
0,k

 =

 θ̂
(r)
j

θ̂
(r)
k + ∆θ̂k

 (11)

where ∆θ̂k ∼ N
(
0, σ2I

)
, I is the identity matrix and σ2 is a data-dependent

scalar to be determined. A detailed discussion regarding the choice of σ2 is given

in section 4.

Example 2: Consider now the case of maximizing the free energy given

the model M2. Assume that situation 2© (i.e. Erjj > Thjj , Erkk ≤ Thkk)

12



Table 2. L-DCM adjustment strategy for different situations and different
plausible models

Model
Strategies

1© 2© 3©

M1
θ
(r+1)
0,j = θ̂

(r)
j

θ
(r+1)
0,k = θ̂

(r)
k + ∆θ̂k

θ
(r+1)
0,j = θ̂

(r)
j + ∆θ̂j

θ
(r+1)
0,k = θ̂

(r)
k

θ
(r+1)
0,j = θ̂

(r)
j + ∆θ̂j

θ
(r+1)
0,k = θ̂

(r)
k + ∆θ̂k

M2
θ
(r+1)
0,j = θ̂

(r)
j

θ
(r+1)
0,k = θ̂

(r)
k + ∆θ̂k

θ
(r+1)
0,j = θ̂

(r)
j + ∆θ̂j

θ
(r+1)
0,k = θ̂

(r)
k + ∆θ̂k

θ
(r+1)
0,j = θ̂

(r)
j + ∆θ̂j

θ
(r+1)
0,k = θ̂

(r)
k + ∆θ̂k

M3
θ
(r+1)
0,j = θ̂

(r)
j + ∆θ̂j

θ
(r+1)
0,k = θ̂

(r)
k + ∆θ̂k

θ
(r+1)
0,j = θ̂

(r)
j + ∆θ̂j

θ
(r+1)
0,k = θ̂

(r)
k

θ
(r+1)
0,j = θ̂

(r)
j + ∆θ̂j

θ
(r+1)
0,k = θ̂

(r)
k + ∆θ̂k

M4
θ
(r+1)
0,j = θ̂

(r)
j + ∆θ̂j

θ
(r+1)
0,k = θ̂

(r)
k + ∆θ̂k

θ
(r+1)
0,j = θ̂

(r)
j + ∆θ̂j

θ
(r+1)
0,k = θ̂

(r)
k + ∆θ̂k

θ
(r+1)
0,j = θ̂

(r)
j + ∆θ̂j

θ
(r+1)
0,k = θ̂

(r)
k + ∆θ̂k

occurs for the r-th variational EM sweep. In this case, the initial parameter

concerning the vector component θ̂
(r)
j for the population popj is not suitable

and therefore should be adjusted. Regarding the vector component θ̂
(r)
k for the

second population, popk, it should be also adjusted since according to the model

M2 assumption, popj carries out a causal effect on popk. Consequently, the

initial guess to estimate the model parameter vector for the (r+ 1)-th variational

EM sweep is, in this case, defined as follows:

θ
(r+1)
0 =

 θ
(r+1)
0,j

θ
(r+1)
0,k

 =

 θ̂
(r)
j + ∆θ̂j

θ̂
(r)
k + ∆θ̂k

 (12)

Table 2 summarizes the proposed adjustment strategy of the proposed L-DCM
approach for all critical situations and all plausible models in the defined model

space. The flow chart of the L-DCM algorithm is displayed in Fig. 2.

According to the proposed L-DCM approach, the best model Mm, m ∈

{1, 2, 3, 4} , underlying the observed data, is the one leading to the maximum

free energy, Fm, m ∈ {1, 2, 3, 4} , after well-conditioned variational EM sweeps.

The maximum number R of sweeps should be experimentally chosen such that

we get an acceptable tradeoff between a moderate computational complexity and

sufficient estimation accuracy. According to our studies, the choice R = 6 fulfills

the aforementioned tradeoff. Note that L-DCM can be switched immediately to

DCM at R = 1. Hence, DCM can be seen as a particular case of L-DCM.
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Fig. 2. Algorithm flow chart of L-DCM

4. Results

This section is devoted to provide comprehensive insight about the L-DCM

performance in quantifying effective connectivity in epileptic neural populations.

The behaviour of the L-DCM method is compared to the conventional DCM one

[16] and its variant the D-DCM wherein the DA scheme [22] is employed. This

comparative study is conducted firstly using realistic iEEG recordings generated

according to the physiology-based model developed in our team [24]. Secondly,

human epileptic iEEG signals are considered. It is worth mentioning that the use

of simulated signals is two-fold. On the one hand, their characteristics are similar

to those of real signals observed at the onset of epileptic seizures. On the other

hand, they provide a ground truth regarding the model structure underlying the

observed data, which is hardly accessible in real conditions.

4.1. Simulated iEEG signals

4.1.1. Unidirectional flow

Let us consider the model structure M2 reflecting the unidirectional flow

from popj to popk which are assumed to be epileptic. This model is assumed

to generate the observed iEEG signals (ground truth). According to (11), the

14



proposed updating strategy of the model parameter at the (r + 1)-th sweep,

namely θr+1
0 , depends on the variance σ2, of the adjustment parameter ∆θ̂k.

Therefore a best choice of σ2 regarding our considered application is discussed at

first in this section. Then, the comparative study between the L-DCM, the DCM

and the D-DCM methods is considered. Note that all aforementioned studies

are conducted as a function of the coupling strength, Kkj , between the two

populations. Therefore, three scenarios are considered throughout this section:

Scenario 1: [Aj Ak Bj Bk Gj Gk Kkj αj αk]= [5 3.5 3 3.5 20 42 500 1 1]

Scenario 2: [Aj Ak Bj Bk Gj Gk Kkj αj αk]= [5 3.5 3 3.5 20 62 1000 1 1]

Scenario 3: [Aj Ak Bj Bk Gj Gk Kkj αj αk]= [5 3.5 3 3.5 20 84 1500 1 1 ]

where the coupling strength (i.e. Kkj) is successively equal to 500, 1000 and

1500 from scenario 1 to scenario 3. For each scenario, the set of parameters is

chosen in such a way that the output y(t) reveals a 25 Hz sinusoidal activity

comparable to the one of a real epileptic activity observed at the seizure onset

(see Fig. 3 (a)).

4.1.1.1 Choice of σ2

To investigate the influence of the parameter σ2 on the free energy maximization

in the L-DCM method, six different values of σ2 are considered, σ2 ∈

{0.05, 0.1, 0.15, 0.2, 0.8, 1}. According to (11), a relatively low value of σ2 is

expected to provide well-conditioned initialization for the (r+1)-th sweep that is

consistent with the results of the (r)-th one. However, a relatively high value of

σ2 (i.e. σ2 ≈ 1) would result in inconsistent initialization between two successive

sweeps. Fig. 4 shows the maximized free energy as a function of σ2 for all defined

scenarios (i.e. scenarios 1, 2 and 3). For reason of space, results regarding the

values σ2 = 0.2 and σ2 = 0.8 were omitted since the results of the former were

similar to the ones of σ2 = 0.15 and the results of the latter were similar to that

of σ2 = 1. According to Fig. 4, the median values of the maximized free energy

for all models tested in all scenarios show a higher free energy maximization

when considering the model M2 (the ground truth in the case of unidirectional

flow from popj to popk) reflecting the good behaviour of the proposed method.
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Fig. 3. Results corresponding to Scenario 3 when M2 is denoting the ground
truth. (a) Simulated time signals displaying epileptic activities, (b), (c), (d)
PSD magnitude (auto or cross PSD). The measured PSD is denoted by g̃n (ν),
n ∈ {jj, jk, kj, kk}, the estimated PSD using L-DCM (σ2 = 0.1), D-DCM and

DCM by gn

(
ν, θ̂
)
L−DCM

, gn

(
ν, θ̂
)
D−DCM

and gn

(
ν, θ̂
)
DCM

respectively, and

gn (ν,θ) is the analytical PSD using the true model parameters. ρL−DCM ,
ρD−DCM and ρDCM stand for the correlation coefficients between the measured
and estimated PSD averaged over 100 trials for L-DCM (σ2 = 0.1), D-DCM and
DCM approaches, respectively.
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Fig. 4. Boxplots of the maximized free energy values using L-DCM with different
values of σ2 (unidirectional flow).

Besides, as expected, we note a lower free energy maximization when σ2 = 1

compared to the other cases (i.e. σ2 = 0.05, 0.1 and 0.15). A slight superiority

in maximizing the free energy for σ2 = 0.05 and 0.1 compared to σ2 = 0.15 is to

be noticed whatever the scenario. Consequently, from now on, the variance σ2 is

set to 0.1 for the proposed L-DCM when compared to both the classical DCM

[16] and the D-DCM [22] methods as shown hereafter.

4.1.1.2 Performance analysis

This subsection is devoted to evaluate the performance of the proposed L-DCM

method in inferring neural structures underlying the simulated epileptic iEEG

signals when unidirectional flow between neural assemblies is considered as prior

(i.e. model M2 as ground truth). The behaviour of the proposed L-DCM method

is compared to both the classical DCM [16] and the D-DCM [22] techniques.

Table 3 shows both the model recognition rate and the execution time (in
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Table 3. Model selection over 100 trials using realistically simulated iEEG
signals in the context of unidirectional flow

Scenario Method
Model identification count over 100 trials
(averaged run time over 100 trials (min))

M1 M2 M3 M4

1
(Kkj = 500)

L-DCM
6/100
(12.2)

81/100
(26.7)

5/100
(24.0)

8/100
(31.3)

D-DCM
12/100
(4.7)

79/100
(9.0)

3/100
(11.2)

6/100
(17.1)

DCM
13/100
(2.1)

73/100
(4.8)

4/100
(5.6)

10/100
(8.9)

2
(Kkj = 1000)

L-DCM
0/100
(13.2)

84/100
(38.5)

1/100
(24.1)

15/100
(42.7)

D-DCM
0/100
(4.2)

96/100
(12.5)

1/100
(10.2)

3/100
(21.8)

DCM
1/100
(2.0)

96/100
(6.0)

1/100
(5.1)

2/100
(9.8)

3
(Kkj = 1500)

L-DCM
0/100
(13.0)

84/100
(39.5)

0/100
(25.3)

16/100
(46.6)

D-DCM
2/100
(3.7)

97/100
(13.0)

1/100
(10.1)

0/100
(20.0)

DCM
3/100
(1.9)

94/100
(7.7)

0/100
(4.7)

3/100
(10.8)
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Fig. 5. Boxplots of the maximized free energy values using L-DCM (σ2 = 0.1),
D-DCM and DCM for the 4 models (unidirectional flow).
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minutes) over 100 Monte Carlo trials. According to this table, generally, all

techniques succeed in identifying the good model (model M2). However, the L-

DCM approach outperforms the two others (D-DCM and DCM) for low coupling

strength (81% recognition rate vs. 79% and 73% respectively), whereas D-DCM

outperforms DCM and L-DCM when Kkj is equal to 1000 and 1500 (Scenario 2:

96% recognition rate vs. 96% and 84% respectively, Scenario 3: 97% recognition

rate vs. 94% and 84% respectively). In addition, Table 3 shows an increasing

recognition rate for all methods in identifying the good model, M2, as Kkj

increases.

These results are further interpretable in terms of the maximized free energy

as depicted in Fig. 5. Obviously, the maximal median value of the maximized

free energy is globally obtained for model M2 whatever the method. In addition,

both the L-DCM and D-DCM methods show relatively higher maximization

of the free energy than the DCM one whatever the scenario and the model.

Furthermore, some false identification situations (i.e. identifying either M1, M3

or M4 instead of the considered ground truth model M2) are noted in Table

3. Regarding the case of identifying M3 instead of M2, the false detection rate

decreases from 5% to 0% for L-DCM, from 3% to 1% for D-DCM and from 4%

to 0% for DCM when the coupling strength between popj and popk increases (i.e.

from 500 to 1500). The same result holds for the case of identifying M1 instead of

M2. As soon as M4 is concerned, Table 3 shows globally a higher false detection

rate especially for L-DCM compared to the case of identifying M1 or M3 instead

of M2. This issue could be explained by the fact that in case when the estimated

coupling parameter Kjk (popk → popj) satisfies Kjk 6= 0 as it should not be

since M2 is the target model, M4 can be possibly retained instead of M2. Indeed,

a non-zero value of Kjk leads in some way to a confusing choice between M2

and M4 which is not the case neither for M1 nor for M3. On the other hand, the

Q1∼Q3 quartiles of M4 are generally greater for L-DCM than for D-DCM and

DCM as depicted in Fig. 5. Finally, we obtain a higher estimation quality of the

L-DCM and D-DCM techniques over DCM in terms of PSD as clearly reflected

by the values of the correlation coefficients, ρL−DCM and ρD−DCM vs ρDCM ,
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computed between the estimated and measured PSDs, and depicted in Fig. 3

(b-d). These correlation coefficients are systematically higher for L-DCM or

D-DCM than for DCM. As far as the execution time is concerned, Table 3 shows

a higher execution time of L-DCM and D-DCM compared to DCM. This matter

is clearly due to the iterative character of L-DCM when employing sweeps and

D-DCM when using the DA scheme[22]. However, this computation time is not

crippling since higher PSD estimation and better free energy maximization are

met with L-DCM and D-DCM compared to DCM.

4.1.2. Bidirectional flow

In this section, the bidirectional flow between popj and popk is considered

so that M4 stands for the ground truth model to be inferred. This study is

conducted as a function of the values of the couple {Kkj ,Kjk} reflecting the

coupling strength between the two aforementioned epileptic populations. Three

different couples of parameters {Kkj ,Kjk} are considered in this experiment

leading to the three following experimental scenarios:

Scenario 1: [Aj Ak Bj BkGj GkKkj Kjk αj αk]= [4 4 2 2 25.5 25.5 500 500 1 1]

Scenario 2: [Aj Ak Bj BkGj GkKkj Kjk αj αk]= [4 4 2 2 35.5 35.5 1000 1000 1 1]

Scenario 3: [Aj Ak Bj BkGj GkKkj Kjk αj αk]= [4 4 2 2 46.3 46.3 1500 1500 1 1]

Only the case Kkj = Kjk is considered in this study since only the symmetric

influence of the coupling strength is tested. Note also that the above sets of

parameters allow to produce effectively fast sinusoidal activity around 25 Hz

similar to the epileptic one observed at the seizure onset (see Fig. 6 (a)).

4.1.2.1 Choice of σ2

Similarly to the unidirectional flow case, the influence of the parameter σ2 in

the bidirectional flow on the maximization of the free energy in the L-DCM

method was to be investigated. Therefore, six values of σ2 were evaluated in

this study, σ2 ∈ {0.05, 0.1, 0.15, 0.2, 0.8, 1}, where 100 Monte Carlo trials were

conducted for each value. Fig. 7 shows the boxplots of the maximized free energy

corresponding to the bidirectional flow where results for σ2 = 0.2 and 0.8 were
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Fig. 6. Results corresponding to Scenario 3 when M4 is denoting the ground
truth. (a) Simulated time signals displaying epileptic activities, (b), (c), (d)
PSD magnitude (auto or cross PSD). The measured PSD is denoted by g̃n (ν),
n ∈ {jj, jk, kj, kk}, the estimated PSD using L-DCM (σ2 = 0.1), D-DCM and

DCM by gn

(
ν, θ̂
)
L−DCM

, gn

(
ν, θ̂
)
D−DCM

and gn

(
ν, θ̂
)
DCM

respectively, and

gn (ν,θ) is the analytical PSD using the true model parameters. ρL−DCM ,
ρD−DCM and ρDCM stand for the correlation coefficients between the measured
and estimated PSD averaged over 100 trials for L-DCM (σ2 = 0.1), D-DCM and
DCM approaches, respectively.
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Fig. 7. Boxplots of the maximized free energy values using L-DCM and different
values of σ2 (bidirectional flow).

omitted since the results of the former were similar as the ones for σ2 = 0.15

and the results of the latter were similar for the ones of σ2 = 1. Note that the

model M4 is correctly identified for all values of σ2 as shown in Fig. 7 (a), (b),

(c). We note from these figures that, regardless of the considered scenario, a

higher free energy is generally obtained when σ2 = 0.1. Also, a lower maximized

free energy is obtained for σ2 = 1 regardless of the scenario. This is probably

due to the initialization inconsistency between two successive sweeps caused by

adding a random vector with relatively high variance (see (11)). Based on the

above results, we fixed σ2 to 0.1 in the following analysis.

4.1.2.2 Performance analysis

In this section, we present a comparative performance study in the proposed

L-DCM method, conventional DCM [16] and D-DCM [22] techniques in inferring

neural structures underlying the simulated epileptic iEEG signals in the case
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Table 4. Model selection over 100 trials using realistically simulated iEEG
signals in the context of bidirectional flow

Scenario Method
Model identification count over 100 trials
(averaged run time over 100 trials (min))

M1 M2 M3 M4

1
(Kkj = Kjk = 500)

L-DCM
7/100
(6.9)

26/100
(14.5)

22/100
(15.3)

45/100
(17.6)

D-DCM
10/100
(3.1)

39/100
(5.8)

31/100
(5.4)

20/100
(6.4)

DCM
10/100
(1.4)

36/100
(3.5)

26/100
(5.3)

28/100
(4.2)

2
(Kkj = Kjk = 1000)

L-DCM
2/100
(10.7)

19/100
(23.2)

23/100
(23.8)

56/100
(25.4)

D-DCM
6/100
(3.3)

35/100
(5.9)

38/100
(6.6)

21/100
(8.9)

DCM
6/100
(1.5)

31/100
(3.4)

33/100
(3.9)

30/100
(5.4)

3
(Kkj = Kjk = 1500)

L-DCM
0/100
(11.6)

19/100
(23.7)

19/100
(24)

62/100
(29.9)

D-DCM
2/100
(3.2)

39/100
(5.9)

32/100
(6.1)

27/100
(10.7)

DCM
6/100
(1.4)

37/100
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24/100
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(6.5)
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Fig. 8. Boxplots of the maximized free energy values using L-DCM (σ2 = 0.1),
D-DCM and DCM for the 4 models (bidirectional flow).
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of bidirectional flow (i.e. model M4 as ground truth). Table 4 shows both the

model recognition rate and the execution time (in minutes) over 100 Monte

Carlo trials. According to this table, a highest recognition rate in identifying

the good model (i.e. M4) is obtained by the proposed L-DCM method whatever

the scenario. We note also that L-DCM outperforms both D-DCM and DCM

in terms of the recognition rate regardless of the considered scenario. Besides,

regarding the identification rate of M4, an improvement of 17% using L-DCM is

noticed in Table 4 when the bidirectional coupling between the two populations

increases. However, only an improvement of 7% and 5% is obtained using the

D-DCM and DCM methods, respectively. Furthermore, despite the fact that all

methods suffer from false identifications, the error rate of the proposed L-DCM

method is still relatively smaller than the error rates of the D-DCM and DCM

methods. Indeed, regarding the case of identifying M1 instead of M4, L-DCM

shows systematically a lower false identification rate of 7% while 10% is observed

using either D-DCM or DCM methods regardless of the considered scenario.

Concerning the identification of models M2 and M3 instead of M4, the false

detection rate using L-DCM is around 20% whereas it is more than 30% for both

D-DCM and DCM.

Fig. 8 shows the boxplots of the maximized free energy using the three

methods. According to this figure and regardless of the scenario, all techniques

show higher median of the maximized free energy when identifying the model

M4. More precisely, we note an improvement in maximizing the free energy

using L-DCM and D-DCM compared to DCM, especially when identifying M4,

but with some superiority for L-DCM. Consequently, the proposed L-DCM

method leads to the best PSD estimation during the particular epileptic activity

of interest. This claim is supported by considering the correlation coefficients,

ρL−DCM , ρD−DCM and ρDCM , computed between the PSDs of the observed

and estimated epileptic signals as depicted in Fig. 6 (b-d). For instance, the

correlation coefficient computed between the measured and estimated PSDs for

the first population, is equal to 0.987 for L-DCM while it is equal to 0.986 for

D-DCM and to 0.920 for DCM (see Fig. 6 (b)).
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4.2. Real iEEG signals

This subsection is devoted to evaluate the performance of both the proposed

L-DCM method compared to the ones of the DCM and the D-DCM methods on

real iEEG signals recorded on an epileptic patient. Our database is composed

of 72-second length iEEG signals recorded using invasive electrodes equipped

with 20 channels and placed in a specific region of the cerebral cortex. This

specific brain structure is determined according to preliminary clinical and

electrophysiological examinations. It is noteworthy that iEEG signals are all

bipolar, i.e. obtained as the difference between the potentials recorded on two

adjacent sensors. As shown in Fig. 9, each 72-second length signal, acquired with

a 256 Hz sampling frequency, is divided into three phases: Pre-ictal (0 ∼ 20s),

Ictal (20 ∼ 52s) and Post-ictal (52 ∼ 72s). According to the clinical expert, the

Ictal phase (20 ∼ 52s) which corresponds to the epileptic seizure onset can be

also divided into three overlapped epochs (named Ictal 1, Ictal 2 and Ictal 3

respectively). Both starting and ending points of each epoch are given in Table

5. According to the clinical expert, the 20 channels can be categorized into

three groups according to their involvement along the different phases/epochs of

the seizure. These groups are listed in Table 6 and named respectively Onset

group (noted Group O), Propagation group (noted Group P) and Not-involved

group (noted Group N). Let us indicate that signals associated with Group O

are linked to activities in brain regions responsible for the seizure onset. Signals

belonging to Group P are supposed to be influenced by those of the first group

in the ictal phase. As for those included in Group N, they are assumed not to

be impacted by the seizure.

4.2.1. Analysis on a pair of channels

As effective connectivity consists in inferring the directional flow between

brain regions and since our purpose is to detect brain regions responsible for

the seizure onset, it is legitimate to investigate this directionality by considering

one channel extracted from Group O and another one issued from Group P.

In this study, two channels are retained: the Pp4 channel, whose activity was
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Fig. 9. A 72-second length iEEG recording with a seizure onset up to 32 seconds.
Each channel corresponds to a bipolar iEEG signal. The two red vertical lines
separate the recording into three segments: Pre-ictal phase (0 ∼ 20s), Ictal phase
(20 ∼ 52s) and Post-ictal phase (52 ∼ 72s).

Table 5. Starting and Ending points of each epoch

Epoch Start point ∼ End point

Pre-ictal 2 ∼ 18s
Ictal 1 22 ∼ 38s
Ictal 2 28 ∼ 46s
Ictal 3 34 ∼ 50s
Post-ictal 54 ∼ 70s
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Table 6. Categories of the channels in the real iEEG for epileptic patient in
the considered database

Group Channels

Onset group Cp1, Cp4, Pp1, Pp4, Ap2, Ap6, Bp1
Propagation group Pp8, Dp1, Tp1, Fp2
Not-involved group Cp9, Ap11, Dp5, Bp6, Bp11, Tp8, Hp2, Ip2, Fp8
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Fig. 10. Results corresponding to Scenario 3 when M2 is denoting the ground
truth. (a) real iEEG signals displaying epileptic activities, (b), (c), (d) PSD
magnitude (auto or cross PSD). The measured PSD is denoted by g̃n (ν),
n ∈ {jj, jk, kj, kk}, the estimated PSD using L-DCM (σ2 = 0.1), D-DCM

and DCM by gn

(
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(
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respectively.

ρL−DCM , ρD−DCM and ρDCM stand for the correlation coefficients between the
measured and estimated PSD averaged over 8 windows for L-DCM (σ2 = 0.1),
D-DCM and DCM approaches, respectively.
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confirmed by the clinician to be part of the seizure onset zone (Group O)

and the Dp1 channel which belongs to the Group P. It is worth mentioning

that the bipolar signal derived from channel Pp4 (obtained as the difference

between Pp4 and Pp5) is associated with the output yj(t) of population popj

whereas the bipolar signal derived from channel Dp1 (obtained as the difference

between Dp1 and Dp2) is assigned with the output yk(t) of population popk.

Effective connectivity between these two bipolar signals is evaluated for the

three following epochs each of 16-second length giving rise to the three following

scenarios: Scenario 1: Pre-ictal (2 ∼ 18s); Scenario 2: Ictal 1 (22 ∼ 38s) and

Scenario 3: Ictal 2 (30 ∼ 46s). Each 16s segment is partitioned using 2s-length

sliding windows without any overlap. For each scenario, each windowed signal

segment of 2s length is normalized and used to calculate the measured PSD,

g̃``′(ν), `, `′ ∈ {j, k}. The recognition rate for all plausible models (i.e. M1, M2,

M3 and M4) in the model space and the associated execution time (in minutes)

are shown in Table 7 for the three considered approaches, namely the proposed

L-DCM, the D-DCM and the DCM. A unidirectional connectivity from Pp4

to Dp1 (i.e. from Group O to Group P) for the three tested epochs (Pre-ictal,

Ictal 1 and Ictal 2) is considered as a ground truth according to the clinician.

Therefore, the model M2 stands for the ground truth structure for the three

tested epochs and more particularly for the two ictal ones. According to Table

7, the proposed L-DCM method properly detects the propagation flow for these

two temporal epochs. This claim is supported by the results depicted in Fig.

11 where generally more evidence to consider M2 among the other predefined

models in the model space is obtained using the three methods. Moreover, a

higher model evidence in terms of maximized free energy (as well as Q1 and Q3

quartiles) is obtained using the proposed L-DCM method compared to the two

other techniques during the Ictal phase. This higher model evidence provided

by the L-DCM method is associated with a better estimation of the PSD of the

recorded signals. This is highlighted by the values of the correlation coefficients,

ρL−DCM , ρD−DCM and ρDCM , computed between the measured and estimated

PSDs which are higher for L-DCM than for D-DCM and DCM in Fig. 10 (b-d).

28



Table 7. Model selection over 8 2s-length windows for epileptic iEEG signals

Scenario Method
Model identification count over 8 windows
(averaged run time over 8 windows (min))

M1 M2 M3 M4

1
(Pre-ictal)

L-DCM
0/8

(10.9)
5/8
(8.2)

2/8
(13.4)

1/8
(8.5)

D-DCM
2/8

(17.6)
2/8

(12.7)
2/8

(12.3)
2/8

(27.4)

DCM
0/8

(6.0)
6/8
(4.3)

2/8
(4.1)

0/8
(7.6)

2
(Ictal 1)

L-DCM
0/8

(18.8)
8/8

(28.1)
0/8

(29.4)
0/8

(37.0)

D-DCM
0/8

(8.6)
8/8

(17.9)
0/8

(17.2)
0/8

(9.2)

DCM
0/8

(5.3)
5/8
(4.4)

1/8
(4.7)

2/8
(4.7)

3
(Ictal 2)

L-DCM
0/8

(22.1)
8/8

(27.0)
0/8

(31.3)
0/8

(36.9)

D-DCM
0/8

(11.9)
5/8

(23.0)
0/8

(30.6)
0/8

(32.2)

DCM
0/8

(5.0)
7/8
(5.1)

1/8
(5.0)

0/8
(5.4)
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Fig. 11. Boxplots of the maximized free energy values using L-DCM (σ2 = 0.1),
D-DCM and DCM for the 4 models (real iEEG signals).
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4.2.2. Group analysis

The group analysis consists in investigating the information flow from Group

O to Group P in the Pre-ictal and Ictal phases. As mentioned before, according

to the clinician feedback, a unidirectional connection from Group O to Group P

in Ictal phase, and to a lesser extent in Pre-ictal phase, could be considered as

ground truth. Therefore, in both phases, but more surely in the Ictal phase, model

M2 stands for the target model to infer. Following our previous study (section

4.2.1.), effective connectivity is quantified here for all possible unidirectional

connections between channels belonging to Group O and channels belonging

to Group P. Besides, for each considered method (i.e. L-DCM, D-DCM and

DCM), each channel in Group O is assimilated to the output yj(t) of population

popj whereas each channel in Group P is assimilated to the output yk(t) of

Table 8. Identified model structure and the corresponding median of the
maximized free energy count over 8 2s-length windows using epileptic iEEG
signals under Pre-ictal phase (2∼18s). Ch1 ∈ Group O and Ch2 ∈ Group P

H
HHHCh2
Ch1

Method
Identified model structure

(Median of the maximized free energy)
Cp1 Cp4 Pp1 Pp4 Ap2 Ap6 Bp1

Pp8

L-DCM
M2

(-948)
M4

(-1025)
M2

(-1272)
M4

(-1107)
M4

(-1091)
M1

(-1124)
M4

(-1000)

D-DCM
M1

(-954)
M4

(-1020)
M4

(-1259)
M2

(-1094)
M4

(-1074)
M1

(-1120)
M1

(-1007)

DCM
M1

(-973)
M2

(-1106)
M1

(-1327)
M1

(-1137)
M4

(-1111)
M1

(-1139)
M4

(-1014)

Dp1

L-DCM
M2

(-960)
M1

(-1132)
M3

(-1152)
M2

(-1152)
M3

(-1117)
M1

(-1051)
M4

(-1018)

D-DCM
M2

(-973)
M4

(-1117)
M1

(-1154)
M4

(-1090)
M2

(-1219)
M1

(-1050)
M4

(-1012)

DCM
M2

(-1022)
M1

(-1146)
M1

(-1172)
M2

(-1154)
M2

(-1263)
M4

(-1077)
M4

(-1039)

Tp1

L-DCM
M4

(-949)
M4

(-1077)
M4

(-1175)
M4

(-1036)
M4

(-1067)
M4

(-1143)
M3

(-993)

D-DCM
M2

(-937)
M2

(-1068)
M3

(-1170)
M4

(-1043)
M4

(-1087)
M2

(-1151)
M2

(-938)

DCM
M4

(-966)
M4

(-1092)
M4

(-1216)
M4

(-1051)
M3

(-1095)
M2

(-1185)
M3

(-1039)

Fp2

L-DCM
M3

(-808)
M3

(-983)
M2

(-1057)
M4

(-986)
M3

(-1039)
M3

(-980)
M4

(-887)

D-DCM
M4

(-840)
M3

(-991)
M2

(-1053)
M4

(-992)
M2

(-914)
M4

(-1023)
M2

(-856)

DCM
M4

(-863)
M3

(-992)
M4

(-1091)
M4

(-1003)
M1

(-1062)
M4

(-1073)
M4

(-915)
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Table 9. Identified model structure and the corresponding median of the
maximized free energy count over 12 2s-length windows using epileptic iEEG
signals under Ictal phase (22∼46s). Ch1 ∈ Group O and Ch2 ∈ Group P

H
HHHCh2
Ch1

Method
Identified model structure

(median of the maximized free energy)
Cp1 Cp4 Pp1 Pp4 Ap2 Ap6 Bp1

Pp8

L-DCM
M2

(-586)
M2

(-824)
M2

(-886)
M2

(-714)
M2

(-851)
M2

(-1051)
M2

(-840)

D-DCM
M2

(-653)
M2

(-922)
M2

(-930)
M2

(-750)
M2

(-906)
M2

(-1068)
M2

(-936)

DCM
M2

(-751)
M2

(-937)
M2

(-971)
M2

(-788)
M2

(-997)
M2

(-1109)
M2

(-988)

Dp1

L-DCM
M2

(-798)
M2

(-866)
M2

(-719)
M2

(-813)
M2

(-955)
M2

(-1030)
M2

(-941)

D-DCM
M2

(-826)
M2

(-888)
M2

(-846)
M2

(-821)
M2

(-925)
M2

(-1067)
M2

(-983)

DCM
M2

(-872)
M2

(-938)
M2

(-883)
M2

(-860)
M2

(-1012)
M2

(-1087)
M2

(-1005)

Tp1

L-DCM
M2

(-496)
M4

(-786)
M2

(-624)
M2

(-589)
M3

(-782)
M2

(-892)
M2

(-727)

D-DCM
M2

(-487)
M2

(-688)
M2

(-638)
M2

(-610)
M4

(-807)
M2

(-945)
M2

(-724)

DCM
M2

(-546)
M1

(-808)
M2

(-756)
M2

(-662)
M4

(-859)
M1

(-981)
M2

(-786)

Fp2

L-DCM
M2

(-523)
M2

(-814)
M2

(-690)
M2

(-622)
M2

(-826)
M2

(-998)
M2

(-924)

D-DCM
M2

(-575)
M2

(-805)
M2

(-762)
M2

(-642)
M2

(-894)
M2

(-1024)
M2

(-960)

DCM
M2

(-617)
M2

(-864)
M2

(-790)
M2

(-692)
M2

(-882)
M2

(-1063)
M4

(-978)

population popk. Tables 8 and 9 display the identified model structure and the

corresponding median of the maximized free energy for each couple of channels

(Ch1, Ch2) where Ch1 ∈ Group O and Ch2 ∈ Group P, respectively during the

Pre-ictal phase (i.e. (2 ∼ 18s)) and the Ictal phase (i.e. (22 ∼ 46s)).

According to the results depicted in Table 8, a high variability in recognizing

the true model (i.e. M2) whatever the (Ch1, Ch2) couple and regardless of

the considered method can be observed. Now, D-DCM and L-DCM present

a comparable behaviour in terms of maximizing the free energy, this free

energy being generally greater than using the conventional DCM method. The

identification of Model 2 is not so easy: for instance, the L-DCM method correctly

recognizes the good model for the couples (Cp1, Pp8), (Cp1, Dp1) whereas the

latter succeeds in identifying the true model for the couples (Cp1, Dp1) and
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(Cp1, Tp1). This high variability is also observed on other couples and can be

explained by rapid changes in the interactions between different regions of the

brain during the Pre-ictal phase wherein the seizure propagation starts to be set

up.

Regarding the Ictal phase and the three methods (Table 9), it comes out

that most of the channels in Group O have a causal influence on those in Group

P. Therefore, the true model M2 is identified most of the time. In addition,

the proposed L-DCM method generally provides higher median values of the

maximized free energy compared to both D-DCM and DCM. For example, given

the couple (Cp4, Pp8), L-DCM leads to a median value of the maximized free

energy equal to −824 whereas D-DCM and DCM lead to values equal to −922

and −937 respectively.

To conclude on this analysis, our results globally match with the analysis of

the clinician especially for the Ictal phase.

5. Discussion

In this study, to analyze human epileptic signals, three DCM based methods

have been applied and compared. Tested on simulated epileptic iEEG data and

real signals, the proposed L-DCM algorithm outperformed the two others in

terms of maximizing the free energy. This is thanks to the use of well-conditioned

variational EM sweeps during the maximization process. Besides, L-DCM shows

particularly higher performance in identifying the bidirectional propagation flow.

Regarding the unidirectional flow, all techniques displayed quite comparable

results even if L-DCM outperformed the two other DCM approaches in case

of low coupling strength between the epileptic populations. It is noteworthy

that since the epileptic seizure is typically patient-dependent, investigating the

performance of the proposed L-DCM method using other epileptic iEEG dataset

would be interesting and will be our next objective.
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6. Conclusion

In this paper, we proposed a local adjustment model-based approach, named

L-DCM, to quantify effective connectivity between different brain regions involved

in the onset and in the propagation of epileptic seizures. The proposed method

is robust to unsuitable initialization of the model parameters contrary to the

standard DCM and D-DCM approaches. This is the result of using several well-

conditioned variational EM sweeps during the maximization process. In addition,

as mentioned previously, the proposed L-DCM method generally showed higher

performance for both unidirectional and bidirectional flows especially for low

coupling strength in the first case.

Coming works will consist in improving the accuracy of model identification.

We plan to consider a new generative model like the modified physiology-based

model given in [25]. Accordingly, the L-DCM will be adapted to take into account

the intrinsic structure of this new model. These variants should be evaluated on

an extended real epileptic iEEG dataset to take into account the variability of

the epileptic seizure among patients.
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