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Abstract:Photodynamic therapy (PDT) is a modality with promising results for the treatment of 

various cancers. PDT is increasingly included in the standard of care for different pathologies. This 

therapy relies on the effects of light delivered to photosensitized cells. At different stages of delivery, 

PDT requires imaging toplan, evaluate and monitor treatment. The contribution of molecular imaging 

in this context is important and continues to increase. In this article, we review the contribution of 

nuclear medicine imaging in oncology to PDT for planning and therapeutic monitoring purposes. 

Several solutions have been proposed to plan PDT from nuclear medicine imaging. For instance, 

photosensitizer biodistribution has been evaluated with aradiolabeled photosensitizer or with 

conventionalradiopharmaceuticals on positron emission tomography. The effects of PDT delivery 

have also been explored with specific SPECT or PET radiopharmaceuticals to evaluate the effects on 

cells (apoptosis, necrosis, proliferation, metabolism) or vascular damage. Finally, the synergy between 

photosensitizers and radiopharmaceuticals has been studied considering the Cerenkov effect to activate 

photosensitized cells. 
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1. Introduction 

Photodynamic therapy (PDT) is apromisingstrategy for cancer therapy
1,2

.PDT is a non-thermal 

treatment based on the synergy of three elements: the administration of a photosensitizer drug;light at 

a precise wavelength; and the presence of oxygen (Figure1). When these three components are 

combined, they lead to the formation of reactive oxygen species,resulting in a complex cascade of 

events and subsequent cell death, mainly via cytotoxic and vasculotoxicactivity. 

Most of the time, PDT relies on a specific biodistribution of a photosensitizer drug to tumor cells. 

Amongphotosensitizer drugs, porphyrins are the most frequently used in the literature
3,4

.  

 

 

Figure 1:Illustration of the PDT mechanism, which is initiated by the combination ofa photosensitizer,a light 

wave, and oxygen. PDT activation produces cytotoxic effects andfluorescence emission. 

Porphyrins are macrocyclic organic compounds that have been implicated in various biological 

functions; the most common porphyrins areheme and chlorophyll. In addition to their interesting 

biological functions, they havehigh intrinsic specificity for tumors,low toxicity and favorable 

photophysical properties, such asfluorescence (Figure1)
5
.  

PDT was initially developed for dermatological lesions, which are easily accessible to light and can be 

monitored by visual assessment. Based on the success of this method and despite the low penetration 

of light in biological tissues, apromising method has been reported for the treatment of deep 

tumorsusing in situ inserted optical fibers
6,7

. This method is referred to as interstitial photodynamic 

therapy (iPDT). Therefore, to assess the photosensitizerbiodistribution and monitor the therapeutic 

response of deep tumors, imaging is essential. Molecular imaging is a promising and prime candidate 

for PDT planning and monitoring, and the photosensitizer biodistribution is a relevant issue for PDT 

planning that radiolabeled photosensitizers or conventional PET radiopharmaceuticals may address 

efficiently. Molecular imaging also plays a key role in the monitoring of PDT. Radiotracers currently 

in use for molecular imagingmay have applications in the evaluation ofPDT effects, such as apoptosis, 

hypoxia, perfusion or mitochondrial viability. 

This article aims to present the increasing contribution of nuclear medicine imaging in oncology for 

the planning and monitoring of PDT and the therapeutic prospects of nuclear PDT. 

 

2. Photosensitizer biodistribution for photodynamic therapy planning 

PDTrelies on photosensitizer accumulation in a tumor, and some issues must be addressed prior to 

delivering treatment. Tumorsmay nothavesufficientphotosensitizer uptaketo enablePDT
8,9

, or the drug 

accumulation may be heterogeneous. To address theseissues and provide treatment planning solutions, 
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both thedesign ofradiolabeled photosensitizersandmolecular radiotracersalready in use clinically are 

relevant. 
 

a. Radiolabeled porphyrins 

Porphyrinscanberadiolabeledvia simplecomplexationchemistry with their metallo-complex chelatoras 

interesting biomarkers for in vivo quantitative biodistribution
5
. Radiolabeling ofporphyrins was first 

achieved with copper-64 in 1951
10,11

. Hydrogen-3, carbon-14, palladium-109, sulfur-35, zinc-65, 

cobalt-57, andiodine-125have also been explored but are unsuitable for in vivo imaging because of 

their long half-lives or weak gamma photon energy. For scintigraphic imaging,neodymium-104, 

gallium-67, indium-111 andtechnetium-99m (99mTc), the most commonly usedisotope, have been 

evaluated
12–21

.For positron emission tomography imaging, radiolabeling with iodine-124, copper-64 

and zinc-62 have been studied extensively
5,10,22–27

.In general, radiolabeled porphyrinsaccumulate in the 

tumor as standard porphyrins without altering the main characteristics of the host porphyrin molecules. 

Consequently, labeling using metal complexes of porphyrins is the most promising method
5
. A new 

metal isotope well-suited forhumanPET imaging, gallium-68, is now readilyavailable. Based on the 

simple complexationchemistry with the porphyrin core andinexpensive germanium-68/gallium-68 

radionuclide generator system, thisisotopemight become the prime isotope for radiolabeling 

porphyrins
28–31

.Unfortunately, despite severalproposals forpersonalized planning of PDT
1,5,12,19,20

, 

radiolabeled porphyrins havenotbeen studied for theprediction or quantitative assessment of 

photosensitizeruptake, probably because, until recently, PDT was limited to superficial tumorsin 

which photosensitizer uptake is assessable by visual fluorescence.However, acommercialized 

photosensitizer for PDT, such as Photosan-3®(SeehofLaboratorium F&E GmbH, Wesselburenerkoog, 

Germany),successfully radiolabeled
12,21

 with 99m-technetitum might be evaluated to individualize 

PDT treatment protocols. 

 

b. Photosensitizer prodrug: the case of 5-aminolevulinic acid  

5-Aminolevulinic acid (5-ALA) is a prodrug compound that is biologically inactive and 

preferentiallyaccumulatesin tumor cells, whereit is transformed into protoporphyrin IX (PpIX) with 

ahightumor/surrounding healthy tissue ratio, particularly for glioblastoma. Hence, 5-ALA induces the 

selective accumulation of PpIX in tumor tissues. Consequently, 5-ALA is mainly used in clinical 

practice for fluorescence-guided resection of glioma to facilitate more complete resection compared 

with conventional surgery
32

. Objective responses have been observed for the treatment of non-

melanoma skin cancer, gastrointestinal adenocarcinoma, bladder cancers, and gliomawith PDT using 

5-ALA
2,9,33

.Despite the high intrinsic specificity of PpIX for tumors, PpIX may be absent from the 

tumor or distributed heterogeneously, and an accurate assessment ofPpIX accumulationis expected 

topredict PDTefficacy. Although fluorescence imaging is ideal to assess the presence of PpIXafter 5-

ALA administration, it is not always achievable for deep tumors. In response,radiolabeled 5-ALA 

compounds were recently developed. 5-Amino-4-oxo-[6-11C]hexanoic acid (11C-MALA) can be used 

to evaluate the quantitative accumulation and spatial distribution of 5-ALA in tumor tissues
9,34

, and 

forimproved clinicalavailability, 99m-technetium-5-aminolevulinic acidwas 

synthesized
33

.However,the potential correlation between the tumorbiodistribution of 5-ALA and PpIX 

remains unclear and warrants further study. 

c. Common PETradiopharmaceuticals 

For certain pathologies, molecular imagingis more suitableto definetumor volumethan 

conventionalimaging, especially for neurosurgery or radiotherapy
35–37

. For example, PDT planning 

including 18F-fluorodeoxyglucose PET (18F-FDG PET) has been proposed for head and neck 

cancers
38

. However, very few studies have comparedtheaccumulated amount of photosensitizer drug 
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as a function of the target volume defined by PET imaging. Studies comparing gadolinium-

diethylenetriaminepentaacetic acid (Gd-DTPA) in Magnetic Resonance Imaging (MRI), 18F-

fluoroethyl-L-tyrosine (18F-FET) PET, and 5-ALA tumorbiodistribution for glioma, glioblastoma and 

meningioma
8,39–42

 have demonstrated that metabolic imaging with 18F-FETis superior to Gd-DPTA 

enhancement in MRI for predicting thedistribution of 5-ALA in glioblastoma, with a very high 

accuracy of 96% and a negative predictive value of 100%
8,39

. Thus,18F-FET PET is an importanttool 

for PDT in the brain,where the local fluorescence of PpIXcannot be observed. However, no study has 

compared the tumor distribution of 5-ALA to that of 3,4-dihydroxy-6-
18

F-fluoro-l-phenylalanine (18F-

FDOPA), although the latter exhibits abetter ratio of brain tumor/healthy tissue with Carbidopa 

premedicationthan 18F-FET
43

. However, these studies also showed that the accuracy of 18F-FET to 

predict the 5-ALA tumor distribution decreased for low-grade glioma. These results are not due to the 

failure of 18F-FET PET but confirm that 5-ALA and porphyrins in generalare sensitive to tumor 

grade
8
. Porphyrin accumulation depends on the type of cancer and especially on the degree of 

differentiation
9,44

. For gliomas, 18F-FET quantitative accumulation is correlated with tumorgrade, 

and18F-FDGaccumulation is inversely correlated to tumor differentiation. For high-grade and 

dedifferentiatedtumors, the glucose metabolism observed on 18F-FDG PET may be correlated 

withphotosensitizer accumulation. In this context, an in vitro study demonstrated that 18F-FDG uptake 

before PDT can predicttreatment efficacy
45

. This last point deserves further exploration. 

 

3. Photodynamic therapy monitoring 

Monitoring is required to evaluate the treatment response. In the early stage, monitoring enables 

adaptation of delivery in case of an inadequate response or the prediction of long-term response. 

Monitoring is generally accomplished using specific biomarkersto estimate the evolution of the 

disease.Tumorfluorescencecan be considereda biomarkerfor monitoringtreatment response when 

considering superficial tumors. However, as for the study of the biodistribution of photosensitizer 

drugs, fluorescence cannot be used for deep tumors. Several studies have proposed to address this 

problemby including metabolic imaging inPDT protocols to provide biomarkers and prognostic 

factorsto predicttreatment response earlier than morphological imaging
1,5,19,20

. 

 

Radiolabeledporphyrinsformonitoringafter PDThave been suggested but have not been investigated 

further
1,5,19,20

. The maindrawback might betheloss ofsensitivityaftertreatmentbecause tumor 

cellsselectedby PDT will no longer accumulatethe photosensitizer. Consequently, monitoringusing 

non-specificradiotracersseemsmore appropriate and convenient. 

 

PDT induces a selective tumor response through different mechanisms. The effectivenessand 

preponderance ofcertain mechanismscompared to othersis influencedby the 

illuminationprotocol,includingthe fluence and fractionation, bytissue oxygenation, and,obviously,by 

the type ofphotosensitizer drug
2,46

. The mainmechanisms areimpairment of tumor vascularization and 

direct cell death by apoptosis and necrosis.Therefore, different PDTeffects maybe observedwith 

different radiotracers.The radiotracers presented in the following are of interest for monitoring PDT. 

These data are from preclinical studies and depend on the tumor models and therapeutic protocols 

(Table 1). 

 

a. Glucose metabolismwith 18F-fluorodesoxyglucose  

The glucose analogue18F-FDGenters tumor cellsvia theoverexpressed membrane transporter GLUT 

and accumulates by phosphorylation in the cytoplasm.This very common radiopharmaceutical can be 

used to observe bothtissue perfusion in minutes followingintravenous administrationandglucose 

metabolism in an equilibrium state (a minimum of 15min post injection). When used afterPDT,18F-

FDG PETshows the treatment responseearlier thanmorphological imaging. As early as 30 minutes and 

2 h after PDT, clear decreases in tumor perfusion and glucose metabolism due to the destruction of the 
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vascular system and direct cell death
47,48

were observed. At 24 and 48 hafterPDT,18F-FDG PET 

imagingshowed,inmost cases,adecrease in tumormetabolism
48,49

. Although one study showed an 

increase in tumor metabolic activity 24 h after PDT, the type of photosensitizer drug used might be 

responsible for this increase. The authors suggested hypermetabolism of the photosensitizerdrug, a 

porphyrin-monoclonal antibody conjugate, at 24 hpostPDTvia a probable acute inflammatory 

response
49

. Finally, 36 h afterPDT, the metabolic volume on18F-FDG PETdescribed the absolute 

volume of the survivingtumor histological massat a resolution similar to that of MRI, revealing the 

early extended injury caused by PDT
50

. 

b. Protein metabolismwith 18F-fluoroethyltyrosine and 18F-

fluorodihydroxyphenylalanine (18F-FDOPA) 

The radiolabeled amino acids 18F-FET and 18F-fluorodihydroxyphenylalanine (18F-

DOPA)aremainly used for studies of brain tumors, in which these amino acids accumulate with 

excellent contrast compared to that in healthy tissuethanks to their ability to freely cross the blood-

brain barrier and the overexpression of LATtransporters by tumor cells. No study has described the 

monitoring of PDT with these radiopharmaceuticals, but these amino acids are ofparticularinterestfor 

monitoring other treatments, especially for brain tumors. 18F-DOPA and 18F-FET are used for brain 

tumors inclinical practice by default with MRI, particularly to differentiate tumor progression from 

radionecrosis after glioma radiotherapy. Thus, radiolabeled amino acidscould certainlybeused to 

differentiatetumor progressionfrom the tumorphotonecrosisinducedbyPDT. 

c. Tumor proliferation with 18F-fluorodeoxythymidine  

18F-fluorodeoxythymidine (18F-FLT), a thymidine analogue, is trapped in cells and is phosphorylated 

by the cytosolic thymidine kinase-1, an enzyme of the pyrimidine salvage pathway of DNA synthesis. 

This radiopharmaceuticalenables imagingoftumor proliferation. In two studies,18F-FLT PETshowed 

an early responseto treatment with clearhypometabolism4hand 24hafterPDT
51,52

. 

Interestingly,afterPDT,the decrease in metabolic proliferativeactivityobserved using 18F-FLT 

PETappears to bemore pronouncedthan the decreased metabolism glucose activity observed by 18F-

FDG PET
51

. 

d. Membranerenewal with 11C-choline 

The phosphorylation of choline is catalyzed by choline kinase, whichis overexpressed in tumor 

cells.Phosphorylcholineis incorporated into phosphatidylcholine, a component of the cell 

membrane.Thus, cholineradiolabelingpermits imagingoftumormembranerenewal. There is interest in 

following theearlyresponse ofprostatecancer to PDT. From 1 to 48h after therapy, PET imaging with 

11C-choline revealed a marked decrease intumor 11C-choline uptake
53,54

. 11C-Choline hasnot been 

studiedin PDT monitoringforother cancers, and the radiolabeledforms with fluorine-18 (18F-

fluoromethylcholine and 18F-fluoroethylcholine) have not been studied either. 

e. Apoptosis, 64-Cu-DOTA-biotin-Sav and 99-mTc-AnnexinV 

Apoptosis isa mechanism of cell deathinduced byPDT and occurs very early,within the first 

hourfollowingPDT
2
. Because it is tolerated betterdue to less tissue inflammation,apoptosis is the 

preferred cell death mechanism when choosing the photosensitizer drug and lighting method for 

PDTprotocols. There are radiotracers for theapoptosis target phosphatidylserine, which is externalized 

by apoptotic cells. PETimaging using 64Cu-DOTA-biotin-Sav showed clear uptake within hours 

following PDT, from 4.5 h post PDT.The amount of timeto reach optimal contrast after PDTdepends 

onthe type ofphotosensitizerdrugused and ranges from6-7 hto 10-11 hpostPDTfor two 

differentphotosensitizerdrugs.However,the laborious protocol required prior to theinjectionof the 

radiotracer,which includes pretargeting with biotinylated annexin V,followed by anavidin chase to 

eliminate free biotinylated products,is an important drawback of the use of this radiopharmaceutical. 
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Moreover,the isotope 64-copperdoes not haveideal properties for diagnostic use in humans
55

. Another 

apoptosis radiotracer used in SPECT imaging, 99m-Tc-Annexin V, was tested for PDT. 99m-Tc-

Annexin V might be well-suited for clinical use because it can beeasily preparedwithin theclinical 

departmentofnuclearmedicine,does notrequirepretargetingsteps,and isperfectly suitedfor human use. 

Excellent uptake of 99mTc-Annexin V was observed in treated tumors 2, 4 and 7 h after PDT, as 

confirmed by histology
56

. 

f. Hypoxia with 123I-iodoazomycin arabinoside 

Although more recent PET radiotracers of hypoxia are available, 123I-iodoazomycin arabinoside 

(123I-IAZA) isthe only radiotracer that has been studied for post-PDT monitoring. 123I-IAZA is 

metabolically reduced in viable cells and is inversely proportional to the intracellular oxygen 

concentration. 123I-IAZA exhibits significant accumulation 24h after PDT,concordant with a decrease 

intissue perfusion
57

. 

g. Perfusion and mitochondrial viability with 99mTc-hexakis-2-methoxyisobutyl 

isonitrileor 99mTc-hexamethylpropyleneamine oxime  

The cationic complex 99mTc-hexakis-2-methyoxyisobutyl isonitrile (99mTc-MIBI) is retained by the 

mitochondria mainly due to its lipophilicity and charge. The uptakeof 99mTc-MIBI depends on the 

mitochondrion membrane potential and thus reflects mitochondrial viability.This complex was 

initially developed to visualize myocardial perfusion using scintigraphic imaging. The use of 99mTc-

MIBI to assess tumor vascular perfusion after PDT revealed that tumor vascular perfusion decreased 

dramatically during the 2-h period following PDT and continued to decrease to 7% of the control 

value 24h later
58,59

.Another radiopharmaceutical for perfusion is 99mTc-hexamethylpropyleneamine 

oxime (99mTc-HMPAO), a liposoluble molecule that diffuses into the cell and then becomes 

hydrophilic and remains trapped in the cytoplasm. Tumor perfusion can be assessed to evaluate the 

vascular damage mechanism of PDT. Monitoring of PDT with 99mTc-HMPAO revealed maximal 

shut-down 8h post treatment, which persisted for at least 24h
57,60

. Regardless of tissue perfusion, 

99mTc-MIBI is particularly interesting because some photosensitizers,such as Photofrin®, target the 

mitochondria.Therefore,99mTc-MIBI doesreveal destruction of mitochondria by the free radicals 

produced by PDT. The role of the mitochondria in the apoptosis mechanism could explain the 

apoptotic action of PDT.Accordingly, an in vitro study demonstrated that 99mTc-MIBI is superior to 

18F-FDG for monitoring PDT, demonstrating a linear correlation with cell viability
45

.  

 

Author Radiotracer Tumor 

histology 

Photosensitizer Effect 

evaluated 

Time to 

significant 

effect 

Model 

D. Lapointe 

et al. 1999
47 

Bolus 
18

F-

FDG 

EMT6 

murine 

mammary 

PII and AlPcS Glucose 

metabolis

m 

30min Mice 

AT. Byrne 

et al. 2009
48 

Bolus 
18

F-

FDG 

13762 MAT 

B III rat 

mammary 

ADMP06 Glucose 

metabolis

m 

30min Rats 

K. Smith et 

al. 2010
49 

Bolus 
18

F-

FDG 

LoVohuman 

colon 

adenocarcin

oma 

Anti-CD104- 

isothiocyanato 

porphyrin 

conjugate 

Glucose 

metabolis

m 

24h Mice 
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M. 

Sugiyama et 

al. 2004
51 

18
F-FLT 

18
F-FDG 

HeLa ATX-S10(Na) Proliferati

on 

Glucose 

metabolis

m 

24h 

Not 

significant 

24h post PDT 

Mice 

AE. 

O’Connor 

et al. 2012
52 

18
F-FLT MDA-MB-

231-TGL 

human 

mammary 

and U87-

TGL human 

glioma 

ADPM06 Proliferati

on 

 

4h Mice 

B. Fei et al. 

2010
53 

11
C-Choline PC-3 and 

CWR22, 

two human 

prostate 

Pc 4 Membran

erenewal 

24h Mice 

B. Fei et al. 

2009
54 

11
C-Choline PC-3 human 

prostate 

Pc 4 Membran

erenewal 

48h Mice 

N. Cauchon 

et al. 2007
55 

64
Cu-DOTA-

biotin-SAv 

EMT6 

murine 

mammary 

ZnPcS2 and 

AlPcS2 

Apoptosis 4.5h Mice 

M. 

Subbarayan 

et al. 2003
56 

99m
Tc-

annexin V 

RIF-1 

murine 

fibrosarcom

a 

Pc 4 Apoptosis 2h Mice 

RB. Moore 

et al. 1993
57 

123
I-IAZA 

99mTc-

HMPAO 

R3327-AT 

rat prostate 

PII Hypoxia 

Vascular 

damage 

24h 

24h 

Rats 

WS. Chan 

et al. 1997
58 

99m
Tc-MIBI EMT6 

murine 

mammary 

AlPc, AlPcS21 

and AlPcS2 

Vascular 

damage 

3h Mice 

N. Brasseur 

et al. 1996
59 

99m
Tc-MIBI EMT6 

murine 

mammary 

PII Vascular 

damage 

Immediately 

post PDT 

Mice 

RB. Moore 

et al. 1992
60 

99m
Tc-

HMPAO 

R3327-AT 

and R3327-

H rat 

prostate 

PII Vascular 

damage 

8h Rats 

Table 1:Preclinical studies on monitoring PDT with radiopharmaceuticals. 

4. Real time photodynamic therapy monitoring with dynamic PET 

A new promising method to study tumorresponsein real timehas recently been proposed to detect 

transient changes in uptake during treatment. This method consists of PDT applied during a dynamic 
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PET study, with multipleshortframes reconstructed from list-mode data and a slow continuous 

infusion of 18F-FDG. Because of the continuous infusion, the 18F-FDG concentration does not reach 

an equilibrium state, but its rate of increase is constant. Thus, the effects of the treatment are observed 

in real time based on the kinetics of the radiopharmaceutical
48,61,62

. As previously explained,PDTacts 

via different mechanismsdepending on the photosensitizer drug type. The two mainmechanismsare 

direct cell death andimpairment of the tumor vascularization. These mechanisms can be distinguished 

by real-time dynamic PET (Figure 2). Thus, damage totumor vascularizationischaracterized by a 

delayed drop in tumor uptakethat remains significantly lower after illumination ends. Direct cell death 

is characterized by a rapid reduction of 18F-FDG uptake followed by rapid restoration to more than 

80% of the initial rate after illumination ends. Interestingly, thisnew method has led to the discovery of 

a systemic response to PDT because control tumors shielded from light alsoshowed reduced 18F-FDG 

uptake during the illumination phase
61

.However,othermechanismsmight have affectedthe kineticsof 

18F-FDG, such as apoptosis and the inflammatory response in the tumors. Selective apoptosis is a 

desired response to PDT,whereas inflammation is often a side effect. Recent studies have shown that a 

low-fluence illumination protocol is more effective and better tolerated thanks to a greater apoptotic 

process and less inflammation
63,64

. Dynamic PET during PDT might also be explored to compare the 

metabolic responsesto low and high fluence rates but remains to be studied. 

 
 

Figure 2: Illustration of the vascular damage mechanism and the direct tumor cell killing mechanism observed in 

real time by dynamic PET. On the left, the effect of PDT with a photosensitizer inducing vascular damage 

ischaracterized by a delayed drop in tumor uptake, followed by a long recovery period after the illumination 

ends. On the right, theeffect of PDT with a photosensitizer inducing direct cell death is characterized by a rapid 

reduction in 18F-FDG uptake, followed by a rapid restoration after the illumination ends61. 

 

5. Discussion and Perspectives 

Molecular imaging mightfacilitate PDT planning by predicting the quantitative biodistribution of 

thephotosensitizer in thetumor.In particular, a new metal isotope for PET imaging, 68-gallium,offers 

easy radiolabeling using its metal complexes andholds promise for PDT planning
5
. Indeed, the simple 

complexationchemistry of 68-gallium with the porphyrin core andgood availability asthe relatively 

low-cost 68-germanium/68-gallium radionuclide generator system is highly suitable for radiolabeled 

porphyrins
28–31

. Given the importance of tumor oxygenation for the effectiveness of PDT, it is 

surprising that there has been no study of the ability of 123I-IAZA or other radiotracers of hypoxia to 

predict and follow the response to PDT.Imaging hypoxia prior to the delivery of PDT might be akey 

issuefor adapting dosimetry (fractionation scheme, fluence rate, total dose). 
 

However, radiolabeled porphyrins might not be suitable for monitoring the effect of PDT, and non-

specificmetabolic radiotracers might be preferable. Themainmechanisms observed after PDT are 

damage totumor vascularization and direct cell death caused by apoptosis and necrosis. Therefore, 
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different PDTeffects maybe observedusing different metabolic radiotracers routinely used in nuclear 

medicine. 

 
Moreover, real-time 18F-FDG PET during PDT can assess PDT protocols in real time and thus enable 

optimizationof their duration,oxygenation, andillumination to achievepersonalized treatment. 

Consequently, monitoring PDT by dynamic PET could be a major advance in therapy. Thus, nuclear 

medicine, thanks to molecular imaging, offers interesting perspectives to optimize and personalize 

PDT.  
 
However, the contribution of nuclear medicine is not limited only to PDT accompaniment but could 

also include PDT in deep tumorsas an alternative tointerstitial PDT. This so-called nuclear PDT relies 

on the Cherenkov effect as an alternative light source for PDT in deep tissue.Cherenkov radiation is an 

optical emission induced when charged particles move faster than the speed of light in a dielectric 

medium. This phenomenon is well known in the nuclear energy industry as it is responsible for the 

blue glow of an underwater nuclear reactor. The threshold energy of β-particles (electrons) to produce 

Cherenkov radiation in tissues is 0.219MeV. High-energy photons can also indirectly produce 

Cherenkov radiation by secondary electrons caused by photoelectric interaction or Compton 

scattering
65

. Several isotopes used in radiopharmaceuticals emit particles with a greater energy than 

the threshold of 0.219MeV and thus produce Cherenkov radiation
66–68

. Several recent studies have 

examined Cherenkov luminescence tomography, including in small animals
69–71

.Cherenkov radiation 

is ofparticular interest for PDT because it provides a deep light source without an invasive device. 

Cherenkov radiationisalso perfectly adapted to PDT with 3 major benefits: proven efficacy and better 

tolerance of ultra-low fluence rate excitation during PDT
63,72

,with a meaningful effect at a 12 mJ/cm
2
 

threshold with a second-generation photosensitizer
73

; blueluminescenceoptimal for the activation of 

porphyrins
1,74

(Figure 3); and light production inside the tumor.In vivo photoactivation using 

Cherenkov from 18FDG has been demonstrated as a proof of concept
75

, and tumor remission was 

achieved using aphotosensitizeractivated by Cherenkovradiation from radionuclides
76,77

. Isotopes with 

a longer half-life and emitting particles withgreater energy, such as 90Yttrium used in 

clinicaloncology for the treatment of lymphoma (radioimmunotherapywith Zevalin®) and 

hepatocellular carcinoma (radioembolizationwith SirSpheres® or TheraSphere®), could deposit an 

adequate total Cherenkov light dose for PDT
72

. Thus,the synergy between internal radiotherapy and 

PDTwarrants further investigation (Figure4). 

  



 10 

 
 

Figure 3: Absorption spectrum of protoporphyrin IX (PpIX). 

 

 

 

Figure 4: Illustration of nuclear PDT and the synergy between internal radiotherapy and photodynamic therapy. 

6. Conclusion 

Nuclear medicine is essential in oncology. It is an indispensable tool for a variety of current 

therapiesand is also an asset forPDT. The simplicity and effectiveness of porphyrinradiolabeling, its 

low toxicity and its accumulation intumor tissues make it a potentialtheranosticagent. The 

contributionof nuclear medicine is not limited to monitoring and might include the estimation of 

Cherenkov 
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photosensitizeruptake in deeptumors for improved treatment planning, the identification of various 

biologicalmechanismsof treatment andtheir effectivenessin real time, andas an optimal Cherenkov 

light sourceinside deep tumors. 
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