
HAL Id: inserm-01480970
https://inserm.hal.science/inserm-01480970

Submitted on 2 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Systems biology combining human- and animal-data
miRNA and mRNA data identifies new targets in

ureteropelvic junction obstruction
Theofilos Papadopoulos, Audrey Casemayou, Eric Neau, Benjamin Breuil,
Cécile Caubet, Denis Calise, Barbara A. Thornhill, Magdalena Bachvarova,

Julie Belliere, Robert L. Chevalier, et al.

To cite this version:
Theofilos Papadopoulos, Audrey Casemayou, Eric Neau, Benjamin Breuil, Cécile Caubet, et al.. Sys-
tems biology combining human- and animal-data miRNA and mRNA data identifies new targets in
ureteropelvic junction obstruction. BMC Systems Biology, 2016, 11 (1), pp.31. �10.1186/s12918-017-
0411-7�. �inserm-01480970�

https://inserm.hal.science/inserm-01480970
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE Open Access

Systems biology combining human- and
animal-data miRNA and mRNA data
identifies new targets in ureteropelvic
junction obstruction
Theofilos Papadopoulos1,2 , Audrey Casemayou1,2, Eric Neau1,2, Benjamin Breuil1,2, Cécile Caubet1,2, Denis Calise2,
Barbara A. Thornhill3,4, Magdalena Bachvarova4,5, Julie Belliere1,2, Robert L. Chevalier3,4, Panagiotis Moulos6,7,
Dimcho Bachvarov4,5, Benedicte Buffin-Meyer1,2, Stéphane Decramer1,2,8,9, Françoise Conte Auriol10,
Jean-Loup Bascands11, Joost P. Schanstra1,2* and Julie Klein1,2*

Abstract

Background: Although renal fibrosis and inflammation have shown to be involved in the pathophysiology of
obstructive nephropathies, molecular mechanisms underlying evolution of these processes remain undetermined.
In an attempt towards improved understanding of obstructive nephropathy and improved translatability of the
results to clinical practice we have developed a systems biology approach combining omics data of both human
and mouse obstructive nephropathy.

Results: We have studied in parallel the urinary miRNome of infants with ureteropelvic junction obstruction
and the kidney tissue miRNome and transcriptome of the corresponding neonatal partial unilateral ureteral
obstruction (UUO) mouse model. Several hundreds of miRNAs and mRNAs displayed changed abundance
during disease. Combination of miRNAs in both species and associated mRNAs let to the prioritization of five
miRNAs and 35 mRNAs associated to disease. In vitro and in vivo validation identified consistent dysregulation
of let-7a-5p and miR-29-3p and new potential targets, E3 ubiquitin-protein ligase (DTX4) and neuron navigator
1 (NAV1), potentially involved in fibrotic processes, in obstructive nephropathy in both human and mice that
would not be identified otherwise.

Conclusions: Our study is the first to correlate a mouse model of neonatal partial UUO with human UPJ
obstruction in a comprehensive systems biology analysis. Our data revealed let-7a and miR-29b as molecules
potentially involved in the development of fibrosis in UPJ obstruction via the control of DTX4 in both man
and mice that would not be identified otherwise.

Keywords: Obstructive nephropathy, miRNAs/microRNAs, Microarrays, let-7a-5p and miR-29b-3p, DTX4 and NAV1

* Correspondence: joost-peter.schanstra@inserm.fr; julie.klein@inserm.fr
1Institut National de la Santé et de la Recherche Médicale (INSERM), U1048,
Institute of Metabolic and Cardiovascular Diseases–I2MC, 1 avenue Jean
Poulhès, B.P. 8422531432 Toulouse Cedex 4, France
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Papadopoulos et al. BMC Systems Biology  (2017) 11:31 
DOI 10.1186/s12918-017-0411-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s12918-017-0411-7&domain=pdf
http://orcid.org/0000-0003-1565-3875
mailto:joost-peter.schanstra@inserm.fr
mailto:julie.klein@inserm.fr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Congenital obstructive nephropathy is the main cause of
end stage renal disease (ESRD) in children [1]. This con-
trasts sharply with adult ESRD, which for the greater
part originates from type II diabetes and hypertension
[2]. The most frequent cause of congenital urinary tract
obstruction is ureteropelvic junction (UPJ) obstruction
with an estimated incidence of one in 1000–1500 [3].
The spectrum of renal abnormalities varies greatly in
UPJ obstruction ranging from subtle changes such as
modified proximal or tubular size, chronic tubulointer-
stitial injury, glomerulosclerosis, fibrosis, aberration of
nephron development and in severe cases (less than 1%)
renal dysplasia [4]. The gold standard in diagnosis of
UPJ is by prenatal ultrasonography with subsequent
evaluation in the postnatal period [5]. However, this
method is not sensitive enough to accurately estimate
renal function and functioning nephron number [6].
This has led to an urgent need for the development of
biomarkers to assess the severity of UPJ obstruction and
to help the clinicians to decide if and when pyeloplasty
is required [5, 7].
Due to the fact that limited human kidney samples are

available, almost all observations on the pathophysiology
of UPJ obstruction are based on animal models, which
potentially limit the transferability of the observations in
the clinical context. As a consequence, the pathophysio-
logical mechanisms of UPJ obstruction remain incom-
pletely understood. Renal lesions in UPJ obstruction
have been described including tubular proliferation/
apoptosis, renin-angiotensin system activation, inflam-
mation, and fibrosis [4, 5, 8, 9]. Interstitial fibrosis is a
late consequence of congenital UPJ obstruction, and can
be attenuated by early release of obstruction, but not if
nephron number is reduced [10]. It is becoming increas-
ingly clear that patients with congenital urinary tract ob-
struction must be followed into adulthood, as the lesions
can progress over the entire life [2].
MicroRNAs (miRNAs) are small non-coding RNAs

(20–24 nt) that regulate gene expression by blocking the
translation of proteins and are involved in multiple mo-
lecular pathways and pathologies. MiRNAs are now con-
sidered promising molecules for biomarkers and/or
targeted therapy of disease [11–14]. While, kidney dis-
eases are no exception [15, 16], to our knowledge no
studies specifically report miRNAs related to UPJ ob-
struction. There is evidence connecting dysregulated
miRNAs including miR-21 and miR-29 with kidney fi-
brosis [17–22], an important feature in severe UPJ ob-
struction. Moreover, knock-down of DICER (the main
protein involved in the biogenesis of miRNAs [23, 24])
leads to congenital anomalies of the kidney and the urin-
ary tract (CAKUT) in mice [25]. MiRNAs are very stable
in urine, a biofluid which can be collected non-

invasively and can be valuable source of molecules to
monitor diseases of the kidney and urinary tract [16].
These observations suggest that studying miRNAs in
UPJ obstruction might help to understand the develop-
ment of obstructive nephropathy and/or provide early
markers of pathological obstruction.
In this study, we analysed the modification of urinary

miRNAs in UPJ obstruction. To improve upon the clin-
ical translatability of our results and compensate for the
lack of tissue availability in human disease, we combined
miRNA data obtained in human urine and miRNA and
mRNA data in kidney tissue of a neonatal partial unilat-
eral ureteral obstruction (UUO) mouse model. This
combined systems biology-based approach followed by
an in vitro validation pointed to the consistent dysregu-
lation of specific miRNAs, let-7a-5p and miR-29-3p and
to new potential targets, E3 ubiquitin-protein ligase
(DTX4) and neuron navigator 1 (NAV1) in UPJ obstruc-
tion that would not be identified otherwise.

Results
MiRNA abundance changes in urine of newborns with
UPJ obstruction
A total of 20 male UPJ obstruction patients and eight
male healthy age-matched (<1 year-old) individuals were
studied (Table 1). The severity of the obstruction varied
with hydronephrosis grades from 1 to 4 and pelvic dila-
tation sizes from 6 to 40 mm (Table 1). We compared
the urinary miRNA abundance of UPJ obstruction pa-
tients to urine of healthy controls using microarray ana-
lysis. This yielded the identification of 227 miRNAs with
changed urinary abundance between the two groups
(unadjusted p < 0.05, Additional file 1).

MiRNA and mRNA expression changes in renal tissue of a
neonatal partial UUO mouse model
The renal miRNA and mRNA profiles of nine neonatal
mice with partial UUO (hydronephrosis grades 2 and 3)
and nine control sham operated mice were studied using
microarray analysis (Table 2). This led to the identifica-
tion of 79 differentially expressed miRNAs and 706
differentially expressed mRNAs, respectively (unadjusted
p < 0.05, Additional files 2 and 3).

Identification of most prominent dysregulated miRNAs
commonly associated with obstructive nephropathy in
humans and mice
To prioritize the molecular features with potentially the
highest impact on the development of kidney lesions, we
next identified the miRNAs that could consistently re-
flect the human disease by comparing the similarity of
the human (urine) and animal (kidney tissue) miRNA
signature taking advantage from the fact that miRNAs
are well conserved between species [26]. The 227
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differentially expressed human miRNAs and 79 differen-
tially expressed mouse miRNAs were combined. This
led to the identification of 18 common miRNAs
(Additional file 4) that were reduced to five miRNAs
when applying a fold change threshold of 2.5 in mice
tissue. These five miRNAs were let-7a-5p miR-16-5p,
miR-29b-3p, miR-125b-5p and miR-26a-5p (Table 3).
Correlation of the urinary abundance of the five miR-
NAs in UPJ patients with clinical parameters showed
that miR-125-5p was inversely correlated with hydrone-
phrosis grade (spearman r = −0,63, p = 0,003, Table 4). In
addition, a slight but significant inverse correlation with
pelvic diameter was also observed for miR-let-7a-5p and
miR-125-5p and with hydronephrosis grade for miR-let-
7a-5p and miR-26a-5p, and a slight but significant
positive correlation with age for miR-let-7a-5p and miR-
16-5p (Table 4).

Identification of most prominent dysregulated pathways
and mRNA targets in obstructive nephropathy
Seven hundred six differentially expressed mRNAs were
observed in kidneys of neonatal mice with partial UUO,
including increased expression of markers of fibrosis
such as Tgf-β1 and different forms of collagen (Add-
itional file 3). To prioritize the mRNA targets, the five
selected common miRNAs in mice and human obstruct-
ive nephropathy were combined with these 706 differen-
tially expressed mRNAs using Ingenuity Pathway
Analysis (IPA).
Then, we focused on the direct connections of the five

miRNAs as generated from the predicted networks from
IPA analysis. This led to the identification of 35 pre-
dicted target mRNAs for these five miRNAs (Additional
files 5, 6, 7 and 8). Next, in order to focus on the most
prominent molecular changes, only mRNAs predicted to
be targeted by at least two of the five miRNAs were kept
for further analysis: E3 ubiquitin-protein ligase DXT4
(Dtx4), leiomodin-1 (Lmod1), a disintegrin-like and
metallopeptidase (reprolysin type) with thrombospondin

type 1 motif, 19 (Adamts19) and neuron navigator 1
(Nav1) (Table 5, Additional file 5).

MiRNA knockdown leads to dysregulated expression of
the mRNA targets in renal cells in vitro
To validate the results of the in silico analysis, we next
assessed whether the predicted miRNA-mRNA target
pairs were directly associated in human renal cells. Hu-
man kidney cells (HK2) were treated for 48 h with
chemically modified molecules blocking the action of
specific miRNA (antagomirs). In the presence of antago-
mirs, the detected signal of let-7a, miR-16-5p, miR-
125b-5p, miR-26a-5p and miR-29b-3p was significantly
decreased (Fig. 1).
MRNA expression of let-7a and miR-125b-3p target

DTX4 was significantly increased in response to down-
regulation of let-7a but was unmodified by antagomir
anti-miR-125b-3p (Fig. 2a). Moreover, significant upreg-
ulation of neuron navigator 1 NAV1 was observed in
HK2 cells treated with the miR-29b-3p antagomir
(Fig. 2d). Surprisingly, the use of antagomirs for miR-
125b-5p and miR-26a-5p resulted in slight but signifi-
cant downregulation of LMOD1, ADAMTS19 and NAV1
(Fig. 2b–d), a result opposite than the predicted regula-
tion, which possibly indicates an indirect mechanism of
effect of these two miRNAs on these targets. Antagomirs
for miR-125b-5p, miR-16-5p and miR-29b-3p showed no
effect on DTX4, LMOD1 and ADAMTS19, respectively
(Fig. 2a–c).

Dtx4 and Nav1 are dysregulated during complete UUO
in vivo
Since obstructive nephropathy potentially induces differ-
ent pathways in the developing and the adult kidney we

Table 1 Clinical data of the human UPJ obstruction patients

N Age (days) at urine sampling
median [range]

HN grade
median [range]

Pelvic diameter mm
median [range]

Healthy controls 8 112 [20–201] n.a. n.a.

UPJ obstruction 20 74 [3–269] 2 [1–4] 15 [6–40]

HN hydronephrosis, n.a. not applicable

Table 2 Experimental data of the partial UUO model animals

N (Male/Female) HN grade
median [range]

Pelvic diameter in mm
median [range]

Sham 9 (4/5) n.a. 1.2 [0.8–1.5]

Partial UUO 9 (6/3) 2.5 [2–3] 1.5 [1–2.8]

HN hydronephrosis, n.a. not applicable

Table 3 Most prominent dysregulated miRNAs commonly
associated to the partial UUO model and human UPJ
obstruction

miRNA UPJ vs Healthy (urine) Partial UUO vs Sham (kidney)

FC p-value FC p-value

let-7a-5p −1,559 0,003 −3,558 0,004

miR-16-5p −1,293 0,002 −2,913 0,0007

miR-29b-3p −1,153 0,03 10,073 3,10E-08

miR-125b-5p −1,18 0,03 −3,219 0,003

miR-26a-5p −1,376 0,03 −3,175 0,001

FC fold change
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also verified the expression of the mRNA targets in the
adult mouse complete UUO model, using eight male
mice with complete UUO and six sham operated mice.
We demonstrated that, similarly to what we observed in
partial UUO in neonatal mice, Dtx4 and Nav1 expres-
sion was significantly increased in UUO mice compared
to the sham (Fig. 3a and c), while Lmod1 was not modi-
fied (Fig. 3b). The signal for Adamts19 was too weak to
provide any reliable data. In addition to the targets, we
also showed that the renal expression of Tgfβ and colla-
gen 1, two markers of fibrosis, and IL-6, a marker of in-
flammation was significantly increased in UUO mice
compared to the sham (Fig. 3d–f ), validating the patho-
logical changes observed in this model.

Discussion
Obstructive nephropathies, with UPJ obstruction as the
prototypic obstructive nephropathy, are frequently en-
countered developmental anomalies in the pediatric
population. Although renal fibrosis and inflammation
are involved in the pathophysiology of severe UPJ ob-
struction, the molecular mechanisms underlying evolu-
tion of the lesions remain undetermined. In addition,
most of this information has been obtained in animal
models of disease. Recently discovered small non-coding
RNAs called miRNAs are excreted and are stable in
urine. Hence, urinary miRNAs could help to further de-
cipher the pathophysiology of UPJ obstruction and gen-
erate the missing link between human and animal data.

In this study we combined human urinary miRNA data
and animal kidney tissue miRNA and mRNA data in a
systems biology approach to obtain insight in the patho-
physiology of the disease and improve upon the trans-
latability of the results. The combined approach and
independent validation pointed to the consistent dysreg-
ulation of specific miRNAs and to new potential targets
in UPJ obstruction.
MiRNAs let-7a-5p, miR-125b-5p, miR-16-5p, miR-

26a-5p and miR-29b-3p were consistently modified in
mice and humans. Among these, miR-29b is a well-
known player in renal pathologies and especially fibrosis.
Indeed, miR-29b targets specific fibrotic molecules in-
cluding collagens or α-smooth muscle actin, and its
abundance is reduced in many fibrotic pathologies as its
expression is inhibited by TGFβ [22, 27]. The protective
role of miR-29b in fibrosis was further demonstrated
in vivo since restoring miR-29b levels in a diabetic ne-
phropathy animal model reversed accumulation of renal
extracellular matrix [28]. On the other hand, to our
knowledge, this is the first time that miR-16 and let-7a
are associated to the development of kidney disease, as
these miRNAs were mostly characterized to be involved
in cancer [29–34]. Downregulation of let-7a has also
been observed in scleroderma, contributing to the exces-
sive deposition of collagen and tissue fibrosis in the skin
[35]. Few data is available for miR-125b and kidney dis-
ease. Circulating miR-125b was found downregulated in
chronic kidney disease (CKD) in hypertensive patients

Table 4 Correlation of the urinary abundance of the five miRNAs in UPJ patients with clinical parameters

Pelvic diameter (mm) Hydronephrosis grade Age (days)

Spearman r p-value Spearman r p-value Spearman r p-value

hsa-let-7a-5p −0,47 0,04 −0,54 0,01 0,53 0,02

hsa-miR-125b-5p −0,47 0,04 −0,63 0,003 0,26 n.s.

hsa-miR-26a-5p −0,33 n.s. −0,50 0,02 0,07 n.s.

hsa-miR-16-5p −0,20 n.s. −0,18 n.s. 0,49 0,03

hsa-miR-29b-3p 0,40 n.s. 0,37 n.s. −0,29 n.s.

Table 5 Most prominent deregulated mRNA targets in obstructive nephropathy

Gene symbol
Description

FC p-value let-7a-5p miR-125b-5p miR-16-5p miR-26a-5p miR- 29b-3p

Dtx4

E3 ubiquitin-protein ligase or deltex 4 homolog (Drosophila) 2,41 0,001 √ √

Lmod1

Leiomodin 1 (smooth muscle) 1,57 0,001 √ √

Adamts19

A disintegrin-like and metallopeptidase (reprolysin type)
with thrombospondin type 1 motif, 19

2,97 0,0006 √ √

Nav1

Neuron navigator 1 1,57 0,002 √ √

FC fold change
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Fig. 1 Selected miRNA expression in response to antagomirs in vitro. Expression of let-7a (a), miR-125b-5p (b), miR-16-5p (c), miR-26a-5p (d) and
miR-29b-3p (e) was assessed by RT-PCR in HK2 cells treated or not with antagomirs. Cont: control; Antag: antagomir. *p < 0.05 versus Cont

Fig. 2 Selected mRNA predicted target expression in response to antagomirs in vitro. Expression of E3 ubiquitin-protein ligase DXT4 (DTX4) (a),
leiomodin-1 (LMOD1) (b), a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 19 (ADAMTS19) (c) and
neuron navigator 1 (NAV1) (d) was assessed by RT-PCR in HK2 cells treated or not with antagomirs against let-7a, miR-125b-5p, miR-16-5p,
miR-26a-5p or miR-29b-3p. Cont: control; Antag: antagomir. *p < 0.05 versus Cont
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suffering from cardiovascular disease [36]. In another
study upregulation of miR-125b protected against
cisplatin-induced kidney injury via inhibition of Nuclear
factor erythroid-2-related factor 2 [37]. MiR-26a has pre-
viously been reported to be over expressed in lung epi-
thelia during development and to be involved in
glomerular and tubular injury related to podocyte dam-
age and maintenance of glomerular filtration rate [38]. A
recent small-scale study (n = 4 UPJ obstruction patients
vs n = 4 tumor-resection controls) identified in kidney
tissue five miRNAs associated to UPJ obstruction. None
of those overlapped with the human urinary miRNAs in
our study and one, miR-342-5p, was also found in
kidney tissue to be associated to obstruction in the par-
tial neonatal mouse model, however with an opposite
regulation [39].
A total of 35 putative mRNA targets for these dif-

ferentially expressed miRNAs were predicted with the
use of Ingenuity Pathway Analysis. In vitro validation
of the predicted miRNA-mRNA pairs and in vivo as-
sessment of the observed mRNA changes led to the
sound confirmation of the regulation of E3 ubiquitin-
protein ligase DTX4 by let-7a. Although E3 ubiquitin-
protein ligase DTX4 has not yet been found associ-
ated to obstructive nephropathy, using the Kidney &
Urinary Pathway Knowledge Base (KUPKB [40],) we
observed that it has been found to be induced in
models of polycystic kidney disease [41, 42] and in a

lupus nephritis model [43]. Furthermore, DTX4 is a
member of Notch Signaling non-canonical pathway
[44]. It has been described that activation of Notch
signaling can lead to fibrosis [45–49]. Hence one can
hypothesize that downregulation of let-7a, activates
DTX4 and the Notch signaling pathway, promoting
the progression of fibrosis in UPJ obstruction.
NAV1 is a protein mostly found in neurons and is

reported to play a critical role in microtubule devel-
opment [50], but has not yet been implicated in UPJ
obstruction. Coinciding with DTX4, NAV1 expression
is also induced in a model of polycystic kidney dis-
ease [41] and is induced in vitro by the major pro-
fibrotic cytokine TGFβ [51], potentially linking NAV1
induction to fibrosis. It is notable, though, that the
regulation of NAV1 by miR-29b-3p did not follow the
classical regulation pattern (up regulation of a miRNA
causes down regulation of a target or vice versa) in
the partial UUO model. In contrast, in the in vitro
experiment NAV1 followed the predicted regulation
and confirming that it may be a direct target of miR-
29b. Previous reports have documented that some
miRNAs may not target mRNAs directly, but only
block the protein translation, leaving the mRNA in-
tact [52–55]. Furthermore, other reports point to the
fact that miRNAs may induce the same direction of
regulation of their mRNA targets depending on the
timeframe and conditions [56–60], providing an

Fig. 3 Selected mRNA predicted target expression in response to adult complete UUO in vivo. Renal expression of E3 ubiquitin-protein ligase
DXT4 (Dtx4) (a), leiomodin-1 (Lmod1) (b), neuron navigator 1 (Nav1) (c), transforming growth factor beta (Tgfb) (d), collagen 1 (Col1a1) (e), and
interleukin 6 (Il6) (f) was assessed by RT-PCR in adult mice after 7 days UUO.*p < 0.05 versus Sham
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explanation of a possible indirect mechanism of miR-
29b-NAV1 regulation. Nevertheless, further investiga-
tion is needed to determine if NAV1 is a direct target
of miR-29b in vivo and if it is an interesting molecule
in the context of UPJ obstruction. Combination of
the human urine miRNA data with the mouse tissue
data increased the confidence in the human data and
allowed selecting the most promising miRNAs in hu-
man disease. A downside of our approach is that this
type of prioritization will only focus on part of the
molecular mechanisms of UPJ. If signals for specific
mechanisms are absent in, for example, humans due
to technical limitations or absence of shedding of
miRNAs in urine but not in mouse tissue, this mech-
anism is not necessarily irrelevant in the pathophysi-
ology of UPJ. Another shortcoming of our study is
the fact that we used unadjusted p-values. Infants
with UPJ obstruction included in the study displayed
a wide range of hydronephrosis (grade 1–4, Table 1)
and pelvic diameter (6–40 mm, Table 1) which gener-
ates considerable variability in the UPJ obstruction
group. The mean fold change after comparison of
healthy controls and UPJ obstruction patients was
only 1.21 fold (±0.27) in this data. This is probably
due to the fact that during excretion/shedding of
miRNAs in urine the in-situ miRNA changes are flat-
tened out. Moreover, correction for multiple testing
resulted in no significant miRNAs in humans. We
therefore continued the prioritization with unadjusted
p values but we compensated for this shortcoming by
the independent validation of the selected targets. Fi-
nally, the question remains whether observations in
mouse tissue or human urine are faithfully reflecting
the changes in the human kidney. In the past, studies
have used a similar approach as ours, i.e. by combin-
ing urine and tissue analysis, and/or by combining
human and animal data, to understand the role of
miRNAs in the development of renal lesions. For ex-
ample, miR-21 has been found to be consistently in-
creased in animal and human samples of both urine
and kidney tissue in the context of renal fibrosis [18,
61–63]. However, during acute kidney injury, miR-21
was increased in kidney tissue and decreased in the
urine in a rat model, and increased in human urine
[64]. In a study of Wang et al. again in a kidney in-
jury model, miR-10a and miR-30d were found de-
creased in tissue and increased in urine after injury
[65]. Finally, miR-192 was observed in different stud-
ies to be up-regulated in tissue in animal model of fi-
brosis, but down-regulated in human tissue samples
and increased in human urine samples [66–69]. These
examples show that there is no common regulation
pattern for miRNAs in urine and kidney and in differ-
ent species, even in the same pathological context

and despite the fact that their role in renal lesions
has been established with confidence. But by taking
advantage of the conservation ability of miRNAs,
combination of urine and tissue analysis, and/or hu-
man and animal data allows to identify features that
are consistently and significantly modified as being
associated with the disease with more confidence and
can help transfer observations from animal models to
human research.
In our study, we did not observe enriched canonical

pathways when studying the miRNAs of human or
mouse UPJ obstruction separately even if around hun-
dreds of miRNAs were found significantly different.
Hence we have used both statistical selection, combin-
ation of different omics data (miRNA and mRNA data)
and pathway enrichment analysis to identify miRNAs
and their targets most likely involved in the etiology of
UPJ obstruction.

Conclusion
Collectively this study is the first to correlate a mouse
model of neonatal partial UUO with human UPJ ob-
struction in a comprehensive systems biology analysis.
Our data revealed let-7a and miR-29b as molecules
potentially involved in the development of fibrosis in
UPJ obstruction via the control of DTX4 in both man
and mice that would not be identified otherwise. We
believe that our approach of combining omics data is
generally applicable. Many omics studies generate
long lists of differentially expressed molecules that are
difficult to prioritize and does not necessarily inform
on the actual impact of these changes in disease. To
further improve on the validity and clinical translata-
bility of the data, and because urine is a rich source
of biomarkers that can be collected easily and non-
invasively, combination of human urine and animal
tissue data (e.g. miRNA, metabolites, proteins etc.)
could be of great help to better understand the mo-
lecular mechanisms involved in the development of
many complex diseases.

Methods
Human samples
Participants and urine collection
The studies were performed in accordance with the
ethical principles in the Declaration of Helsinki and
Good Clinical Practice and was approved by the CPP
SOOM II (number DC-2008-452). Written informed
consent was obtained from the parents of all child
participants. The UPJO group was composed of pa-
tients with grade 1 to 4 hydronephrosis and a renal
pelvic diameter between 6 and 40 mm (Table 1).
Urine was collected from boys (<1 year). Urine from
patients was collected in the morning during 30 min
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using a sterile pediatric urine collection pouch (B.
Braun, Boulogne, France) during hospital consultation.
Samples from healthy controls were both collected in
a hospital setting (from newborns with heart murmur)
and at home. Immediately after collection, all urines
were frozen at −20 °C and stored at −80 °C.

Mouse models
All mouse experiments were conducted in accordance
with the NIH guide for the care and use of laboratory
animals and were approved by the University of Virginia
Animal Care and Use Committee (for the neonatal par-
tial obstruction model) and the animal care and use
committee UMS US006/INSERM, Toulouse, France
(protocol number CEEA-122 2014-06/02605.01) for the
complete adult obstruction model.
Both the partial neonatal and adult complete unilateral

ureteral obstruction (UUO) mouse models have been
previously described [70, 71]. Neonatal mice and adult
mice were sacrificed after 5–7 and 7 days of obstruction,
respectively.

Microarray analysis
Microarray analysis was carried out as described pre-
viously [72, 73]. Briefly, total RNA was extracted
from kidney tissues of nine neonatal mice with par-
tial UUO (hydronephrosis grades 2 and 3) and nine
control sham operated mice. Fluorescently labeled
cRNA targets were generated using the Fluorescent
Linear Amplification Kit (Agilent) and 10.0 mM Cya-
nine 3- or 5-labeled CTP (PerkinElmer, Boston,
MA), and following user’s manual. Cyanine labeled
cRNA from UUO kidneys was mixed with the same
amount of reverse-color cyanine-labeled cRNA from
the corresponding control kidney samples and hy-
bridized on the Agilent 44 K Mouse Whole Genome
Oligonucleotide Microarray. Array hybridization,
washing and scanning were performed as previously
described [72, 73].
MicroRNA expression profiling was performed using

the Mouse miRNA Microarray Release 15.0 (8 × 15 K,
G4471A-029152, Agilent Technologies), and the Human
miRNA V3 Microarray Release 12.0 (8 × 15 K, G44710C-
021827, Agilent Technologies). Briefly, 100 ng of total
RNA was labeled and hybridized using the commercial
miRNA Microarray System with miRNA Complete and
Hybridization Kit (Agilent Technologies) following man-
ufacturer’s instructions. Array hybridization, washing,
scanning, data extraction, and analyses were performed
as described previously.

Cell models and antagomir treatment
Human HK-2 cells were grown in a DMEM/F-12 Nut
Mix medium supplemented with 10% heat-inactivated

fetal calf serum (FCS; GIBCO, Grand Island, NY, USA),
10 μg/mL of EGF, 5 μg/mL of insulin, 4 pg/mL Triiodo-
thyronine (T3), 36 ng/mL of hydrocortisone. After 24 h
of FCS starvation, HK-2 cells were transfected with
5 nmol IDT® miRNA inhibitor targeting five miRNAs:
hsa-let-7a-5p (ref. no 67488991), hsa-miR-125b-5p (ref.
no 67488990) hsa-miR-16-5p (ref no. 67488992), hsa-
miR-26a-5p (ref. no. 67488993) and hsa-miR-29b-3p
(ref. no. 67488994), or with scrambled siRNA (Integrated
DNA Technologies, Leuven, Belgium), using the
DharmaFECT Duo transfection reagent (Dharmacon,
Lafayette, CO, USA).

Gene expression analysis
Total RNA was extracted from human kidney cells
(HK2 cells) and complete UUO kidney samples using
the Illumina’s Epicentre MasterPure Kit (Madison, WI,
USA). Reverse transcription was performed for the
miRNAs with MiRCURY LNA Universal RT Kit of
Exiqon (Vedbaek, Denmark) and for the mRNA with
High Capacity cDNA Reverse Transcription Kit of
Thermo Scientific (Waltham, MA, USA) on a FlexCy-
cler2 (Analytik Jena AG, Jena, Germany). Quantitative
PCR amplification was performed on a StepOnePlus
Real-Time PCR System (Thermo Scientific Waltham,
MA, USA). Sybr Green technology was used for miR-
NAs according to Exiqon’s kit, while for the mRNA
PCR the MESA BLUE qPCR MasterMix Plus kit from
Eurogentec (Liege, Belgium). The primers used for the
PCR are listed in Additional file 9.

Bioinformatic analysis
Network and pathway analysis of the microarray data
were performed using Ingenuity Pathway Analysis (IPA)
software version 18488943 (IPA®, QIAGEN Redwood
City, see http://www.Ingenuity.com).

Statistics
For the microarrays statistical analysis the freely avail-
able software Gene ARMADA was used [74]. A back-
ground correction was made for all arrays by loess
correction and normalization was made by linear low-
ess followed by quantile normalization. The statisti-
cally different genes were the result of a t-test
analysis (p-value < 0.05). The results of the qPCR for
the cell cultures and the partial and complete UUO
experiments were expressed in fold change units
based on 2-ΔΔCt method. The graphs and the statis-
tical analysis (Mann-Whitney test between the groups
with p-value < 0.05 as significant) were performed
with GraphPad Prism v5.0.
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