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Abstract

In conjunction with the ISBI 2015 conference, we organized a longitudinal lesion
segmentation challenge providing training and test data to registered participants.
The training data consisted of five subjects with a mean of 4.4 time-points, and
test data of fourteen subjects with a mean of 4.4 time-points. All 82 data sets
had the white matter lesions associated with multiple sclerosis delineated by two
human expert raters. Eleven teams submitted results using state-of-the-art lesion
segmentation algorithms to the challenge, with ten teams presenting their results at
the conference. We present a quantitative evaluation comparing the consistency of
the two raters as well as exploring the performance of the eleven submitted results
in addition to three other lesion segmentation algorithms. The challenge presented
three unique opportunities: 1) the sharing of a rich data set; 2) collaboration and
comparison of the various avenues of research being pursued in the community;
and 3) a review and refinement of the evaluation metrics currently in use. We report
on the performance of the challenge participants, as well as the construction and
evaluation of a consensus delineation. The image data and manual delineations will
continue to be available for download, through an evaluation website1 as a resource
for future researchers in the area. This data resource provides a platform to compare
existing methods in a fair and consistent manner to each other and multiple manual
raters.

Keywords: Magnetic resonance imaging, multiple sclerosis.

1. Introduction

Multiple sclerosis (MS) is a disease of the central nervous system (CNS) that
is characterized by inflammation and neuroaxonal degeneration in both gray mat-
ter (GM) and white matter (WM) (Compston and Coles, 2008). MS is the most
prevalent autoimmune disorder affecting the CNS, with an estimated 2.5 million5

cases worldwide (World Health Organization, 2008; Confavreux and Vukusic, 2008)
and was responsible for approximately 20,000 deaths in 2013 (Global Burden of
Disease Study 2013 Mortality and Causes of Death Collaborators, 2015). MS has a
relatively young age of onset with an average age of 29.2 years and interquartile
onset range of 25.3 and 31.8 years (World Health Organization, 2008). Symptoms10

of MS include cognitive impairment, vision loss, weakness in limbs, dizziness, and
fatigue. The term multiple sclerosis originates from the scars (known as lesions)
in the WM of the CNS that are formed by the demyelination process, which can
be quantified through magnetic resonance imaging (MRI) of the brain and spinal
cord. T2-weighted (T2-w) lesions within the WM (or WMLs), so called because15

of their hyperintense appearance on T2-w MRI, have become a standard part of
the diagnostic criteria (Polman et al., 2011). However, it is a labor intensive and

1The Challenge Evaluation Website is: http://smart-stats-tools.org/lesion-challenge-2015
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somewhat subjective task to identify and manually delineate or segment WM hyper-
intensities from normal tissue in MR images. This objective is made more difficult
when considering a longitudinal series of data, particularly when each data set at20

a given time-point for an individual consists of several scan modalities of varying
quality (Vrenken et al., 2013). MS frequently involves lesions that may be readily
apparent on a scan at one time-point, but not in subsequent time-points (He et al.,
2001; Gaitán et al., 2011; Qian et al., 2011). Delineating the scans individually
without reference to previous images, may lead to errors in detection of damaged25

tissue; such as previously lesioned areas that have contracted, undergone remyeli-
nation, are no longer inflamed, or a combination thereof. These damaged areas
may correlate with disability, although it is as yet unclear precisely how they are
related and through what exact mechanism they affect changes in symptoms (Meier
et al., 2007; Filippi et al., 2012). Thus there is an apparent need for the automatic30

detection and segmentation of WMLs in longitudinal CNS scans of MS patients.
Three major subtypes or stages of WMLs can be visualized using MR imag-

ing (Filippi and Grossman, 2002; Wu et al., 2006): 1) gadolinium-enhancing lesions,
which demonstrate blood-brain barrier leakage, 2) hypointense T1-w lesions, also
called black holes that possess prolonged T1-w relaxation times, and 3) hyper-35

intense T2-w lesions, which likely reflect increased water content stemming from
inflammation and/or demyelination. These latter lesions are the most prevalent
type (Bakshi, 2005) and are hyperintense on proton density weighted (PD-w), T2-w,
and fluid attenuated inversion recovery (FLAIR) images. Both enhancing and black
hole lesions typically form a subset of T2-w lesions. Quantification of T2-w lesion40

volume and identification of new T2-w and enhancing lesions in longitudinal data are
commonly used to gauge disease severity and monitor therapies, although these
metrics have largely been shown to only weakly correlate with clinical disability (Fil-
ippi et al., 2014). Pathologically, we can differentiate the different stages of an MS
WML as pre-active, active, chronic active, or chronic inactive depending on the45

demyelination status, adaptive immune response, and microglia behavior. Lesions
with normal myelin density and activated microglia are termed pre-active, while
sharp bordered demyelination reflects active lesions. Chronic active lesions have a
fully demyelinated center and are hypocellular, and chronic inactive lesions have
complete demyelination and an absence of any microglia. Current MRI technologies50

are very sensitive to T2-w WMLs, however they do not provide any insight about
pathological heterogeneity (Jonkman et al., 2015).

Despite this, MRI has gained prominence as an important tool for the clinical
diagnosis of MS (Polman et al., 2011), as well as understanding the progression
of the disease (Buonanno et al., 1983; Paty, 1988; Filippi et al., 1995; Evans55

et al., 1997; Collins et al., 2001). A variety of techniques are being used for
automated MS lesion segmentation (Anbeek et al., 2004; Brosch et al., 2015, 2016;
Deshpande et al., 2015; Dugas-Phocion et al., 2004; Elliott et al., 2013, 2014;
Ferrari et al., 2003; Geremia et al., 2010; Havaei et al., 2016; Jain et al., 2015; Jog
et al., 2015; Johnston et al., 1996; Kamber et al., 1996; Khayati et al., 2008; Rey60

et al., 1999, 2002; Roy et al., 2010, 2014b; Schmidt et al., 2012; Shiee et al., 2010;
Subbanna et al., 2015; Sudre et al., 2015; Tomas-Fernandez and Warfield, 2011,
2012; Valverde et al., 2017; Weiss et al., 2013; Welti et al., 2001; Xie and Tao, 2011)
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with several review articles available that describe and evaluate the utility of these
methods (García-Lorenzo et al., 2013; Lladó et al., 2012), though semi-automated65

approaches have also been reported (Udupa et al., 1997; Wu et al., 2006; Zijdenbos
et al., 1994). The early work on WML segmentation used the principle of modeling
the distributions of intensities of healthy brain tissues and segmenting outliers to
those distributions as lesions. An early example of this is Van Leemput et al. (2001),
which augmented the outlier detection with contextual information using a Markov70

random field (MRF). This idea was extended by Aït-Ali et al. (2005) by using an
entire time series for a subject, estimating the tissue distributions using an iterative
Trimmed Likelihood Estimator (TLE), followed by a segmentation refinement step
based on the Mahalanobis distance and prior information from clinical knowledge.
Later improvements to the TLE based model include mean shift (García-Lorenzo75

et al., 2008, 2011) and Hidden Markov chains (Bricq et al., 2008). Other approaches
to treating the WM lesions as an outlier class include methods based on support
vector machines (SVM) (Ferrari et al., 2003), coupling of local & global intensity
models in a Gaussian Mixture Model (GMM) (Tomas-Fernandez and Warfield, 2011,
2012) and using adaptive outlier detection (Ong et al., 2012).80

As an alternative to the outlier detection approach other methods create models
with lesions as an additional class. Examples of this include: k-nearest neighbors (k-
NN) (Anbeek et al., 2004), a hierarchical Hidden Markov random field (Sajja et al.,
2004, 2006); an unsupervised Bayesian lesion classifier with various regions of the
brain having different intensity distributions (Harmouche et al., 2006); a Bayesian85

classifier based on the adaptive mixtures method and an MRF (Khayati et al., 2008);
a constrained GMM based on posterior probabilities followed by a level set method
for lesion boundary refinement (Freifeld et al., 2009); a fuzzy C-means model with
a topology consistency constraint (Shiee et al., 2010); and adaptive dictionary
learning (Deshpande et al., 2015; Roy et al., 2014a, 2015b); along with many other90

techniques.
The majority of these methods operate in an unsupervised manner using statisti-

cal notions about distributions to identify lesions. There has also been significant
work done to develop supervised methods, which use training data to identify lesions
within new subjects. One such approach included an anatomical template-based95

registration to help modulate a k-NN classification scheme (Warfield et al., 2000),
which used features from the images as well as distances to the template following
the registration. Sweeney et al. (2013b) presented a logistic regression model that
assigned voxel-level probabilities of lesion presence. Roy et al. (2014b) demon-
strated a patch-based lesion segmentation that used examples from an atlas to100

match patches in the input images using a sparse dictionary approach. Variants of
this supervised machine learning solution include: generic machine learning (Xie
and Tao, 2011); dictionary learning and sparse-coding (Roy et al., 2014a, 2015b;
Weiss et al., 2013); and random forest (RF) work by Mitra et al. (2014), variations
of the RF approach include Geremia et al. (2010, 2011) using multi-channel MR105

intensities, long-range spatial context, and asymmetry features to identify lesions;
Jog et al. (2015) producing overlapping lesion masks from the RF that were aver-
aged to create a probabilistic segmentation, and Maier et al. (2015) used extra tree
forests (Geurts et al., 2006) which are robust to noise and uncertain training data.
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There has been less work on automated methods for serial lesion segmenta-110

tion (segmentation of lesions for the same subject over different time-points). The
earliest reported approach (Rey et al., 1999, 2002) performed an optical flow regis-
tration between successive rigidly registered time-points, then used the Jacobian
of the deformation field to identify the lesions. Published at about the same time,
Kikinis et al. (1999) used 4D connected component analysis for longitudinal lesion115

segmentation. Prima et al. (2002) introduced voxel wise statistical testing to identify
regions with significantly increased intensity over time, treating the appearance
of WMLs as a change-point problem. Welti et al. (2001) created a feature vector
of radial intensity-based descriptors of lesions from four contrast images at multi-
ple time-points. The course of these descriptors is then analyzed with a principal120

component analysis (PCA) to build a model of spatio-temporal lesion evolution.
Projection of candidate lesions into the PCA space was used to identify lesions,
with the maximal temporal gradient of a FLAIR image being used to identify the
onset of the lesion. Bosc et al. (2003) used a pipeline comprised of iterative affine
registration, deformable registration, image resampling, and intensity normalization,125

followed by a temporal change point detection scheme. Their change point detection
used a generalized likelihood ratio test (GLRT) (Hsu et al., 1984) that computes
the probabilities of the two hypotheses (no change vs. significant change). We
note that the initial steps of Bosc et al. (2003), up to change detection, are now
considered standard preprocessing for time-series data and is similar to the prepro-130

cessing that was performed on the data in our challenge. As previously mentioned
Aït-Ali et al. (2005) extended the outlier detection approach (Van Leemput et al.,
2001) to the entire time series using TLE followed by refinement steps. Roy et al.
(2015a) extended their 3D example patch-based lesion segmentation algorithm to
4D by considering a time series of patches from available training data. Other work135

evaluated WML changes over time (Battaglini et al., 2014; Elliott et al., 2010; Ganiler
et al., 2014; Roura et al., 2015; Sweeney et al., 2013a) with the focus being on
the appearance/disappearance of lesions by subtraction of the intensity images of
consecutive time-points. As there clearly has been a relative dearth of work on the
automated segmentation of time-series WMLs, and as there is no approach that has140

gained widespread acceptance, a main purpose of this paper is to provide a public
database to reignite work in this area.

Public databases have played a transformative role in medical imaging, an early
example of this is the now ubiquitous BrainWeb (Collins et al., 1998) computational
phantom (see also Cocosco et al. (1997) and Kwan et al. (1999)). With over one145

hundred citations per year for the last decade, it is almost inconceivable to write an
MR-based brain segmentation paper without including an evaluation on the Brain-
Web phantom. These public databases have served to standardize comparisons and
evaluation criteria. In recent years there has been a shift in the community to launch
these data sets as a challenge associated with a workshop or conference (Styner150

et al., 2008; Schaap et al., 2009; Heimann et al., 2009; Menze et al., 2015; Mendrik
et al., 2015; Maier et al., 2017). In particular, the 2008 MICCAI MS Lesion chal-
lenge (Styner et al., 2008) was a significant step forward in the sharing of clinically
relevant data. These benchmark data sets allow for a direct comparison between
competing methods without any unique data issues, and just as importantly, these155
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benchmarks remove the barrier of data that limits the number of researchers working
in a particular area. An important feature of benchmarks is the retention of the test
data set labels from the public domain avoiding the “unintentional overtraining of the
method being tested” and preserving “the method’s segmentation performance in
practice” (Menze et al., 2015).160

In this paper, we present details of the Longitudinal White Matter Lesion Segmen-
tation of Multiple Sclerosis Challenge (hereafter the Challenge) that was conducted
during the 2015 International Symposium on Biomedical Imaging (ISBI). The Chal-
lenge data will serve as an ongoing resource with future submissions for evaluation
possible through the Challenge Website2. In Section 2, we outline the data provided165

to the Challenge participants, the set-up of the Challenge, and the evaluation metrics
used in comparing the submitted results from each team. Section 2 also includes a
description of our Consensus Delineation, which avoids the biases of depending
on a single rater. Section 3 provides an overview of the methods involved in the
Challenge with complete descriptions of each algorithm included in Appendix B.170

Section 4 includes the comparison between the manual delineations, algorithms,
and the Consensus Delineation. We conclude the main body of the manuscript
with a discussion of the impact of this Challenge and future directions in WML
segmentation in Section 5. Appendix A includes a complete description of the
protocol used for the manual delineation. Appendix C includes the results from the175

Challenge at ISBI.

2. Materials and Metrics

Teams registered for the Challenge, and received access to a Training Set
of images in February of 2015. Followed one month later by the first evaluation
data set (Test Set A), with the Teams having one month to return their results180

for evaluation. One week before the Challenge event at ISBI 2015, Teams were
provided with a second evaluation data set (Test Set B). Teams were told that the
time between downloading Test Set B and the return of their results would be timed
for comparison. Participants were informed of the criteria for the Challenge prizes,
which were furnished by the National MS Society. Details of the data, preprocessing,185

and the Challenge metrics are provided below. The results of the Challenge are
provided in Appendix C.

2.1. Challenge Data

The Challenge participants were given three tranches of data: 1) Training Set;
2) Test Set A; and 3) Test Set B. The Training Set consisted of five subjects, four of190

which had four time-points, while the fifth subject had five time-points. Test Set A
included ten subjects, eight of which had four time-points, one had five time-points,
and one had six time-points. Test Set B had four subjects–three with four time-
points and two with five time-points. Two consecutive time-points are separated by

2The Challenge Evaluation Website is: http://smart-stats-tools.org/lesion-challenge-2015
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approximately one year for all subjects. Table 1 includes a demographic breakdown195

for the training and test data sets. Challenge participants did not know the MS status
of the subjects of each data set.

Each scan was imaged and preprocessed in the same manner, with data ac-
quired on a 3.0 Tesla MRI scanner (Philips Medical Systems, Best, The Netherlands)
using the following sequences: a T1-weighted (T1-w) magnetization prepared rapid200

gradient echo (MPRAGE) with TR = 10.3 ms, TE = 6 ms, flip angle = 8◦, &
0.82 × 0.82 × 1.17 mm3 voxel size; a double spin echo (DSE) which produces the
PD-w and T2-w images with TR = 4177 ms, TE1 = 12.31 ms, TE2 = 80 ms,
& 0.82 × 0.82 × 2.2 mm3 voxel size; and a T2-w fluid attenuated inversion recov-
ery (FLAIR) with TI = 835 ms, TE = 68 ms, & 0.82 × 0.82 × 2.2 mm3 voxel size. The205

imaging protocols were approved by the local institutional review board. Each sub-
ject underwent the following preprocessing: the baseline (first time-point) MPRAGE
was inhomogeneity-corrected using N4 (Tustison et al., 2010), skull-stripped (Carass
et al., 2007, 2010), dura stripped (Shiee et al., 2014), followed by a second N4
inhomogeneity correction, and rigid registration to a 1 mm isotropic MNI template.210

We have found that running N4 a second time after skull and dura stripping is
more effective (relative to a single correction) at reducing any inhomogeneity within
the images (see Fig. 1 for an example image set after preprocessing). Once the
baseline MPRAGE is in MNI space, it is used as a target for the remaining images.
The remaining images include the baseline T2-w, PD-w, and FLAIR, as well as the215

scans from each of the follow-up time-points. These images are N4 corrected and
then rigidly registered to the 1 mm isotropic baseline MPRAGE in MNI space. Our
registration steps are inverse consistent and thus any registration based biases are
avoided (Reuter and Fischl, 2011). The skull & dura stripped mask from the baseline
MPRAGE is applied to all the subsequent images, which are then N4 corrected220

again. All the images in the Training Set, Test Set A, and Test Set B, had their lesions
manually delineated by two raters in the MNI space. Rater #1 has four years of
experience delineating lesions, while Rater #2 has 10 years experience with manual
lesion segmentation and 17 years experience in structural MRI analysis. We note
that the raters were blinded to the temporal ordering of the data. The protocol for225

the manual delineation followed by both raters is in Appendix A. The preprocessing
steps were performed using JIST (Version 3.2) (Lucas et al., 2010).

For each time-point of every subject’s scans in the Training Set, Test Set A,
and Test Set B, the participants were provided the following data: the original
scan images consisting of T1-w MPRAGE, T2-w, PD-w, and FLAIR, as well as the230

preprocessed images (in MNI space) for each of the scan modalities. The Training
Set also included manual delineations by two experts identifying and segmenting
WMLs on MR images: details about the delineation protocol and lesion inclusion
criteria are in Appendix A.

As teams registered for the Challenge, they were provided with the Training235

Data. One month prior to the scheduled Challenge, Test Set A was made available
to participants. The results for Test Set A could be returned to the organizers at
any time prior to the Challenge event, though a preferred return date was given.
The third data set, Test Set B, was provided to participants one week before the
Challenge event with the caveat that teams would be timed. The times used were240
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Table 1: Demographic details for the training data and both test data sets. The top line is the information
of the entire data set, while subsequent lines within a section are specific to the patient diagnoses.
The codes are RR for relapsing remitting MS, PP for primary progressive MS, and SP for secondary
progressive MS. N (M/F) denotes the number of patients and the male/female ratio, respectively. Time-
points is the mean (and standard deviation) of the number of time-points provided to participants. Age
is the mean age (and standard deviation), in years, at baseline. Follow-up is the mean (and standard
deviation), in years, of the time between follow-up scans.

Data Set N (M/F) Time-Points Age Follow-Up
Mean (SD) Mean (SD) Mean (SD)

Training 5 (1/4) 4.4 (±0.55) 43.5 (±10.3) 1.0 (±0.13)
RR 4 (1/3) 4.5 (±0.50) 40.0 (±7.55) 1.0 (±0.14)
PP 1 (0/1) 4.0 57.9 1.0 (±0.04)

Test A 10 (2/8) 4.3 (±0.68) 37.8 (±9.18) 1.1 (±0.28)
RR 9 (2/7) 4.3 (±0.71) 37.4 (±9.63) 1.1 (±0.29)
SP 1 (0/1) 4.0 41.7 1.0 (±0.05)

Test B 4 (1/3) 4.5 (±0.58) 43.3 (±7.64) 1.0 (±0.05)
RR 3 (1/2) 4.7 (±0.58) 44.8 (±8.65) 1.0 (±0.05)
PP 1 (0/1) 4.0 39.0 1.0 (±0.04)

based on the initial download time for each team and the time at which they returned
their results to the Challenge organizers. In Appendix C we include a comparison
of the ten Challenge participants on both Test Set A & B, and in Appendix C.1 we
report the time it took participants to process and return Test Set B.

2.2. Challenge Metrics245

To compare the results from the participants with our two manual raters and
Consensus Delineation, we used the following metrics: Dice overlap (Dice, 1945),
positive predictive value, true positive rate, lesion true positive rate, lesion false
positive rate, absolute volume difference, average symmetric surface distance,
volume correlation, and longitudinal volume correlation. The Dice overlap is a250

commonly used volume metric for comparing the quality of two binary label masks.
It is defined as the ratio of twice the number of overlapping voxels to the total number
of voxels in each mask. IfMR is the mask of one of the human raters andMA is the
mask generated by a particular algorithm, then the Dice overlap is computed as

Dice(MR,MA) = 2
|MR ∩MA|

|MR| + |MA|
,255

where | · | is a count of the number of voxels. This overlap measure has values in the
range [0, 1], with 0 indicating no agreement between the two masks, and 1 meaning
the two masks are identical.

The positive predictive value (PPV) is the voxel-wise ratio of the true positives to
the sum of the true and false positives,260

PPV(MR,MA) =
|MR ∩MA|

|MR ∩MA| +
∣∣∣Mc

R ∩MA

∣∣∣ ,
8



(a) (b) (c)

(d) (e) (f)

Figure 1: Shown are the preprocessed (a) MPRAGE, (b) FLAIR, (c) T2-w, and (d) PD-w images for a
single time-point from one of the provided Training Set subjects. The corresponding manual delineations
by our two raters are shown in (e) for Rater #1 and (f) for Rater #2.

whereMc
R is the complement ofMR which when intersected withMA, represents the

set of false-positives. PPV is also known as precision. The true positive rate (TPR)
is the voxel-wise ratio of the true positives to the sum of true positives and false
negatives, calculated as265

TPR(MR,MA) =
|MR ∩MA|

|MR ∩MA| +
∣∣∣MR ∩M

c
A

∣∣∣ .
Lesion true positive rate (LTPR) is the lesion-wise ratio of true positives to the
sum of true positives and false negatives. We define the list of lesions, LR, as the
18-connected components ofMR and define LA in a similar manner. Then

LTPR(MR,MA) =
|LR ∩ LA|

|LR ∩ LA| +
∣∣∣LR ∩ L

c
A

∣∣∣ ,270

where |LR ∩ LA| counts any overlap between a connected component ofMR and
ML; which means that both the human rater and algorithm have identified the

9



same lesion, though not necessarily having the same extents. Lesion false positive
rate (LFPR) is the lesion-wise ratio of false positives to the sum of false positives
and true negatives,275

LFPR(MR,MA) =

∣∣∣Lc
R ∩ LA

∣∣∣∣∣∣Lc
R ∩ LA

∣∣∣ +
∣∣∣Lc

R ∩ L
c
A

∣∣∣ ,
where Lc

R is the 18-connected components ofMc
R.

Absolute volume difference (AVD) is the absolute difference in volumes divided
by the true volume,

AVD(MR,MA) =
Max (|MR| , |MA|) −Min (|MR| , |MA|)

|MR|
.280

Average symmetric surface distance (ASSD) is the average of the distance (in
millimeters) from the lesions inMR to the nearest lesion identified inMA plus the
distance from the lesions inMA to the nearest lesion identified inMR.

ASSD(MR,MA) =

∑
r∈LR

d (r,LA) +
∑

a∈LA
d (a,LR)

2
,

where d (r,LA) is the distance from the lesion r in LR to the nearest lesion in LA. A285

value of 0 would correspond toMR andMA being identical.
Volume correlation (TotalCorr) is the Pearson’s correlation coefficient (Pearson,

1895) of the volumes, whereas longitudinal volume correlation (LongCorr) is the
Pearson’s correlation coefficient of the volumes within a subject. Each of the various
metrics is computed for both raters and then used to compute a normalized score290

which was used to determine the Challenge winner. For the Consensus Delineation
the metrics are computed directly between each rater/method and the Consensus
Delineation.

2.3. Inter-Rater Comparison

Rater #1 has four years of experience delineating lesions, while Rater #2 has295

10 years experience with manual lesion segmentation and 17 years experience
in structural MRI analysis. We note that the raters were blinded to the temporal
ordering of the data. The protocol for the manual delineation followed by both raters
is in Appendix A. Table 2 shows an inter-rater comparisons for all 82 images—21
coming from the Training data, 43 from Test Set A, and 18 from Test Set B. See Fig. 1300

for an example delineation. The results highlight the subjective nature of manual
delineations based on differing interpretations of the protocol (See Appendix A)
and scan data, and further emphasize the need for development of fully-automated
methods. Importantly, our inter-rater Dice overlap of 0.6340 is better than the Dice
overlap of 0.2498 the 2008 MICCAI MS Lesion challenge (Styner et al., 2008) had305

between their two raters on ten scans they both delineated. However, we note that
using just the Dice overlap masks some of the differences between the two raters.
In particular the volume differences—as measured by AVD—are quite stark.
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Table 2: Inter-rater comparison averaged across the 82 images from the training and test data set. The first
table displays the symmetric metrics: Dice, average symmetric surface distance (ASSD), & longitudinal
correlation. The second table shows the asymmetric metrics: positive predictive value (PPV), true positive
rate (TPR), lesion false positive rate, lesion true positive rate, and absolute volume difference (AVD). R1
refers to Rater #1, R2 to Rater #2, and “R1 vs. R2” denotes that R1 was regarded as the truth within the
comparison.

Symmetric Metrics

Dice 0.6340
ASSD 3.5290
Longitudinal Correlation -0.0053

Asymmetric Metrics R1 vs. R2 R2 vs. R1

PPV 0.7828 0.5688
TPR 0.5029 0.8224
Lesion FPR 0.1380 0.5630
Lesion TPR 0.4370 0.8620
AVD 0.3726 0.6117

2.4. Consensus Delineation

To avoid the biases of depending on either rater, we choose to construct a310

Consensus Delineation for each of the 61 images included in Test Set A and B. To
achieve such a delineation, we employ the simultaneous truth and performance level
estimation (STAPLE) algorithm (Warfield et al., 2004). STAPLE is an expectation-
maximization algorithm for the statistical fusion of binary segmentations. The
algorithm considers several segmentations and computes a probabilistic estimate315

of the true segmentation—as well as other quantities. Given that we have only
two manual delineations for each patient image, we have taken the Challenge
Delineations provide by each team (see Section 3 and Appendix B for details) and
included them with our two manual delineations in construction of the Consensus
Delineation. In brief, STAPLE estimates the true segmentation from an optimal320

combination of the input segmentations, the weights for which are determined by
the estimated performance level of the individual segmentations. The resultant
Consensus Delineation, from the STAPLE combination of the 14 algorithms and
2 manual raters, is regarded as the “ground truth” for the comparisons within
Section 4. The Consensus Delineation provides the opportunity to simultaneously325

compare the human raters and the Challenge participants across all of our metrics;
this—to our knowledge—is something that has not been reported in any previous
Challenge (Styner et al., 2008; Schaap et al., 2009; Heimann et al., 2009; Menze
et al., 2015; Mendrik et al., 2015; Maier et al., 2017).
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3. Methods Overview330

We present a brief overview of each of the methods used in this paper, complete
details of each approach are available in Appendix B. Figures 2 and 3 show results
of each algorithm on a typical slice from one time-point of one of our data sets, as
well as the corresponding MPRAGE, FLAIR, and T2-w images. Ten teams originally
submitted results for the Challenge data sets and were able to participate in the335

Challenge event (see Section 2.1 for a complete description of the data). In addition
to these methods, we received results for two methods from teams that did not
participate in the Challenge event. To provide some context with the 2008 MICCAI
MS Lesion challenge (Styner et al., 2008), we also include the methods that finished
first and third in that challenge. Where we present descriptions or results of the340

methods, we use a colored square to help identify methods and within that square
we denote methods that are unsupervised with the letter U and those that require
some training data (supervised methods) with the letter S. When considering the
Consensus Delineation in Section 4, we identify Rater #1 and #2 with colored
squares with the letter M to denote manual delineations.345

3.1. Challenge Participants

SS Team CMIC
Multi-Contrast PatchMatch Algorithm for Multiple Sclerosis Lesion Detection
(F. Prados, M. J. Cardoso, N. Cawley, O. Ciccarelli, C. A. M. Wheeler-Kingshott, &
S. Ourselin)350

Team CMIC used the PatchMatch (Barnes et al., 2010) algorithm for MS lesion
detection. The main contribution of this work is the generalization of the optimized
PatchMatch algorithm to the context of MS lesion detection and its extension to
multimodal data.

UU Team VISAGES GCEM355

Automatic Graph Cut Segmentation of Multiple Sclerosis Lesions
(L. Catanese, O. Commowick, & C. Barillot)

Team VISAGES GCEM used a robust Expectation-Maximization (EM) algorithm
to initialize a graph, followed by a min-cut of the graph to detect lesions, and an
estimate of the WM to help remove false positives. GCEM stands for Graph-cut with360

Expectation-Maximisation.

SS Team VISAGES DL
Sparse Representations and Dictionary Learning Based Longitudinal Segmentation
of Multiple Sclerosis Lesions
(H. Deshpande, P. Maurel, & C. Barillot)365

Team VISAGES DL used sparse representation and a dictionary learning paradigm
to automatically segment MS lesions within the longitudinal MR data. Dictionaries
are learned for the lesion and healthy brain tissue classes, and a reconstruction
error-based classification approach for prediction.
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SS Team CRL370

Model of Population and Subject (MOPS) Segmentation
(X. Tomas-Fernandez & S. K. Warfield)

Inspired by the ability of experts to detect lesions based on their local signal
intensity characteristics, Team CRL proposes an algorithm that achieves lesion and
brain tissue segmentation through simultaneous estimation of a spatially global375

within-the-subject intensity distribution and a spatially local intensity distribution
derived from a healthy reference population.

SS Team IIT Madras
Longitudinal Multiple Sclerosis Lesion Segmentation using 3D Convolutional Neural
Networks380

(S. Vaidya, A. Chunduru, R. Muthuganapathy, & G. Krishnamurthi)
Team IIT Madras modeled a voxel-wise classifier using multi-channel 3D patches

of MRI volumes as input. For each ground truth, a convolutional neural net-
work (CNN) is trained and the final segmentation is obtained by combining the
probability outputs of these CNNs. Efficient training is achieved by using sub-385

sampling methods and sparse convolutions.

SS Team PVG One
Hierarchical MRF and Random Forest Segmentation of MS Lesions and Healthy
Tissues in Brain MRI
(A. Jesson & T. Arbel)390

Team PVG One built a hierarchical framework for the segmentation of a variety of
healthy tissues and lesions. At the voxel level, lesion and tissue labels are estimated
through a MRF segmentation framework that leverages spatial prior probabilities for
nine healthy tissues through multi-atlas label fusion (MALF). A random forest (RF)
classifier then provides region level lesion refinement.395

SS Team IMI
MS-Lesion Segmentation in MRI with Random Forests
(O. Maier & H. Handels)

Team IMI trained a RF with supervised learning to infer the classification function
underlying the training data. The classification of brain lesions in MRI is a complex400

task with high levels of noise, hence a total of 200 trees are trained without any
growth-restriction. Contrary to reported observations, no overfitting occurred.

UU Team MSmetrix
Automatic Longitudinal Multiple Sclerosis Lesion Segmentation
(S. Jain, D. M. Sima, & D. Smeets)405

MSmetrix (Jain et al., 2015) is presented, which performs lesion segmentation
while segmenting brain tissue into CSF, GM, and WM, with lesions identified based
on a spatial prior and hyperintense appearance in FLAIR.
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SS Team DIAG
Convolution Neural Networks for MS Lesion Segmentation410

(M. Ghafoorian & B. Platel)
Team DIAG utilizes a deep CNN with five layers in a sliding window fashion to

create a voxel-based classifier.

UU Team TIG
Model Selection Propagation for Application on Longitudinal MS Lesion Segmenta-415

tion
(C. H. Sudre, M. J. Cardoso, & S. Ourselin)

Based on the assumption that the structural anatomy of the brain should be
temporally consistent for a given patient, Team TIG proposes a lesion segmentation
method that first derives a GMM separating healthy tissues from pathological and420

unexpected ones on a multi-time-point intra-subject group-wise image. This average
patient-specific GMM is then used as an initialization for a final time-point specific
GMM from which final lesion segmentations are obtained. Team TIG submitted new
results after the completion of the Challenge to address a bug in their code, the
second submitted results are denoted TIG BF. Both sets of results are included in425

Appendix C; however, the Consensus Delineation was only compared to the bug
fixed results (TIG BF).

3.2. Other Included Methods

These methods did not participate in the Challenge, however they are included
to add to the richness and variety of the methods presented. MORF and Lesion-430

TOADS represent methods that finished first and third in the 2008 MICCAI MS
Lesion challenge (Styner et al., 2008), respectively, and as such offer the opportunity
to provide a reference between the two challenges. In particular, the two algorithms
offer different perspectives on the problem (supervised versus unsupervised, respec-
tively) while also testing the ongoing viability of these two methods within the field.435

Our third included method (MV-CNN)—based on deep-learning—is a state-of-the-art
approach; the authors of MV-CNN submitted their results to the Challenge Website
while this manuscript was in preparation. As a deep-learning method, MV-CNN
represents a key direction in which the medical imaging community is moving. While
the fourth included method, BAUMIP, submitted results for both Challenge data sets440

but was unable to participate at the Challenge event.

UU BAUMIP
Automatic White Matter Hyperintensity Segmentation using FLAIR MRI
(L. O. Iheme & D. Unay)

BAUMIP is a method based on intensity thresholding and 3D voxel connectivity445

analysis. A simple model is trained that is optimized by searching for the maximum
obtainable Dice overlap.
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SS MV-CNN
Multi-View Convolutional Neural Networks
(A. Birenbaum & H. Greenspan)450

MV-CNN is a method based on a Longitudinal Multi-View CNN (Roth et al., 2014).
The classifier is modeled as a CNN, whose input for every evaluated voxel are
patches from axial, coronal, and sagittal views of the T1-w, T2-w, PD-w, and FLAIR
images of the current and previous time-points. That is multiple contrasts, multiple
views, and multiple time-points. MV-CNN consists of three phases: Preprocessing455

the Challenge data, Candidate Extraction, and CNN Prediction. The Challenge
data is preprocessed by intensity clamping the top and bottom 1% and the intensity
values are scaled to the range [0, 1].

SS MORF
Multi-Output Random Forests for Lesion Segmentation in Multiple Sclerosis460

(A. Jog, A. Carass, D. L. Pham, & J. L. Prince)
MORF is an automated algorithm to segment WML in MR images using multi-

output random forests. The work is similar to Geremia et al. (2011) in that it uses
binary decision trees that are learned from intensity and context features. However,
instead of predicting a single voxel, an entire neighborhood or patch is predicted for465

a given input feature vector. The multi-output decision trees implementation has sim-
ilarities to output kernel trees (Geurts et al., 2007). Predicting entire neighborhoods
gives further context information such as the presence of lesions predominantly
inside WM, which has been shown to improve patch based methods (Jog et al.,
2017). This approach was originally presented in Jog et al. (2015). Geremia et al.470

(2011) finished first at the 2008 MICCAI MS Lesion challenge (Styner et al., 2008),
and thus this should represent a good proxy for that work.

UU Lesion-TOADS
A topology-preserving approach to the segmentation of brain images with multiple
sclerosis lesions475

(N. Shiee, P.-L. Bazin, A. Ozturk, D. S. Reich, P. A. Calabresi, & D. L. Pham)
Lesion-TOADS (Shiee et al., 2010) is an atlas-based segmentation technique

employing topological and statistical atlases. The method builds upon previous
work (Bazin and Pham, 2008) by handling lesions as topological outliers that can
be addressed in a topology-preserving framework when grouped together with the480

underlying tissues. Lesion-TOADS finished third at the 2008 MICCAI MS Lesion
challenge (Styner et al., 2008), however there have been some improvements in the
method in the intervening years.

4. Consensus Comparison

We construct a Consensus Delineation for each test data set by using the485

simultaneous truth and performance level estimation (STAPLE) algorithm (Warfield
et al., 2004). The Consensus Delineation uses the two manual delineations created
by our raters as well as the output from all fourteen algorithms. The manual
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MPRAGE FLAIR T2-w Consensus

MM Rater #1 MM Rater #2 SS PVG One SS DIAG

SS MV-CNN SS IMI UU V-GCEM SS CMIC

Figure 2: Delineations are shown for a sample slice from the preprocessed MPRAGE, FLAIR, and T2-w
images for a time-point of a test data set, followed by our Consensus Delineation and the results for the
top eight delineations as ranked by their Dice Score with the Consensus. For ease of reference, a grid
has been added underneath the delineations. The bottom eight delineations, as ranked by their Dice
Score with the Consensus, can be see in Fig. 3.
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MPRAGE FLAIR T2-w Consensus

UU Lesion-TOADS SS IIT Madras UU MSmetrix UU TIG BF

UU MORF SS V-DL UU BAUMIP SS CRL

Figure 3: Delineations are shown for a sample slice from the preprocessed MPRAGE, FLAIR, and T2-w
images for a time-point of a test data set, followed by our Consensus Delineation and the results for the
bottom eight delineations as ranked by their Dice Score with the Consensus. For ease of reference, a
grid has been added underneath the delineations. The top eight delineations, as ranked by their Dice
Score with the Consensus, can be see in Fig. 2.
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delineations and the fourteen algorithms are treated equally within the STAPLE
framework. In the remainder of this section, we regard the Consensus Delineation as490

the “ground truth” and using our metrics compare the human raters and all fourteen
algorithms to this ground truth. The TIG BF results from Team TIG were used in the
construction of the Consensus Delineation. We refer to the collection (two manual
raters and fourteen algorithms results) as the Segmentations. The construction of
a Consensus Delineation provides the opportunity to simultaneously compare the495

human raters and the Challenge participants across all of our metrics. This may
help us answer the question:

Can automated lesion segmentation now replace the human rater?

Table 3 presents the Dice overlap score between the Consensus Delineation
and the Segmentations; which include the mean Dice overlap across the 61 patient500

images in Test Set A and B, as well as the standard deviation, and the range of
reported values. Figure 4 shows a least squares linear regression between the
lesion load estimated by each of the Segmentations and that given by the Consensus
Delineation. Figure 5 shows two plots summarizing true positive rate (TPR) against
positive predictive value (PPV) for the Segmentations. The plot was split into two505

plots, each containing a group of eight segmentations, for ease of viewing. Table 4
includes the mean, standard deviation, and range of the average symmetric surface
distance (ASSD). Within Table 4, the Segmentations are ranked by their mean ASSD
with the Consensus Delineation. Figure 6 shows two plots summarizing the lesion
true positive rate (LTPR) and the lesion false positive rate (LFPR)—again this plot is510

split into two groups of eight for ease of viewing. Finally, we have Table 5 which has
the mean, standard deviation, and range for the longitudinal correlation (LongCorr).

5. Discussion and Conclusions

5.1. Inter-rater Comparison

As organizers, we felt that the overall performance of our two raters relative to515

each other was disappointing (see Table 2). For example, the inter-rater Dice overlap
of 0.6340 was below that of other inter-rater studies of MS lesions: Zijdenbos et al.
(1994) reports a mean inter-rater Dice overlap of 0.700, they refer to Dice overlap as
similarity. They also note that when restricted to the same scanner their inter-rater
Dice overlap rose to 0.732—as reported earlier all of our data was acquired on520

the same scanner. However, the 2008 MICCAI MS Lesion challenge (Styner et al.,
2008) had two raters repeat ten of the scans and their inter-rater mean Dice overlap
was 0.2498. We therefore believe that our inter-rater performance is acceptable,
especially considering our raters worked on 82 data sets—61 in Test Set A and B,
and another 21 in the Training Set.525

5.2. Consensus Delineation

The Consensus Delineation afforded us the opportunity to directly compare
the quality of our two manual raters with the submitted results. When performing
statistical comparisons we use an α level of 0.001. If the Dice overlap (Table 3)
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Table 3: Mean, standard deviation (SD), and range of Dice overlap scores for the Segmentations against
the Consensus Delineation. The Segmentations are ranked by their mean Dice overlap.

Dice

Method Mean (SD) Range

MM Rater #2 0.670 (±0.178) [0.246, 0.843]
MM Rater #1 0.658 (±0.149) [0.218, 0.852]
SS Team PVG One 0.638 (±0.164) [0.291, 0.872]
SS Team DIAG 0.614 (±0.133) [0.282, 0.824]
SS MV-CNN 0.614 (±0.164) [0.177, 0.830]
SS Team IMI 0.609 (±0.160) [0.035, 0.829]
UU Team VISAGES GCEM 0.607 (±0.147) [0.235, 0.832]
SS Team CMIC 0.598 (±0.177) [0.200, 0.816]
UU Lesion-TOADS 0.579 (±0.121) [0.279, 0.773]
UU Team MSmetrix 0.561 (±0.131) [0.245, 0.764]
SS Team IIT Madras 0.550 (±0.153) [0.233, 0.811]
UU Team TIG BF 0.540 (±0.139) [0.190, 0.719]
SS MORF 0.474 (±0.180) [0.068, 0.747]
SS Team VISAGES DL 0.432 (±0.196) [0.039, 0.827]
UU BAUMIP 0.426 (±0.123) [0.136, 0.631]
SS Team CRL 0.415 (±0.172) [0.000, 0.664]

is considered the definitive metric for rating lesion segmentation then the expert530

human raters are still better than algorithms. However, the level of expertise is
important, we note that Rater #2 has a decade more delineation experience than
Rater #1. A two-sided Wilcoxon Signed-Rank Paired Test (Wilcoxon, 1945) between
the highest ranking algorithm (Team PVG One) and the highest ranking manual
delineation (Rater #2) reaches significance with a a p-value of 0.0093. Whereas,535

the same test, between Team PVG One and Rater #1 does not reach significance
(p-value of 0.1076). Of course Dice overlap is a crude metric with volumetric
insensitivities. From Fig. 4, we can see that the least squares linear regression of
Rater #2 is closest to the line of unit slope suggesting that it may be a proxy for
the lesion load as represented by the Consensus Delineation. We do note that the540

Consensus Delineation, as generated by STAPLE, may be overly inclusive—which
would explain the grouping together of all the other Segmentations in Fig. 4. Figure 5
shows a cross-hairs plot of the range of true positive rate (TPR) versus the positive
predictive value (PPV). The desired operating point for any segmentation in this plot
is the upper right hand corner (TPR = 1, PPV =1). Rater #2 is the closest to this545

desired operating point, with Rater #1 second, and Team PVG One third. A two-
sided Wilcoxon Signed-Rank Paired Test comparing the distance from the operating
points to the desired operating point between either Rater #2 or Rater #1 and Team
PVG One had p-values of 0.0058 and 0.0458, respectively. Again, suggesting that
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Figure 4: The plot shows a least squares linear regression fit between the lesion load estimated by each
of the Segmentations and that from the Consensus Delineation. The dashed line represents a line of unit
slope. All volumes are in mm3.

the level of expertise is critical in achieving the best results. A similar analysis of550

Fig. 6 shows that MV-CNN operates closest to the desired optimal point (in this
case the lower right hand corner), with Rater #1 second, and Lesion-TOADS third.
Moreover, the two-sided Wilcoxon Signed-Rank Paired Test has a p-value of <
0.0001 between MV-CNN and Rater #1. This suggests that MV-CNN may be better
than manual delineators when it comes to LFPR and LTPR. Tables 4 and 5 show555

other metrics that are generally not reported in the lesion segmentation literature.
However, both of which suggest advantages to the use of algorithms over manual
raters. For the average symmetric surface distance (ASSD); of the algorithms that
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TPR vs. PPV
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Figure 5: Each subplot shows the range of values for the true positive rate (TPR) and the positive
predictive value (PPV) between eight of the Segmentations and the Consensus Delineation. The top
plot shows the top eight Segmentations as ranked by the Dice overlap, and the bottom plot shows the
remaining eight Segmentations. The desirable point on each of the subplots is the upper right hand
corner, where TPR is 1 and PPV is 1.
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LFPR vs. LTPR
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Figure 6: Each subplot shows the range of values for the lesion true positive rate (LTPR) and the lesion
false positive rate (LFPR) between eight of the Segmentations and the Consensus Delineation. The
top plot shows the top eight Segmentations as ranked by the Dice overlap, and the bottom plot shows
the remaining eight Segmentations. The desirable point on each of the subplots is the lower right hand
corner, where LTPR is 1 and LFPR is 0.

22



Table 4: Mean, standard deviation (SD), and range of the average symmetric surface distance (ASSD)
for the Segmentations against the Consensus Delineation. The Segmentations are ranked by their mean
ASSD.

ASSD

Method Mean (SD) Range

SS Team PVG One 2.16 (±3.83) [0.54, 18.86]
SS MV-CNN 2.26 (±1.78) [0.54, 7.16]
SS Team DIAG 2.29 (±1.43) [0.84, 7.53]
UU Team TIG BF 2.38 (±1.89) [0.80, 8.15]
UU Lesion-TOADS 2.71 (±1.33) [1.60, 8.03]
SS Team IIT Madras 2.86 (±2.08) [0.66, 9.27]
MM Rater #2 2.99 (±3.45) [0.58, 17.96]
UU BAUMIP 3.06 (±1.65) [1.07, 7.37]
MM Rater #1 3.11 (±2.80) [0.55, 11.96]
UU Team VISAGES GCEM 3.26 (±2.57) [0.89, 11.49]
UU Team MSmetrix 3.31 (±2.10) [1.03, 9.26]
SS Team IMI 3.59 (±4.80) [0.81, 35.83]
SS Team CMIC 3.85 (±2.68) [0.97, 10.36]
SS Team VISAGES DL 5.28 (±4.69) [0.84, 26.68]
SS MORF 5.68 (±4.42) [1.67, 25.07]
SS Team CRL 6.14 (±6.36) [1.56, 7.53]

rank above Rater #2, only Team PVG One is statistically significantly different with a
p-value of < 0.0001. However, with respect to longitudinal correlation (see Table 5)560

none of the algorithms are statistically significantly better than the highest rated
manual delineation, which comes from Rater #2. Based on the comparison to
the Consensus Delineation, there is not clear evidence to suggest that any of the
automated algorithms is better than the manual delineations of Rater #1 and #2.

5.3. Best Algorithm565

We caution that we cannot truly answer the question of which algorithm is the
true best for WML segmentation. We have chosen a metric collection that was felt to
best represent desirable properties in a longitudinal lesion segmentation algorithm.
However, as can be seen in Section 4, arguments can be made for several of the
algorithms to be named the best depending on the chosen criteria. For example, if570

LongCorr (see Table 5) is deemed most important, then Team IIT Madras would be
considered the best. By switching to consider the Dice overlap, Team IIT Madras
with a mean score of 0.550 is behind eight other algorithms, and both human raters.
In contrast several methods (Team PVG One, Team DIAG, MV-CNN, Team IMI, &
Team VISAGES GCEM) have mean Dice overlap above 0.600 with the Consensus575

Delineation. With Team PVG One having 42 cases (out of 61) with a Dice overlap
over 0.600. Details about the Winner of the Challenge is in Appendix C.
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Table 5: Mean, standard deviation (SD), and range of the longitudinal correlation (LongCorr) for the
Segmentations against the Consensus Delineation. The Segmentations are ranked by their mean
LongCorr.

LongCorr

Method Mean (SD) Range

SS Team IIT Madras 0.657 (±0.483) [-0.583, 0.997]
SS Team CMIC 0.607 (±0.582) [-0.693, 1.000]
SS Team CRL 0.432 (±0.524) [-0.567, 1.000]
MM Rater #2 0.424 (±0.634) [-0.763, 0.998]
UU BAUMIP 0.421 (±0.615) [-0.919, 0.999]
SS Team DIAG 0.402 (±0.634) [-0.974, 0.990]
UU Lesion-TOADS 0.376 (±0.654) [-0.636, 1.000]
SS Team PVG One 0.340 (±0.623) [-0.955, 0.998]
SS Team VISAGES DL 0.327 (±0.679) [-0.900, 0.970]
UU Team TIG BF 0.249 (±0.696) [-0.943, 0.998]
SS Team IMI 0.220 (±0.728) [-0.981, 0.984]
SS MORF 0.181 (±0.540) [-0.785, 0.976]
MM Rater #1 0.171 (±0.634) [-0.899, 0.969]
UU Team MSmetrix 0.153 (±0.746) [-0.930, 1.000]
UU Team VISAGES GCEM 0.042 (±0.675) [-0.999, 0.991]
SS MV-CNN 0.031 (±0.683) [-0.980, 0.999]

5.4. Future Work
As organizers, we were surprised that most of the submitted approaches did not

take advantage of the longitudinal nature of the data. For example, Team MSmetrix580

used a temporally consistency step to correct their WML segmentations, yet had bad
longitudinal correlation, LTPR, & LFPR, relative to the other Challenge participants
in the comparison with the Consensus Delineation. This would seem to imply that
existing ideas about temporal consistency do not represent the biological reality
underlying the appearance and disappearance of WMLs. It should be noted that585

the longitudinal consistency of the raters was poor, as the raters were presented
with each scan independently and were themselves not aiming for longitudinal
consistency. Longitudinal manual delineation protocols should be augmented so
as not to blind the raters to the ordering of the data. The hope would be that all
the information can be used to obtain the most accurate and consistent results590

possible. However, it remains a challenge as to how the longitudinal information can
be incorporated into the manual delineation protocol. We believe that by making
this challenging data set available and providing an automated site for method
comparisons, the Challenge data will foster new efforts and developments to further
improve algorithms and increase detection accuracy.595

The results of the Consensus Delineation suggest that there is still work to be
done before we can stop depending on manual delineations to identify WMLs. This
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is a disappointing state, considering the amount of research that has been done in
this area in the last two decades. The situation is made worse when considering
the shortcomings of the manual delineations and the automated algorithms. Clearly600

longitudinal consistency is an area in which all the automated algorithms could
improve. Our human raters were blinded to the temporal ordering of the data, unlike
the algorithms, and it is not clear at this juncture how the human raters performance
might have changed given this information. Of course, this only covers what we
would reasonably expect WML segmentation algorithms to do today. We should605

expect them to be able to classify the three types of WML (enhancing, black hole, &
T2-w) and localize as periventricular or cortical lesions, eventually providing more
specific location classifications such as juxtacortical, leukocortical, intracortical, and
subpial. These properties may be important in distinguishing the status of patients.
The next generation of MS lesion detection software needs to address these issues.610

An issue which we had not intended to explore was the failure of global measures.
Lesion load—as determined by lesion segmentation—is an important clinical mea-
sure; the reduction (or stabilization) of which through automated or semi-automatic
image analysis methods is one of the primary outcome measures to determine the
efficacy of MS therapies. Lesion load and several other global measures fail to615

predict the disease course; instead we need to use location specific measures—as
mentioned above—to serve as outcome predictors or staging criteria for monitoring
therapies (Filippi et al., 2014). Beyond this there is a desire for measures that help
in identifying the pathophysiologic stages of MS lesions (pre-active, active, chronic
active, or chronic inactive) (Jonkman et al., 2015).620
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Appendix A. Lesion Protocol

The following protocol was used in the creation of the MS lesion masks, which635

were created in our 1 mm isotropic MNI space.

1. Review the possibilities for presentation of MS lesions in brain scans, an
excellent resource is Sahraian and Radue (Sahraian and Radue, 2007). It is
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also a good idea to familiarize yourself with the paint and mask functions in
MIPAV (McAuliffe et al., 2001; Bazin et al., 2005) before you begin, although640

this protocol description can serve as a basic guide.
2. Open MIPAV. If you have not done so in the past, add the Paint toolbar to the

interface (Toolbars > Paint toolbar). The Image toolbar should be present by
default; if not, go to Toolbars > Image toolbar.

3. Open two copies of the FLAIR scan and one copy each of the T1-w, T2-w,645

and PD-w scans (File > Open image (A) from disk > select files > Open).
These should be appropriately co-registered in the axial view with identical
slice thickness and field of view values before beginning this process.

4. Click on the T1-w scan to select it, then click on the WL button on the MIPAV
toolbar to bring up the Level and Window adjuster. This should automatically650

result in a reasonable tissue contrast for viewing potential lesions on the T1-w.
If the contrast is inadequate, change the window and level settings. Close the
tool when you are satisfied with the contrast.

5. Enlarge each image three times using the magnifying glass + button on the
Image toolbar for a total magnification of 4×. Arrange the images on your655

display with the two FLAIR copies next to each other. Ensure that the scans
are properly aligned with one another horizontally. This will enable you to
quickly check the other images to identify and verify tissue abnormalities as
lesions (or not) while working on the FLAIR mask.

6. Link the scans together by first clicking on the Sync slice number button on660

the Image toolbar (two arrows one pointing left and the other pointing right).
Then click on each scan and select the Link images button (broken links next
to Sync slice number button; the broken links change to an intact link when
activated). This will ensure that all of the scans stay on the same slice as the
FLAIR while you work. Click on one of the scans, then scroll up and down665

while looking from side to side over the images to verify proper registration
and check for image processing errors (e.g., missing pieces of brain).

7. Select one of the FLAIR scans, then click on the Paint Grow button (looks like a
paint bucket) on the Paint toolbar to open the intensity and connectivity-based
paint mask generator.670

8. Open the Paint Power Tools plugin. The icon (lightbulb) should be at the right
end of the Paint toolbar. Look at the Threshold section. Find the maximum
intensity value present in the scan by observing the number in the right-hand
box (upper threshold).

9. Look at the Paint Grow tool. Find the section marked Set maximum slider675

values. Change the maximum slider values in the paint mask generator to
reflect the maximum intensity in the scan, and click Set.

10. Choose a lesion with well-defined borders and strong hyperintensity on the
FLAIR scan. Click on the most hyperintense area in the lesion.

11. Move the second slider (Delta below selected voxel intensity) to the right until680

it encompasses most of the lesioned tissue.
12. Scroll up and down through the image to ensure that the selection is limited

to the lesioned area and does not include hyperintensities due to noise or
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artifact. If non-lesioned tissue is included, move the slider back to the left until
this tissue is deselected.685

13. Move the first slider (Delta above selected voxel intensity) to the right to ensure
that all voxels of higher intensity in the lesion are selected.

14. Repeat this process until all well-defined lesions in the FLAIR scan have been
selected, remembering to scroll up and down frequently to prevent masking of
non-lesioned tissue. In general, this process will result in a rough draft of a690

lesion mask.
Do not use this process for any area that is affected by scan artifact or for
any hyperintensity that is not clearly a lesion. Investigate questionable areas
during the later stages of the delineation process.
If a decision is to be made between fully encompassing a lesion and additional695

non-lesioned tissue or partially covering a lesion without extraneous tissue,
choose the latter option. It tends to be easier, within MIPAV, to add to a mask
than subtract from it.

15. When you are satisfied with your rough mask, save it as an unsigned byte
mask (VOI > Paint conversion > Paint to Unsigned byte mask). This will give700

you the binary mask data you have generated thus far. When the mask image
appears, go to the File menu and choose Save image as. Enter the file name
and desired extension, then click Save.

16. Close the binary mask and the Paint Grow tool.
17. To begin, move your pointer over the area around the edge of a lesion, hold the705

mouse button down, and notice the intensity difference between the interior
and exterior of the lesion. Record the intensity value for the area at the edge
of the lesion.
Because many MS lesions are found in close proximity to the ventricles, it is
useful to start in the middle slice in the axial view. Delineate from the middle710

axial slice to the superior aspect of the brain, scroll down to check your work,
and then delineate from the middle to the inferior view.

18. On the Paint Power Tools interface, click the box next to Threshold. Enter
the intensity value for the outside edge of the lesion in the first box; this will
restrict your paint to voxels between that intensity (lower threshold) value and715

the value listed in the box to the right (upper threshold).
There is no need to change the value in the right box unless you are delineating
lacunes. In that case, you should set the left box to the lowest possible value,
and change the upper threshold to the highest value found on the edge of the
lacune.720

19. Click on the paintbrush icon on the paint toolbar. Paint around the edge of
the lesion to test your threshold. You may need to paint and erase (paint =
left mouse button, erase = right mouse button) the first time you do it, and
then the threshold should be activated. You may also need to adjust the lower
threshold value (left box). If too many voxels are being excluded from the725

lesion mask, lower the threshold value for a more inclusive range. If too many
voxels are being included, increase the threshold value.

20. If you wish, you can change the paintbrush size by clicking on the drop-down
menu in the center of the Paint toolbar and selecting one of the options.
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You may also customize your paintbrush options by clicking on the Paint brush730

editor button (looks like a group of paintbrushes) to the right of this menu. This
will open a grid size selector that allows you to specify the width and height of
the grid for your paintbrush in pixels (default is 12×12). Click OK, and the grid
will open. Draw the shape you want for your paintbrush, then go to the “Grid
options” menu to save (Grid options > Save paint brush > input file name >735

Save). Your custom paintbrush will appear in the menu the next time MIPAV is
opened, so restart the program if you want to use it immediately.

21. As you move to different slices, you may need to readjust the lower threshold.
Not all of the lesion edges have the same intensity value, and intensities often
differ between lesions at the anterior vs posterior areas of the same slice.740

22. During this process, it is extremely important to scroll up and down frequently
in order to get a sense of each lesion’s shape and ensure mask continuity.
For every hyperintensity identified, scrolling up and down can also help to rule
out false positives. Be sure to look at the other scans, particularly the T2-w, in
order to verify that what you are selecting is a lesion.745

In some cases, a lesion may be much more readily visible on the T2-w scan.
If this occurs, it is possible to delineate that portion directly on the T2-w
scan and add this small mask area to your FLAIR mask. This is particularly
relevant when the FLAIR image contains a great deal of artifacts. If you cannot
adequately capture the lesion on the FLAIR, use the T2-w.750

23. When debating what to include in the mask, keep these things in mind.
(a) Lesions usually have rounded or smoothed edges.
(b) Lesions appear distinctly hyper- or hypo- intense when compared with

surrounding tissue (usually hyperintense on FLAIR, PD-w, and T2-w
scans, and hypointense on T1-w),755

(c) Lesions will usually be found near the ventricles, in the corpus callo-
sum, or in the deep white matter, though juxtacortical lesions are not
uncommon.

(d) Lesions may appear in the cerebellum, brainstem, temporal lobes, or
basal ganglia at a lower intensity relative to the majority of the lesions.760

It is especially important to use information from the other scans when
attempting to detect and delineate lesions in these areas.

(e) Include white matter encompassed by closed, well-defined clusters of
lesions. Do not include internal white matter if the cluster is open.

(f) Include all CSF inside lacunes.765

(g) If a lesion is adjacent to clearly hyperintense areas near the ventricles,
and you can confirm that these areas appear damaged in the T1-w scan,
include them in the mask. Lesioned tissue bordering the ventricles looks
ragged and dark on T1-w scans.

(h) Do not include diffusely abnormal white matter (DAWM) in the masks for770

ISBI scans. The intensity of DAWM is between normal white matter and
lesioned tissue on FLAIR. DAWM looks mottled on T1-w, may radiate
outward like a halo from a focal lesion, and is usually found around the
ventricles.
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24. Save your work frequently or use the automatic save function in the Paint775

Power Tools interface. Check the box next to Auto save under Misc., then
set the number in the box to reflect how often you want the mask to be
automatically saved (default is 10 minutes).

25. For some lesions, you may need to turn the paint threshold off and use the
standard paint option, which will not restrict your paint to any specific intensity780

values. To do this, simply uncheck the box next to Threshold.
26. When you have finished delineating the lower portions of the brain, go back

through the entire scan and check your work against the other images, focus-
ing specifically on any areas that may have been difficult to verify as lesions.
Edit as necessary.785

27. Save your final mask.
28. To load a mask that you have worked on previously, select the FLAIR scan,

then click on the second button from the left on the paint toolbar (appears to
be a folder opening with a four-square gradient in front of it). Choose your
mask file, click Open, and your mask will be loaded over the FLAIR.790

29. If you would like to edit your mask after opening it from a saved file, open the
Power Paint Tools, click on Mask to Paint under the Import/Export section at
the bottom of the interface, and continue working.

Appendix B. Methods

For completeness, we provide descriptions of the Challenge Participants in795

Appendix B.1 and in Appendix B.2 we describe other methods that were not part of
the Challenge which we included in our evaluation. Where we present descriptions
or results of the methods, we use a colored square to help identify methods and
within that square we denote methods that are unsupervised with the letter U and
those that require some training data (supervised methods) with the letter S.800

Appendix B.1. Challenge Participants

Table B.1 provides a synopsis of these methods and the MR sequences used by
each individual team during the Challenge.

SS Team CMIC
Multi-Contrast PatchMatch Algorithm for Multiple Sclerosis Lesion Detection805

(F. Prados, M. J. Cardoso, N. Cawley, O. Ciccarelli, C. A. M. Wheeler-Kingshott, &
S. Ourselin)

Team CMIC used the PatchMatch (Barnes et al., 2010) algorithm for MS lesion
detection. The main contribution of this work is the generalization of the optimized
PatchMatch algorithm to the context of MS lesion detection and its extension to810

multimodal data.
The original PatchMatch algorithm was designed to look for similarities between

two 2D patches within the same image (Barnes et al., 2010). Later, the Optimized
PAtchMatch Label (OPAL) fusion approach extended patch correspondences be-
tween a target 3D image and a reference library of 3D training templates (Ta et al.,815
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Table B.1: An overview of the methods and data used by the Challenge participants. We denote methods
that are unsupervised with the letter U and those that require some training data (supervised methods)
with the letter S.

Name Approach Sequences

SS Team CMIC
Multimodal patch matching
with an l2-norm

T1-w, T2-w, PD-w, &
FLAIR

UU Team VISAGES GCEM
Robust EM initialized graph
cut

T1-w, T2-w, & FLAIR

SS Team VISAGES DL
Class specific sparse T1-w, T2-w, PD-w, &
dictionaries FLAIR

SS Team CRL
Mixture of global & local T1-w, T2-w, & FLAIR
intensity distributions from
a reference population

SS Team IIT Madras
n3 Convolutional Neural
Networks

T1-w, T2-w, PD-w, &
FLAIR

SS Team PVG One
Hierarchical MRF & random
forest refinement

T1-w, T2-w, & FLAIR

SS Team IMI Random forests T1-w, T2-w, PD-w, &
FLAIR

UU Team MSmetrix
Hierarchical EM followed by
temporal consistency check

T1-w & FLAIR

SS Team DIAG
n2 Convolutional Neural
Networks

T1-w, T2-w, PD-w, &
FLAIR

UU Team TIG
Hierarchical subject specific
GMM

T1-w, T2-w, & FLAIR

2014). Here, the PatchMatch algorithm is used to locate pathological regions through
the use of a template library comprising a series of multimodal images with manually
segmented MS lesions. By matching patches between the target multimodal image
and the multimodal images in the template library, PatchMatch can provide a rough
estimate of the location of the lesions in the target image.820

OPAL uses the sum of the squared differences (SSD) between two patches over
one single modality to measure patch similarity. This is replaced with an l2-norm
over the multimodal patches, which are assumed to be in the same space. To
improve computational speed, as in the original OPAL method, the computation
of the patch similarity is stopped if the current sum is superior to the previous825

minimal multimodality SSD. As this PatchMatch algorithm has a non-binary output,
an adaptive threshold value is used to binarize the probabilistic mask. A robust
range (with 2% outliers on both tails) of all voxels with non-zero probabilities is
calculated, and then the mean of the values inside the robust range is computed.
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This mean is then used as the threshold to binarize the probabilistic segmentation.830

Finally, if the highest probability within the robust range is below 0.1 the method
assumes that no lesions have been detected, meaning that the patient is lesion-free.

UU Team VISAGES GCEM
Automatic Graph Cut Segmentation of Multiple Sclerosis Lesions
(L. Catanese, O. Commowick, & C. Barillot)835

Team VISAGES GCEM uses a robust Expectation-Maximization (EM) algorithm
to initialize a graph, followed by a min-cut of the graph to detect lesions, and an
estimate of the WM to help remove false positives. GCEM stands for Graph-cut with
Expectation-Maximisation.

A region of interest is defined based on the thresholded T2-w image. Each840

voxel within the region of interest is represented in a graph and connected to two
terminal nodes, known as the source and sink, which respectively represent the
object class for MS lesions and normal appearing brain tissues (NABT). Spatially
neighboring nodes are connected by n-links weighted by boundary values that reflect
the similarity of the two considered voxels. The contour information contained in the845

n-links weights is computed using a spectral gradient (García-Lorenzo et al., 2009).
The regional term represents how the voxel fits into the given models of object and
background. The edges between a node of the image and the terminal source and
sink nodes are called t-links. Normally these models are estimated using seeds
given as manual input. Instead, the Team uses an automated version of the graph850

cut where the object and background seeds for the initialization are computed from
the images. To do so a 3-class multivariate GMM is employed, representing CSF,
GM, and WM with lesions being treated as outliers to these three classes.

The seeds are estimated using a robust EM algorithm (García-Lorenzo et al.,
2011), which optimizes a trimmed likelihood in order to be robust to outliers. The855

algorithm then alternates between the computation of the GMM parameters and the
% of outlier voxels. From the GMM NABT parameters, the Mahalanobis distance
is computed of each voxel to each of the classes in the GMM NABT model. This
distance is then used to compute a p-value for determining the probability of each
voxel belonging to each of the three classes. For each voxel i its smallest p-value pi860

is retained. As the sinks represent voxels that are close to NABT, the t-link weights
Wbi are defined as Wbi = 1 − pi. To help distinguish MS lesions from other outliers
(vessels, etc.), the fact that MS lesions are hyperintense compared to WM in T2-w
sequences is used. A fuzzy logic approach is used to model this based on the
previously computed model of GMM NABT, which determines fuzzy weights from865

which the corresponding t-link weights are computed, see García-Lorenzo et al.
(2009) for complete details.

The MS lesions are assumed to appear surrounded by WM and not adjacent to
the cortical mask border. Any candidate lesions that violate either of these criteria
are removed. Finally, all candidate lesions smaller than 3mm3 are discarded.870
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SS Team VISAGES DL
Sparse Representations and Dictionary Learning Based Longitudinal Segmentation
of Multiple Sclerosis Lesions
(H. Deshpande, P. Maurel, & C. Barillot)

Team VISAGES DL used sparse representation and a dictionary learning paradigm875

to automatically segment MS lesions within the longitudinal MR data. Dictionaries
are learned for the lesion and healthy brain tissue classes, and a reconstruction
error-based classification approach for prediction.

Modeling signals using sparse representation and a dictionary learning frame-
work has achieved promising results in image classification (Deshpande et al., 2015;880

Mairal et al., 2009; Roy et al., 2014a, 2015b; Weiss et al., 2013). Sparse coding finds
a sparse coefficient vector a ∈ Rk for representing a given signal x ∈ Rn using a few
atoms of an over-complete dictionary D ∈ Rk×n. The sparse representation problem
is represented as mina ‖a‖0 such that ‖x − Da‖22 ≤ ε where ε is the error in the
representation. This l0 problem can be more efficiently solved as the l1 minimization885

problem

min
a
‖x − Da‖22 + λ‖a‖1,

where λ balances the trade-off between error and sparsity. For a set of signals {x}m1 ,
a dictionary D is found from the underlying data such that each signal is sparsely
represented by a linear combination of atoms,890

min
D,{ai}

m
1

m∑
1

‖xi − Dai‖
2
2 + λ‖ai‖1.

The optimization is an iterative two-step process involving sparse coding with a fixed
D followed by a dictionary update for fixed atoms {ai}

m
1 .

The following preprocessing steps are used in the approach. Artifacts in the
Challenge data are removed through denoising the images using a non-local means895

approach (Coupé et al., 2008). The images are then linearly rescaled to the range
[0, 255] followed by a longitudinal intensity normalization (Karpate et al., 2014). A
leave-one-out cross-validation experiment was used to determine an optimal patch
size of 5× 5× 5. Patches of this size were then extracted and rasterized centered on
every second voxel in the input images, this was done to reduce the computational900

complexity inherent in using every voxel. Patches in the training data are determined
to belong to either the healthy tissue class or the lesion class, based on the manual
delineations. Patches are finally normalized to limit their individual norms below or
equal to unity. From the training data class-specific dictionaries are learned for the
two classes.905

Given a test patch, the patch classification is performed in two steps: First the
sparse coefficients for each class are learned. The test patch is then assigned to
the class with which it has minimum representation error. As the healthy class data
represents complex anatomical structures such as CSF, GM, and WM, it has more
variability in comparison to the lesion class. To account for this, the healthy class910

is allowed to have a larger dictionary size than the lesion class. As the patches
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are centered on every other voxel in the image, a majority vote multi-patch scheme
is used to determine the classification of each voxel. All patches that overlap a
particular voxel contribute their classification to determine the winner of the majority
voting. The following parameters are used in solving the l1 minimization problem: a915

sparsity parameter of λ = 0.95 with a dictionary size of 5, 000 for the healthy tissue
class and a size of 700 to 2, 500 for the lesion class, depending on the total lesion
load.

TEAM VISAGES DL performed longitudinal intensity normalization as a pre-
processing step to negate the intensity differences across the different time points920

for a single MS patient. However, there are large intensity differences across several
patients in the provided data set. The Team believes that improved classification
results could be obtained after performing intensity normalization across all patients.

SS Team CRL
Model of Population and Subject (MOPS) Segmentation925

(X. Tomas-Fernandez & S. K. Warfield)
Inspired by the ability of experts to detect lesions based on their local signal

intensity characteristics, Team CRL proposes an algorithm that achieves lesion and
brain tissue segmentation through simultaneous estimation of a spatially global
within-the-subject intensity distribution and a spatially local intensity distribution930

derived from a healthy reference population.
To address the limitations of intensity-based MS lesion classification, the imaging

data used to identify lesions is augmented to include both an intensity model of the
patient under consideration and a collection of intensity and segmentation templates
that provide a model on normal tissue. The approach is called a Model of Population935

and Subject (MOPS) intensities (Tomas-Fernandez and Warfield, 2015). Unlike
classical approaches in which lesions are characterized by their intensity distribution
compared to all brain tissues, MOPS aims to distinguish locations in the brain with
an abnormal intensity level when compared with the expected value at the same
location in a healthy reference population.940

A reference population of fifteen healthy volunteers was acquired including
T1-w, T2-w FSE (Fast spin echo), FLAIR-FSE, and diffusion weighted images
on a 3T clinical MR scanner from GE Medical Systems (Waukesha, WI, USA,
see Tomas-Fernandez and Warfield (2015) for details about acquisition and spatial
alignment). The MOPS algorithm combines a local intensity GMM derived from945

the reference population with a global intensity GMM estimated from the imaging
data. Intuitively, the local intensity model down weights the likelihood of those voxels
having an abnormal intensity given the reference population. Since MRI structural
abnormalities will show an abnormal intensity level compared to similarly located
brain tissues in healthy subjects, MS lesions are identified by searching for areas950

with low likelihood.
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SS Team IIT Madras
Longitudinal Multiple Sclerosis Lesion Segmentation using 3D Convolutional Neural
Networks
(S. Vaidya, A. Chunduru, R. Muthuganapathy, & G. Krishnamurthi)955

Team IIT Madras modeled a voxel-wise classifier using multi-channel 3D patches
of MRI volumes as input. Two convolutional neural networks (CNNs) were trained,
each of which represented one of the trained raters. The final segmentation is
obtained by combining the probability outputs of these two CNNs. Efficient training
is achieved by using sub-sampling methods and sparse convolutions.960

The provided data is preprocessed such that all subjects and time-points are
histogram-matched to the first provided patient and time-point, then normalized
using the mean CSF value, followed by a robust (1%) data truncation (Avants et al.,
2011). A voxel-wise classifier is employed to perform the segmentation task with
3D patches from each of the four channels (T1-w, T2-w, PD-w, and FLAIR) being965

fed to the classifier. As MS Lesions only constitute a very small percentage of the
MRI volume, the data is sampled to reduce the class imbalance between WML and
NABT. Each image volume is divided into subvolumes of equal size, with patches
only selected from those subvolumes that contain lesion voxels greater than a
set threshold. This sampling technique speeds up the training of the CNNs for970

segmentation by using the sparse convolution method (Li et al., 2014).
All convolutional layers in the CNN use the softplus activation function, with

training done using a logarithmic likelihood as cost function, and optimization carried
out using mini-batch gradient descent with momentum. The CNN consists of four
layers with the input being image patches of size 19×19×19 voxels from each of the975

four modalities concatenated. The second and third layers consist of 60 filters of size
4× 4× 4 and 3× 3× 3 respectively, with the third layer being a multi-layer perceptron
(1 × 1 × 1 × 200) and the final output being a binary classification. Two CNNs were
trained for each of the two trained raters, and the posterior probability maps of
the lesion class from the CNNs generate the initial prediction of the MS lesions.980

As the Challenge is focused on WML, a WM mask is applied to the predictions by
registering the test images with a brain template and removing any lesion predictions
that are outside the template WM mask.

SS Team PVG One
Hierarchical MRF and Random Forest Segmentation of MS Lesions and Healthy985

Tissues in Brain MRI
(A. Jesson & T. Arbel)

Team PVG One built a hierarchical framework for the segmentation of a variety of
healthy tissues and lesions. At the voxel level, lesion and tissue labels are estimated
through a MRF segmentation framework that leverages spatial prior probabilities for990

nine healthy tissues through multi-atlas label fusion (MALF). A random forest (RF)
classifier then provides region level lesion refinement.

Training consists of three stages: Stage one involves building a set of lesion and
healthy tissue atlases, referred to as pathological atlases as they are based on MS
patient data. These are to be used as spatial priors for new test data. Stage two995

involves performing an initial segmentation of 9 healthy tissue structures in each of
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the patient training cases in order to build healthy and lesion intensity distributions.
Stage three involves training the RF.

Stage One included the 21 subjects from the Challenge training data with
intensity values averaged over several time-points and 20 subjects from the training1000

data provided by Styner et al. (2008): these are combined to create atlases of
pathological tissues. Healthy tissue labels for each pathological atlas are generated
through MALF from multiple labels from 35 subjects from the MICCAI 2012 Grand
Challenge on Multi-Atlas Labeling. The 134 provided labels are concatenated into
nine tissue classes: CSF, lateral ventricles, other ventricles, deep GM, cortical1005

GM, cerebellar GM, WM, cerebellar WM, and brainstem. The NABT tissues labels
are augmented by the provided manual delineations to complete the pathological
atlases.

Stage Two involves performing the same procedure as Stage One on the 21
training time-points provided. This leads to a set of healthy and lesion labels and1010

associated weights, which are used to guide voxel sampling for building intensity
distributions of healthy tissues and lesions. Here intensity distributions of each class
are modeled as GMMs.

Stage Three involves determining the labels at each voxel for each time-point
of each training subject using the models determined in Stages One and Two.1015

The resulting segmentations are used to group together lesion voxels into lesion
candidates. A regional random forest model (RRF) is then trained using the distance
minimum, mean, and variance of each candidate lesion to each healthy tissue;
the size, volume, and solidity of each candidate lesion; and the principal moments
and inertia matrix of the ellipse estimating the shape of each candidate lesion as1020

features.
The MALF estimation of spatial tissue priors uses the rigid and affine compo-

nents of ANTs (Avants et al., 2008) and the non-linear framework of MIND (Heinrich
et al., 2012, 2013). Label fusion is performed through a regional similarity method,
and lesion priors are augmented through outlier detection. In addition to the prepro-1025

cessing provided by the challenge, intensity normalization was performed using a
sigmoidal function, where the parameters are determined by the mean and variance
of intensities over several regions of interest. To reduce within image artifacts the
data was de-noised based on a non-local means method (Coupé et al., 2008).

SS Team IMI1030

MS-Lesion Segmentation in MRI with Random Forests
(O. Maier & H. Handels)

Team IMI trained a RF with supervised learning to infer the classification function
underlying the training data. The classification of brain lesions in MRI is a complex
task with high levels of noise, hence a total of 200 trees are trained without any1035

growth-restriction. Contrary to reported observations, no overfitting occurred.
All data was preprocessed to harmonize each sequences intensity profile by

a learning-based intensity standardization method. From each of the four MRI
sequences, the following features are extracted: 1) voxel intensity; 2) voxel intensity
after Gaussian smoothing (σ = 3, 5, and 7 mm); 3) three different local histogram1040

configurations; and 4) each voxels’ distance to the image center. Features 1–3
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provide information about gray-level values at different scales and mean intensity
distributions in small areas around each voxel, see Maier et al. (2015) for a more
complete explanation of these features. The Challenge is concerned with WML,
thus a probability based tissue segmentation is obtained (Zhang et al., 2001) on1045

the T1-w MPRAGE sequence providing probabilities for CSF, GM, and WM. The
feature vector is computed with voxel gray value and voxel gray value after Gaussian
smoothing (σ = 3, 7, 15, and 31 mm).

Stratified random sampling is employed to extract a representative sub-set from
the training data, reducing the amount of training samples and thus the training time.1050

The original background-to-lesion ratio of each subject is kept intact, leading to an
unequal class representation, which has been found to be advantageous (Maier
et al., 2015). To obtain a binary segmentation mask, the RFs probability output is
thresholded at a value of 0.4, introducing a slight bias in favor of the lesion class
that compensates for the unbalanced class ratio in the training set. Finally, single1055

unconnected lesion voxels are removed as outliers, holes in binary lesion objects
are closed and a single-iteration closing operation with a 3D square-connected
component is applied.

UU Team MSmetrix
Automatic Longitudinal Multiple Sclerosis Lesion Segmentation1060

(S. Jain, D. M. Sima, & D. Smeets)
MSmetrix (Jain et al., 2015) is presented, which performs lesion segmentation

while segmenting brain tissue into CSF, GM, and WM, with lesions identified based
on a spatial prior and hyperintense appearance in FLAIR.

The lesion segmentation has four stages: brain segmentation, outlier estimation,1065

pruning, and lesion filling. The brain segmentation uses an EM algorithm to formulate
a probabilistic model of CSF, GM, and WM, from the T1-w image. In the outlier
estimation step, an outlier class is estimated from the FLAIR image of the same
patient using the three tissue class segmentations from the previous step as prior
information. This is also done with an EM algorithm with the inclusion of an outlier1070

map. The pruning stage segments the lesions in the outlier map, as not every outlier
is a lesion. To differentiate lesions from NABT, some additional a priori information
about the location and the appearance of the lesions is incorporated. Lesions need
to be in the WM region and the underlying intensities of the outliers should be
hyperintense compared to the GM intensities from the FLAIR. Finally, the lesion1075

segmentation is used to fill in the lesions in the bias corrected T1-w image with
WM intensities. These four stages are repeated until convergence and the lesion
segmentation is produced as an output.

Each time-point was initially processed independently with a subsequent tempo-
ral consistency correction, similar to Xue et al. (2006). The temporal consistency,1080

Ci t, for a voxel i at time-point t is defined based on its temporal neighborhood
N

Temp

i t ∈ {t − 1, t, t + 1} as

Ci t = 1 −
δNTemp

i t

|N
Temp

i t | − 1
,
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where δNTemp
i t

is the number of times the segmentation label changes in N Temp

i t . The
label at voxel i for time-point t, Li t, is defined based on the temporal consistency of1085

its 3 × 3 × 3 spatial neighborhood, NSpa

i t , as follows,

Li t =


Li t if

1
T

T∑
t=1

Ci t ≥ 0.5,

mode


arg max

j∈NSpa
j t

C j t


T

t=1

 otherwise.

Thus, if the consistency is high enough, the labels remain unchanged by the temporal
consistency; otherwise, it is replaced with the modal value of the segmentation labels
of its most consistent neighbors.1090

SS Team DIAG
Convolution Neural Networks for MS Lesion Segmentation
(M. Ghafoorian & B. Platel)

Team DIAG utilizes a deep CNN with five layers in a sliding window fashion to
create a voxel-based classifier.1095

The image intensity is normalized using a 95th percentile with values at and
above that set to 1; all values below that are linearly rescaled in the range [0, 1].
The CNN learns to label n × n patches indicating if the central voxel is a lesion
or NABT. A leave-one-out cross validation is employed to provide training data for
the CNN. While sampling from a patient, all available time-points and all possible1100

lesion patches are used. An equal number of NABT patches are randomly chosen
to ensure balance between the two classes in the training data. The approximate
final sizes of the five created training data sets are 430k, 320k, 540k, 570k, and
560k respectively. No data augmentation methods have been applied to artificially
increment the size of the data. Since human experts are usually better at specificity1105

than sensitivity, the logical OR operation is used to create a better reference standard
from the two provided human expert annotations.

To classify the image patches, a five layer CNN is trained that takes 32 × 32
patches from the available four channels (T1-w, T2-w, PD-w, & FLAIR) as its input
samples. There are four convolutional layers with rectified linear non-linearities that1110

have respectively 15 filters of size 13 × 13, 25 filters of size 9 × 9, 60 filters of size
7 × 7, and finally 130 filters of size 3 × 3. Pooling is not used since it results in a sort
of translation invariance that is not desirable for a classifier that assigns the label of
the whole patch to its central voxel. A final logistic regression model classifies the
resulting responses to the filters in the last convolutional layer. Stochastic gradient1115

descent is used for the optimization with a batch size of 64 and a learning rate of
0.0001. We run the optimization for 50 epochs and pick the best classifier based on
the validation set misclassification rate.
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UU Team TIG
Model Selection Propagation for Application on Longitudinal MS Lesion Segmenta-1120

tion
(C. H. Sudre, M. J. Cardoso, & S. Ourselin)

Based on the assumption that the structural anatomy of the brain should be
temporally consistent for a given patient, Team TIG proposes a lesion segmentation
method that first derives a GMM separating healthy tissues from pathological and1125

unexpected ones on a multi-time-point intra-subject group-wise image. This average
patient-specific GMM is then used as an initialization for a final time-point specific
GMM from which final lesion segmentations are obtained.

The proposed model can be divided into four major steps. First, the provided
T1-w and T2-w data are rigidly registered to the FLAIR image of each time-point.1130

ICBM atlases are also aligned to the transformed T1-w image and used as an
initialization for a three modalities EM segmentation in a framework that not only
corrects for any possible remaining bias field but also for an initial separation between
inliers and outliers. This is done on log-transformed and bounded intensities. The
second step creates an intra-subject multi-time-point group-wise average. This1135

is performed through an iterative set of affine registrations refined afterwards by
non-rigid deformations (Modat et al., 2014). To standardize the intensity information,
histogram-matching is progressively performed between the individual time-points
and the group-wise image using only the model inliers and applying a polynomial
fit of degree 2. The intensity matching allows for a direct transfer of the selected1140

group-wise model to each specific time-point. The third step involves running a
GMM on the matched group-wise images (T1-w, T2-w, and FLAIR). The number
of classes to correctly model the inlier and outlier components of the four main
anatomical regions (CSF, GM, WM, and non-brain) is determined automatically, by
finding a balance between model fit and complexity. Once the final model converges,1145

one can obtain a group-wise tissue segmentation and an inlier/outlier classification.
To finalize the result, the group-wise tissue segmentation is transformed back to
each time-point and subsequently smoothed out using a Gaussian filter. For each
time-point, this smoothed segmentation is used as a prior for a new GMM model fit
improving on the inlier/outlier separation. The lesion extraction process relies simply1150

on the choice of the relevant component from the outlier part of the model based on
the location and intensity heuristics.

Team TIG submitted new results after the completion of the Challenge to address
a bug in their code, the second submitted results are denoted TIG BF. Both sets of
results are reported in Table C.3. However, only the originally submitted results are1155

included in Tables C.1 and C.2.

Appendix B.2. Other Methods
Table B.2 provides an overview of these methods and the data they use.

UU BAUMIP
Automatic White Matter Hyperintensity Segmentation using FLAIR MRI1160

(L. O. Iheme & D. Unay)
BAUMIP is a method based on intensity thresholding and 3D voxel connectivity
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Table B.2: An overview of the methods and data used by the eleventh Challenge submission, and three
state-of-the-art methods. We denote methods that are unsupervised with the letter U and those that
require some training data (supervised methods) with the letter S.

Name Approach Sequences

UU BAUMIP
Threshold and 3D FLAIR
connectivity analysis

SS MORF Multi-output random forests T1-w, T2-w, & FLAIR

UU Lesion-TOADS
Fuzzy c-means with T1-w & FLAIR
topology constraint

SS MV-CNN
Multi-view (2.5D) Convolu-
tional Neural Networks

T1-w, T2-w, PD-w, &
FLAIR

analysis. A simple model is trained that is optimized by searching for the maximum
obtainable Dice overlap.

Firstly, a mapping is constructed of the intensities of every training image to1165

those of a reference image, which in this case is the first time-point for the first
subject. The histogram of the whole brain foreground voxels is computed from the
FLAIR image, with the assumption that the peak is that of a normal distribution so
that its 7 dB drop is more than twice its Full Width at Half Maximum (FWHM). The
intensity I7 dB of this point is guaranteed to be amongst the highest intensity values of1170

the image. With this value as a minimum threshold for the WM hyperintensity, the
threshold is defined as

T = IPeak(1 − w) + I7 dB,

where w is a to be determined weight. Voxels that exceed this threshold are
segmented as WM lesions. For a more detailed description and evaluation of the1175

method, see Iheme et al. (2013).
The 3D connectivity analysis involves examining every detected voxel for the

degree of connectivity with each of its neighboring voxels. This is equivalent to
analyzing the volumetric significance of every detected lesion. The training data
was used to determine a minimum volume for lesions; connected components that1180

are below this volume threshold are deemed insignificant and assumed to be false
positives. To further reduce the incidence of false positives at the corpus callosum,
the interhemispheric fissure is estimated using a RANSAC-based approach (Ekin,
2006). Lesions that fall within a prescribed distance of the interhemispheric fissure
are also removed as false positives.1185

SS MORF
Multi-Output Random Forests for Lesion Segmentation in Multiple Sclerosis
(A. Jog, A. Carass, D. L. Pham, & J. L. Prince)

MORF is an automated algorithm to segment WML in MR images using multi-
output random forests. The work is similar to Geremia et al. (2011) in that it uses1190
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binary decision trees that are learned from intensity and context features. However,
instead of predicting a single voxel, an entire neighborhood or patch is predicted for
a given input feature vector. The multi-output decision trees implementation has sim-
ilarities to output kernel trees (Geurts et al., 2007). Predicting entire neighborhoods
gives further context information such as the presence of lesions predominantly1195

inside WM. This approach was originally presented in Jog et al. (2015).
From the co-registered T1-w, T2-w, FLAIR, and expert manual delineations,

3 × 3 × 3 sized patches for each voxel i are extracted. Small patches provide local
context for a particular voxel with the patch for the manual segmentation being
the desired output of the multi-output decision trees. The multi-modality intensity1200

features are augmented with a global context for each voxel i consisting of the mean
intensity of a large window (of size 11 × 11 × 3) calculated at a fixed radial distance
from i and multiple angles within the axial plane. The final feature vector is created
by concatenating the local intensity patches from the three modalities (T1-w, T2-w, &
FLAIR) and global context features, and xi is used to denote the feature vector of i1205

(see Jog et al. (2015) for complete details).
Learning a multi-output random forests is similar to the random forest algo-

rithm (Breiman, 2001). With independent vectors, xi, and dependent vectors, yi,
which are the 3× 3× 3 patch of the manual delineation. Given a node q in a decision
tree, with training samples Θq = {[x1; y1], . . . , [xm; ym]} and the mean of the depen-1210

dent vectors denoted by yq, then the squared distance from the mean is computed
as

m∑
k=1

27∑
j=1

(
yk j − yq j

)2
.

For a particular feature, f , and threshold π f , the data in q (Θq) are separated into
two disjoint sets ΘqL = {[xi; yi]|∀i, xi f ≤ π f } and ΘqR = {[xi; yi]|∀i, xi f > π f }. f and1215

π f are chosen such that the combined squared distance of the two daughter nodes
qL and qR of q is minimized.

To predict a lesion segmentation on a new image, the local and global context
features from the T1-w, T2-w, and FLAIR images are constructed as mentioned
above. The trained multi-output tree ensemble is applied to each extracted feature1220

vector. The input vector travels through the tree as its features are evaluated against
the ones in the tree nodes, until it lands in a leaf node. Leaf nodes consist of
at least 50 training samples, each a 27-dimensional label vector. These label
vectors provide a percentage of lesion voxels. The output from the multi-output
decision ensemble is smoothed using a Gaussian filter with σ = 1. This smoothed1225

membership image is thresholded to create a binary lesion mask. A 3-class fuzzy k-
means segmentation (Bezdek, 1980) of the T1-w image provides an initial WM mask.
Lesions inside WM are labeled as GM in this 3-class fuzzy k-means segmentation,
thus forming holes in the initial WM mask. Therefore, MORF fills the initial WM mask
and regards any lesions found outside the filled WM mask as false positives; these1230

lesions are removed from the final MORF output.
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UU Lesion-TOADS
A topology-preserving approach to the segmentation of brain images with multiple
sclerosis lesions
(N. Shiee, P.-L. Bazin, A. Ozturk, D. S. Reich, P. A. Calabresi, & D. L. Pham)1235

Lesion-TOADS is an atlas-based segmentation technique employing topological
and statistical atlases. The method builds upon previous work (Bazin and Pham,
2008) by handling lesions as topological outliers that can be addressed in a topology-
preserving framework when grouped together with the underlying tissues.

A complete description of Lesion-TOADS is available in Shiee et al. (2010),1240

as it represents a continuation of the development of TOADS (Bazin and Pham,
2008); a brief review of that work is provided here. TOADS segments the brain into
several major structures (sulcal CSF, ventricular CSF, cortical GM, cerebral WM,
cerebellar GM, cerebellar WM, putamen, thalamus, caudate, and brainstem) and
Lesion-TOADS introduces the delineation of WML. TOADS incorporates statisti-1245

cal and topological atlases with a fuzzy clustering framework giving topologically
consistent segmentation of healthy brain anatomy. A topologically consistent hard
segmentation of the brain is initialized from a topological atlas and used to modulate
the influence of similar intensity clusters that are non-contiguous. The statistical
and topological atlases are rigidly registered to the MR image initiating an iterative1250

process alternating between intensity based tissue segmentation and topology pre-
serving fast marching. Lesion-TOADS augments TOADS by handling the union of
WML and WM as a topological consistent object, with both WML and WM having
the same spatial prior. Other improvements of Lesion-TOADS over TOADS include:
1) redefining the cluster distance function to account for the intensity profile of WML1255

to help distinguish it from the partial volume mix of GM & WM, or CSF & WM, which
can cause false positives; and 2) multichannel weights to take advantage of the
discriminative power of FLAIR images in distinguishing WML from NABT.

SS MV-CNN
Multi-View Convolutional Neural Networks1260

(A. Birenbaum & H. Greenspan)
MV-CNN is a method based on a Longitudinal Multi-View CNN (Roth et al.,

2014). The classifier is modeled as a CNN, whose input for every evaluated voxel
are patches from axial, coronal, and sagittal views of the T1-w, T2-w, PD-w, and
FLAIR images of current and previous time-points. That is multiple contrasts, multiple1265

views, and multiple time-points. MV-CNN consists of three phases: Preprocessing
the Challenge data, Candidate Extraction, and CNN Prediction. The Challenge data
is preprocessed by clamping the top and bottom 1% and the intensity values are
scaled to the range [0, 1].

The Candidate Extraction phase disqualifies the majority of the image voxels1270

from being lesions, thus dramatically improving the performance of CNN prediction.
MV-CNN bases its candidate extraction on two clinical rules (Mechrez et al., 2016):

1. Lesions appear as hyperintense in FLAIR images and can be roughly approxi-
mated by thresholding the FLAIR image;

2. Lesions tend to be found in WM or the boundary between WM and GM. Thus1275

41



a probabilistic WM template (Mazziotta et al., 2001) is registered to the FLAIR
image using a mutual information cost function. Due to misregistration errors
the WM template is gray-scale dilated by a radius R.

Mask(x) =

{
1 (IFLAIR(x) ≥ TFLAIR)

⋂
((PWM ⊕ BR) (x) ≥ TWM) ,

0 otherwise.

Where IFLAIR(x) is the FLAIR intensity at x, PWM(x) is the WM probability which is1280

dilated by BR, a ball of radius R, and the thresholds are TFLAIR & TWM. The parameters
TFLAIR, TWM, and R are determined by cross-validation.

The CNN Prediction phase assigns a lesion probability to each voxel in the
image Mask(x). The input to the CNN are 24 patches of 32 × 32 pixels from all
four images, three orthogonal views, and two consecutive time-points. All input1285

patches of a single view and time-point are processed by three convolution layers
with the following parameters 24 at 4 × 5 × 5, 32 at 24 × 3 × 3, and 48 at 32 × 3 × 3.
The first two convolution layers are followed by a 2 × 2 max pooling layer. Thus for
each time-point a 48 × 4 × 4 tensor representation is obtained. The tensors of two
consecutive time-points from a single view are concatenated and processed by a 481290

at 96 × 1 × 1 convolution layer and a fully connected layer whose output is a vector
of 16 neurons, which is the full representation of a single view. Vectors from axial,
coronal, and sagittal views are concatenated and processed by two fully connected
layers of 16 and 2 output neurons respectively. Softmax is applied to the output
of the last fully connected layer to obtain a non-lesion and lesion probability, while1295

the rest of the convolution and fully connected layers are followed by Leaky ReLU
activation (α = 0.3) and Dropout layers (p = 0.25). Voxels are assigned the lesion
label if their lesion probability is higher than a threshold TCNN.

The CNN’s weights were optimized for 500 epochs by AdaDelta (Zeiler, 2012) to
minimize the categorical cross-entropy. Each training batch consisted of 64 negative1300

samples and 64 positive samples which were extracted with random rotations in the
cardinal planes, drawn from a Gaussian distribution (µ = 0◦, σ = 5◦). Values for the
thresholds and dilation radius were determine via cross-validation to maximize the
mean Dice score, with TFLAIR = 0.91, TWM = 0.5, TCNN = 0.99, and R = 2.

Appendix C. Challenge Results1305

In this section, we present a comparison of the ten Challenge participants,
outlined in Section 3.1. Table C.1 shows the score achieved by each participant for
a normalized version of each of Dice, PPV, TPR, and LTPR; the normalization is
done relative to the inter-rater metrics by dividing by the inter-rater score, so that the
relative value of the metric is boosted. For example, N-Dice is computed as,1310

N-Dice(MA) =

min
r∈R

(Dice(Mr,MA))

Dice(Mr1 ,Mr2 )
,

where R is the set of all raters, and the denominator is the inter-rater score. Also
shown in Table C.1 are the 1 – LFPR, the Longitudinal Correlation (LongCorr), and
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the Total Correlation (TotalCorr). The results in Table C.1 and the Challenge are
ranked based on a weighted score (20% 1 – LFPR, 20% N-LTPR, 20% LongCorr,1315

20% TotalCorr, and 20% for the average of N-Dice, N-PPV, & N-TPR). Figures 2
and 3 show the result generated by each team on the same subject, as well as
showing the preprocessed data, manual delineations generated by the two raters,
and our Consensus Delineation.

Appendix C.1. Efficiency Performance Comparison1320

The participants were told prior to downloading Test Set B, that they would be
timed on how long it took them to return the results for that data set. The results
for the time taken for each of the ten Challenge participants are listed in Table C.2.
The various run times provide a frame of reference for each of the methods and
may serve as a guide for which method is most appropriate for a given situation. For1325

example, consider the convolutional neural network based approach proposed by
Team DIAG which takes an order of magnitude less time and has similar Dice scores
to Team PVG One, and thus Team DIAG might be preferred over Team PVG One.
Alternatively, researchers may have a minimum acceptable score in another metric,
the reported times allow them to identify the quickest method with the required1330

performance level. The ranking for the efficiency performance was based on a
combination of the return time of Test Set B and the final ranking of the teams in the
Challenge (see Table C.1). The ranking of both were summed and the team with
the lowest combined sum was deemed the most efficient. This allowed us to have
a balance between speed and the accuracy of the method relative to both human1335

raters.

Appendix C.2. Challenge Website

To facilitate the dissemination of the data and promote the sharing of results we
have created a website3. Visitors to the site can see a list of the Top 25 submitted
results. Currently only fifteen results are listed: ten from the Challenge, plus a bug1340

fixed version of a Challenge participant, and an additional four results—which are
outlined in Section 3 and described in detail in Appendix B. Groups interested in
running their methods on the data need only register for an account, download the
data, and upload their results. The uploader of the results will receive an e-mail
within ten minutes detailing the results on a per subject and per time-point basis. The1345

report includes the following computed metrics: Dice, Jaccard, PPV, TPR, LFPR,
LTPR, AVD, SSD, algorithm and manual lesion volume. For algorithm A, the Website
score is computed as follows,

1
|R|

1
|S|

∑
r∈R

∑
s∈S

Dice(Mr,MA)
8

+
PPV(Mr,MA)

8
+

1 – LFPR(Mr,MA)
4

+
LTPR(Mr,MA)

4
+

Corr(Mr,MA)
4

)
,1350

3The Challenge Evaluation Website is: http://smart-stats-tools.org/lesion-challenge-2015
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where S is the set of all subjects, R is the set of all raters, and Corr is the Pearson’s
correlation coefficient of the volumes. This is then linearly normalized by the inter-
rater scores between each other such that the lower inter-rater score has an overall
rating of 90. This was designed to mimic the scoring of the 2008 MICCAI MS Lesion
challenge (Styner et al., 2008). Table C.3 shows the ranking as displayed on the1355

Challenge Website.

Table C.3: Rankings from the Challenge Website for the Challenge participants (Appendix B.1) and the
other state-of-the-art methods (Appendix B.2).

Name Challenge Rank Website Score

SS Team PVG One 2 90.698
SS Team IMI 3 90.283
SS MV-CNN — 90.070
UU Team VISAGES GCEM 6 89.807
SS Team IIT Madras 1 89.159
UU Team MSmetrix 5 88.744
UU Lesion-TOADS — 88.465
SS Team CMIC 4 88.009
SS MORF — 87.917
UU TIG BF† — 87.376
SS Team CRL 8 87.017
SS Team DIAG 7 86.916
UU Team TIG† 9 86.436
SS Team VISAGES DL 10 86.068
UU BAUMIP — 84.140

†Team TIG submitted new results after the completion of the Challenge to
address a bug in their code, the second submitted results are denoted TIG BF.

Appendix C.3. Overall Performance
From the main Challenge results (see Table C.1) it is clear that there is very little

separating the performance of the top three teams. An interesting characteristic
of these three algorithms is that they are machine learning based. However Team1360

DIAG, which finished far off from the winning Team IIT Madras, used at its core a
convolutional neural network engine. This suggests that a more refined approach
to using machine learning technologies is needed to maximize their effectiveness.
This point can also be inferred from the performance of MORF on the reduced
data set made available through the Challenge Website (see Table C.3). We had1365

expected MORF to perform better than Lesion-TOADS as it should have represented
an improvement on the work of Geremia et al. (2011) which ranked first at the
2008 MICCAI Grand Challenge on MS Lesion Segmentation (Styner et al., 2008),
whereas Lesion-TOADS was ranked third at the same challenge. The disappointing
performance of MORF could be due in part to the differences in the training data and1370
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choices about how much and which portion of the available data was used to train
the method. However, it may simply reflect a basic instability in machine learning
based approaches.
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