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Abstract

In conjunction with the ISBI 2015 conference, we organized a longitudinal lesion
segmentation challenge providing training and test data to registered participants.
The training data consisted of five subjects with a mean of 4.4 time-points, and
test data of fourteen subjects with a mean of 4.4 time-points. All 82 data sets
had the white matter lesions associated with multiple sclerosis delineated by two
human expert raters. Eleven teams submitted results using state-of-the-art lesion
segmentation algorithms to the challenge, with ten teams presenting their results at
the conference. We present a quantitative evaluation comparing the consistency of
the two raters as well as exploring the performance of the eleven submitted results
in addition to three other lesion segmentation algorithms. The challenge presented
three unique opportunities: 1) the sharing of a rich data set; 2) collaboration and
comparison of the various avenues of research being pursued in the community;
and 3) a review and refinement of the evaluation metrics currently in use. We report
on the performance of the challenge participants, as well as the construction and
evaluation of a consensus delineation. The image data and manual delineations will
continue to be available for download, through an evaluation website' as a resource
for future researchers in the area. This data resource provides a platform to compare
existing methods in a fair and consistent manner to each other and multiple manual
raters.

Keywords: Magnetic resonance imaging, multiple sclerosis.

1. Introduction

Multiple sclerosis (MS) is a disease of the central nervous system (CNS) that
is characterized by inflammation and neuroaxonal degeneration in both gray mat-
ter (GM) and white matter (WM) (Compston and Coles, 2008). MS is the most
prevalent autoimmune disorder affecting the CNS, with an estimated 2.5 million
cases worldwide (World Health Organization, 2008; Confavreux and Vukusic, 2008)
and was responsible for approximately 20,000 deaths in 2013 (Global Burden of
Disease Study 2013 Mortality and Causes of Death Collaborators, 2015). MS has a
relatively young age of onset with an average age of 29.2 years and interquartile
onset range of 25.3 and 31.8 years (World Health Organization, 2008). Symptoms
of MS include cognitive impairment, vision loss, weakness in limbs, dizziness, and
fatigue. The term multiple sclerosis originates from the scars (known as lesions)
in the WM of the CNS that are formed by the demyelination process, which can
be quantified through magnetic resonance imaging (MRI) of the brain and spinal
cord. T,-weighted (7,-w) lesions within the WM (or WMLs), so called because
of their hyperintense appearance on T»-w MRI, have become a standard part of
the diagnostic criteria (Polman et al., 2011). However, it is a labor intensive and

"The Challenge Evaluation Website is: http: //smart-stats-tools.org/lesion-challenge-2015
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somewhat subjective task to identify and manually delineate or segment WM hyper-
intensities from normal tissue in MR images. This objective is made more difficult
when considering a longitudinal series of data, particularly when each data set at
a given time-point for an individual consists of several scan modalities of varying
quality (Vrenken et al., 2013). MS frequently involves lesions that may be readily
apparent on a scan at one time-point, but not in subsequent time-points (He et al.,
2001; Gaitan et al., 2011; Qian et al., 2011). Delineating the scans individually
without reference to previous images, may lead to errors in detection of damaged
tissue; such as previously lesioned areas that have contracted, undergone remyeli-
nation, are no longer inflamed, or a combination thereof. These damaged areas
may correlate with disability, although it is as yet unclear precisely how they are
related and through what exact mechanism they affect changes in symptoms (Meier
et al., 2007; Filippi et al., 2012). Thus there is an apparent need for the automatic
detection and segmentation of WMLs in longitudinal CNS scans of MS patients.

Three major subtypes or stages of WMLs can be visualized using MR imag-
ing (Filippi and Grossman, 2002; Wu et al., 2006): 1) gadolinium-enhancing lesions,
which demonstrate blood-brain barrier leakage, 2) hypointense T-w lesions, also
called black holes that possess prolonged T;-w relaxation times, and 3) hyper-
intense T,-w lesions, which likely reflect increased water content stemming from
inflammation and/or demyelination. These latter lesions are the most prevalent
type (Bakshi, 2005) and are hyperintense on proton density weighted (PD-w), T»-w,
and fluid attenuated inversion recovery (FLAIR) images. Both enhancing and black
hole lesions typically form a subset of T;-w lesions. Quantification of T,-w lesion
volume and identification of new T,-w and enhancing lesions in longitudinal data are
commonly used to gauge disease severity and monitor therapies, although these
metrics have largely been shown to only weakly correlate with clinical disability (Fil-
ippi et al., 2014). Pathologically, we can differentiate the different stages of an MS
WML as pre-active, active, chronic active, or chronic inactive depending on the
demyelination status, adaptive immune response, and microglia behavior. Lesions
with normal myelin density and activated microglia are termed pre-active, while
sharp bordered demyelination reflects active lesions. Chronic active lesions have a
fully demyelinated center and are hypocellular, and chronic inactive lesions have
complete demyelination and an absence of any microglia. Current MRI technologies
are very sensitive to T,-w WMLs, however they do not provide any insight about
pathological heterogeneity (Jonkman et al., 2015).

Despite this, MRI has gained prominence as an important tool for the clinical
diagnosis of MS (Polman et al., 2011), as well as understanding the progression
of the disease (Buonanno et al., 1983; Paty, 1988; Filippi et al., 1995; Evans
et al.,, 1997; Collins et al., 2001). A variety of techniques are being used for
automated MS lesion segmentation (Anbeek et al., 2004; Brosch et al., 2015, 2016;
Deshpande et al., 2015; Dugas-Phocion et al., 2004; Elliott et al., 2013, 2014;
Ferrari et al., 2003; Geremia et al., 2010; Havaei et al., 2016; Jain et al., 2015; Jog
et al., 2015; Johnston et al., 1996; Kamber et al., 1996; Khayati et al., 2008; Rey
et al,, 1999, 2002; Roy et al., 2010, 2014b; Schmidt et al., 2012; Shiee et al., 2010;
Subbanna et al., 2015; Sudre et al., 2015; Tomas-Fernandez and Warfield, 2011,
2012; Valverde et al., 2017; Weiss et al., 2013; Welti et al., 2001; Xie and Tao, 2011)
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with several review articles available that describe and evaluate the utility of these
methods (Garcia-Lorenzo et al., 2013; Lladé et al., 2012), though semi-automated
approaches have also been reported (Udupa et al., 1997; Wu et al., 2006; Zijdenbos
et al., 1994). The early work on WML segmentation used the principle of modeling
the distributions of intensities of healthy brain tissues and segmenting outliers to
those distributions as lesions. An early example of this is Van Leemput et al. (2001),
which augmented the outlier detection with contextual information using a Markov
random field (MRF). This idea was extended by Ait-Ali et al. (2005) by using an
entire time series for a subject, estimating the tissue distributions using an iterative
Trimmed Likelihood Estimator (TLE), followed by a segmentation refinement step
based on the Mahalanobis distance and prior information from clinical knowledge.
Later improvements to the TLE based model include mean shift (Garcia-Lorenzo
et al., 2008, 2011) and Hidden Markov chains (Bricq et al., 2008). Other approaches
to treating the WM lesions as an outlier class include methods based on support
vector machines (SVM) (Ferrari et al., 2003), coupling of local & global intensity
models in a Gaussian Mixture Model (GMM) (Tomas-Fernandez and Warfield, 2011,
2012) and using adaptive outlier detection (Ong et al., 2012).

As an alternative to the outlier detection approach other methods create models
with lesions as an additional class. Examples of this include: k-nearest neighbors (k-
NN) (Anbeek et al., 2004), a hierarchical Hidden Markov random field (Sajja et al.,
2004, 2006); an unsupervised Bayesian lesion classifier with various regions of the
brain having different intensity distributions (Harmouche et al., 2006); a Bayesian
classifier based on the adaptive mixtures method and an MRF (Khayati et al., 2008);
a constrained GMM based on posterior probabilities followed by a level set method
for lesion boundary refinement (Freifeld et al., 2009); a fuzzy C-means model with
a topology consistency constraint (Shiee et al., 2010); and adaptive dictionary
learning (Deshpande et al., 2015; Roy et al., 2014a, 2015b); along with many other
techniques.

The majority of these methods operate in an unsupervised manner using statisti-
cal notions about distributions to identify lesions. There has also been significant
work done to develop supervised methods, which use training data to identify lesions
within new subjects. One such approach included an anatomical template-based
registration to help modulate a k-NN classification scheme (Warfield et al., 2000),
which used features from the images as well as distances to the template following
the registration. Sweeney et al. (2013b) presented a logistic regression model that
assigned voxel-level probabilities of lesion presence. Roy et al. (2014b) demon-
strated a patch-based lesion segmentation that used examples from an atlas to
match patches in the input images using a sparse dictionary approach. Variants of
this supervised machine learning solution include: generic machine learning (Xie
and Tao, 2011); dictionary learning and sparse-coding (Roy et al., 2014a, 2015b;
Weiss et al., 2013); and random forest (RF) work by Mitra et al. (2014), variations
of the RF approach include Geremia et al. (2010, 2011) using multi-channel MR
intensities, long-range spatial context, and asymmetry features to identify lesions;
Jog et al. (2015) producing overlapping lesion masks from the RF that were aver-
aged to create a probabilistic segmentation, and Maier et al. (2015) used extra tree
forests (Geurts et al., 2006) which are robust to noise and uncertain training data.
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There has been less work on automated methods for serial lesion segmenta-
tion (segmentation of lesions for the same subject over different time-points). The
earliest reported approach (Rey et al., 1999, 2002) performed an optical flow regis-
tration between successive rigidly registered time-points, then used the Jacobian
of the deformation field to identify the lesions. Published at about the same time,
Kikinis et al. (1999) used 4D connected component analysis for longitudinal lesion
segmentation. Prima et al. (2002) introduced voxel wise statistical testing to identify
regions with significantly increased intensity over time, treating the appearance
of WMLs as a change-point problem. Welti et al. (2001) created a feature vector
of radial intensity-based descriptors of lesions from four contrast images at multi-
ple time-points. The course of these descriptors is then analyzed with a principal
component analysis (PCA) to build a model of spatio-temporal lesion evolution.
Projection of candidate lesions into the PCA space was used to identify lesions,
with the maximal temporal gradient of a FLAIR image being used to identify the
onset of the lesion. Bosc et al. (2003) used a pipeline comprised of iterative affine
registration, deformable registration, image resampling, and intensity normalization,
followed by a temporal change point detection scheme. Their change point detection
used a generalized likelihood ratio test (GLRT) (Hsu et al., 1984) that computes
the probabilities of the two hypotheses (no change vs. significant change). We
note that the initial steps of Bosc et al. (2003), up to change detection, are now
considered standard preprocessing for time-series data and is similar to the prepro-
cessing that was performed on the data in our challenge. As previously mentioned
Ait-Ali et al. (2005) extended the outlier detection approach (Van Leemput et al.,
2001) to the entire time series using TLE followed by refinement steps. Roy et al.
(2015a) extended their 3D example patch-based lesion segmentation algorithm to
4D by considering a time series of patches from available training data. Other work
evaluated WML changes over time (Battaglini et al., 2014; Elliott et al., 2010; Ganiler
et al., 2014; Roura et al., 2015; Sweeney et al., 2013a) with the focus being on
the appearance/disappearance of lesions by subtraction of the intensity images of
consecutive time-points. As there clearly has been a relative dearth of work on the
automated segmentation of time-series WMLs, and as there is no approach that has
gained widespread acceptance, a main purpose of this paper is to provide a public
database to reignite work in this area.

Public databases have played a transformative role in medical imaging, an early
example of this is the now ubiquitous BrainWeb (Collins et al., 1998) computational
phantom (see also Cocosco et al. (1997) and Kwan et al. (1999)). With over one
hundred citations per year for the last decade, it is almost inconceivable to write an
MR-based brain segmentation paper without including an evaluation on the Brain-
Web phantom. These public databases have served to standardize comparisons and
evaluation criteria. In recent years there has been a shift in the community to launch
these data sets as a challenge associated with a workshop or conference (Styner
et al., 2008; Schaap et al., 2009; Heimann et al., 2009; Menze et al., 2015; Mendrik
et al., 2015; Maier et al., 2017). In particular, the 2008 MICCAI MS Lesion chal-
lenge (Styner et al., 2008) was a significant step forward in the sharing of clinically
relevant data. These benchmark data sets allow for a direct comparison between
competing methods without any unique data issues, and just as importantly, these



160

165

170

175

180

185

190

benchmarks remove the barrier of data that limits the number of researchers working
in a particular area. An important feature of benchmarks is the retention of the test
data set labels from the public domain avoiding the “unintentional overtraining of the
method being tested” and preserving “the method’s segmentation performance in
practice” (Menze et al., 2015).

In this paper, we present details of the Longitudinal White Matter Lesion Segmen-
tation of Multiple Sclerosis Challenge (hereafter the Challenge) that was conducted
during the 2015 International Symposium on Biomedical Imaging (ISBI). The Chal-
lenge data will serve as an ongoing resource with future submissions for evaluation
possible through the Challenge Website?. In Section 2, we outline the data provided
to the Challenge participants, the set-up of the Challenge, and the evaluation metrics
used in comparing the submitted results from each team. Section 2 also includes a
description of our Consensus Delineation, which avoids the biases of depending
on a single rater. Section 3 provides an overview of the methods involved in the
Challenge with complete descriptions of each algorithm included in Appendix B.
Section 4 includes the comparison between the manual delineations, algorithms,
and the Consensus Delineation. We conclude the main body of the manuscript
with a discussion of the impact of this Challenge and future directions in WML
segmentation in Section 5. Appendix A includes a complete description of the
protocol used for the manual delineation. Appendix C includes the results from the
Challenge at ISBI.

2. Materials and Metrics

Teams registered for the Challenge, and received access to a Training Set
of images in February of 2015. Followed one month later by the first evaluation
data set (Test Set A), with the Teams having one month to return their results
for evaluation. One week before the Challenge event at ISBI 2015, Teams were
provided with a second evaluation data set (Test Set B). Teams were told that the
time between downloading Test Set B and the return of their results would be timed
for comparison. Participants were informed of the criteria for the Challenge prizes,
which were furnished by the National MS Society. Details of the data, preprocessing,
and the Challenge metrics are provided below. The results of the Challenge are
provided in Appendix C.

2.1. Challenge Data

The Challenge participants were given three tranches of data: 1) Training Set;
2) Test Set A; and 3) Test Set B. The Training Set consisted of five subjects, four of
which had four time-points, while the fifth subject had five time-points. Test Set A
included ten subjects, eight of which had four time-points, one had five time-points,
and one had six time-points. Test Set B had four subjects—three with four time-
points and two with five time-points. Two consecutive time-points are separated by

2The Challenge Evaluation Website is: http://smart-stats-tools.org/lesion-challenge-2015
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approximately one year for all subjects. Table 1 includes a demographic breakdown
for the training and test data sets. Challenge participants did not know the MS status
of the subjects of each data set.

Each scan was imaged and preprocessed in the same manner, with data ac-
quired on a 3.0 Tesla MRI scanner (Philips Medical Systems, Best, The Netherlands)
using the following sequences: a T;-weighted (7';-w) magnetization prepared rapid
gradient echo (MPRAGE) with TR = 10.3 ms, TE = 6 ms, flip angle = 8°, &
0.82 x 0.82 x 1.17 mm? voxel size; a double spin echo (DSE) which produces the
PD-w and T,-w images with TR = 4177 ms, TE; = 12.31 ms, TE, = 80 ms,
& 0.82 x 0.82 x 2.2 mm? voxel size; and a T»-w fluid attenuated inversion recov-
ery (FLAIR) with TI = 835 ms, TE = 68 ms, & 0.82 x 0.82 x 2.2 mm? voxel size. The
imaging protocols were approved by the local institutional review board. Each sub-
ject underwent the following preprocessing: the baseline (first time-point) MPRAGE
was inhomogeneity-corrected using N4 (Tustison et al., 2010), skull-stripped (Carass
et al., 2007, 2010), dura stripped (Shiee et al., 2014), followed by a second N4
inhomogeneity correction, and rigid registration to a 1 mm isotropic MNI template.
We have found that running N4 a second time after skull and dura stripping is
more effective (relative to a single correction) at reducing any inhomogeneity within
the images (see Fig. 1 for an example image set after preprocessing). Once the
baseline MPRAGE is in MNI space, it is used as a target for the remaining images.
The remaining images include the baseline T,-w, PD-w, and FLAIR, as well as the
scans from each of the follow-up time-points. These images are N4 corrected and
then rigidly registered to the 1 mm isotropic baseline MPRAGE in MNI space. Our
registration steps are inverse consistent and thus any registration based biases are
avoided (Reuter and Fischl, 2011). The skull & dura stripped mask from the baseline
MPRAGE is applied to all the subsequent images, which are then N4 corrected
again. All the images in the Training Set, Test Set A, and Test Set B, had their lesions
manually delineated by two raters in the MNI space. Rater #1 has four years of
experience delineating lesions, while Rater #2 has 10 years experience with manual
lesion segmentation and 17 years experience in structural MRl analysis. We note
that the raters were blinded to the temporal ordering of the data. The protocol for
the manual delineation followed by both raters is in Appendix A. The preprocessing
steps were performed using JIST (Version 3.2) (Lucas et al., 2010).

For each time-point of every subject’s scans in the Training Set, Test Set A,
and Test Set B, the participants were provided the following data: the original
scan images consisting of 7,-w MPRAGE, T,-w, PD-w, and FLAIR, as well as the
preprocessed images (in MNI space) for each of the scan modalities. The Training
Set also included manual delineations by two experts identifying and segmenting
WMLs on MR images: details about the delineation protocol and lesion inclusion
criteria are in Appendix A.

As teams registered for the Challenge, they were provided with the Training
Data. One month prior to the scheduled Challenge, Test Set A was made available
to participants. The results for Test Set A could be returned to the organizers at
any time prior to the Challenge event, though a preferred return date was given.
The third data set, Test Set B, was provided to participants one week before the
Challenge event with the caveat that teams would be timed. The times used were
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Table 1: Demographic details for the training data and both test data sets. The top line is the information
of the entire data set, while subsequent lines within a section are specific to the patient diagnoses.
The codes are RR for relapsing remitting MS, PP for primary progressive MS, and SP for secondary
progressive MS. N (M/F) denotes the number of patients and the male/female ratio, respectively. Time-
points is the mean (and standard deviation) of the number of time-points provided to participants. Age
is the mean age (and standard deviation), in years, at baseline. Follow-up is the mean (and standard
deviation), in years, of the time between follow-up scans.

Data Set N (M/F) Time-Points Age Follow-Up
Mean (SD) Mean (SD) Mean (SD)

Training 5(1/4) 4.4 (£0.55) 43.5 (£10.3) 1.0 (£0.13)
RR 4(1/3) 4.5 (x0.50) 40.0 (£7.55) 1.0 (£0.14)
PP 1(0/1) 4.0 57.9 1.0 (£0.04)
Test A 10 (2/8) 4.3 (+0.68) 37.8 (£9.18) 1.1 (+0.28)
RR 92/7) 4.3 (+0.71) 37.4 (£9.63) 1.1 (+0.29)
SP 1(0/1) 4.0 41.7 1.0 (20.05)
TestB 4(1/3) 4.5 (+0.58) 43.3 (x£7.64) 1.0 (+0.05)
RR 3(1/2) 4.7 (£0.58) 44.8 (£8.65) 1.0 (£0.05)
PP 1(0/1) 4.0 39.0 1.0 (£0.04)

based on the initial download time for each team and the time at which they returned
their results to the Challenge organizers. In Appendix C we include a comparison
of the ten Challenge participants on both Test Set A & B, and in Appendix C.1 we
report the time it took participants to process and return Test Set B.

2.2. Challenge Metrics

To compare the results from the participants with our two manual raters and
Consensus Delineation, we used the following metrics: Dice overlap (Dice, 1945),
positive predictive value, true positive rate, lesion true positive rate, lesion false
positive rate, absolute volume difference, average symmetric surface distance,
volume correlation, and longitudinal volume correlation. The Dice overlap is a
commonly used volume metric for comparing the quality of two binary label masks.
It is defined as the ratio of twice the number of overlapping voxels to the total number
of voxels in each mask. If My is the mask of one of the human raters and M, is the
mask generated by a particular algorithm, then the Dice overlap is computed as

Mg 0 Ma]
IMg| + IMal’

where | - | is a count of the number of voxels. This overlap measure has values in the
range [0, 1], with 0 indicating no agreement between the two masks, and 1 meaning
the two masks are identical.

The positive predictive value (PPV) is the voxel-wise ratio of the true positives to
the sum of the true and false positives,

Dice(Mg, M) =2

Mg 0 M|
IMg 0 Mal + MG 0 M|

PPV(Mg, My) =

8
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Figure 1: Shown are the preprocessed (a) MPRAGE, (b) FLAIR, (c) T»>-w, and (d) PD-w images for a
single time-point from one of the provided Training Set subjects. The corresponding manual delineations
by our two raters are shown in (e) for Rater #1 and (f) for Rater #2.

where My, is the complement of Mz which when intersected with M,, represents the
set of false-positives. PPV is also known as precision. The true positive rate (TPR)
is the voxel-wise ratio of the true positives to the sum of true positives and false
negatives, calculated as

IMg N Myl
IMg 0 Ml + Mg 0 MG

TPR(Mg, My) =

Lesion true positive rate (LTPR) is the lesion-wise ratio of true positives to the
sum of true positives and false negatives. We define the list of lesions, L, as the
18-connected components of My and define £, in a similar manner. Then

|Lr N Lyl
1Lr N Lal +|Lr 0 L5

where | Lz N L4] counts any overlap between a connected component of Mg and
My; which means that both the human rater and algorithm have identified the

LTPR(Mg, My) =
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same lesion, though not necessarily having the same extents. Lesion false positive
rate (LFPR) is the lesion-wise ratio of false positives to the sum of false positives
and true negatives,

|£5 0 L]
| Lo 0 La| + L5 0 Ls]

LFPR(Mg, My) =

where L5 is the 18-connected components of MG,
Absolute volume difference (AVD) is the absolute difference in volumes divided
by the true volume,

Max (IMgl, IMal) = Min (IMgl, IMal)

AVD(Mg, My) = Ml

Average symmetric surface distance (ASSD) is the average of the distance (in
millimeters) from the lesions in M to the nearest lesion identified in M, plus the
distance from the lesions in M, to the nearest lesion identified in Mx.

Direry d (1 La) + Yger, d(a, Lg)
3 s

ASSD(Mg, My) =

where d (r, L,) is the distance from the lesion r in Ly to the nearest lesion in £4. A
value of 0 would correspond to Mg and M, being identical.

Volume correlation (TotalCorr) is the Pearson’s correlation coefficient (Pearson,
1895) of the volumes, whereas longitudinal volume correlation (LongCorr) is the
Pearson’s correlation coefficient of the volumes within a subject. Each of the various
metrics is computed for both raters and then used to compute a normalized score
which was used to determine the Challenge winner. For the Consensus Delineation
the metrics are computed directly between each rater/method and the Consensus
Delineation.

2.3. Inter-Rater Comparison

Rater #1 has four years of experience delineating lesions, while Rater #2 has
10 years experience with manual lesion segmentation and 17 years experience
in structural MRI analysis. We note that the raters were blinded to the temporal
ordering of the data. The protocol for the manual delineation followed by both raters
is in Appendix A. Table 2 shows an inter-rater comparisons for all 82 images—21
coming from the Training data, 43 from Test Set A, and 18 from Test Set B. See Fig. 1
for an example delineation. The results highlight the subjective nature of manual
delineations based on differing interpretations of the protocol (See Appendix A)
and scan data, and further emphasize the need for development of fully-automated
methods. Importantly, our inter-rater Dice overlap of 0.6340 is better than the Dice
overlap of 0.2498 the 2008 MICCAI MS Lesion challenge (Styner et al., 2008) had
between their two raters on ten scans they both delineated. However, we note that
using just the Dice overlap masks some of the differences between the two raters.
In particular the volume differences—as measured by AVD—are quite stark.
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Table 2: Inter-rater comparison averaged across the 82 images from the training and test data set. The first
table displays the symmetric metrics: Dice, average symmetric surface distance (ASSD), & longitudinal
correlation. The second table shows the asymmetric metrics: positive predictive value (PPV), true positive
rate (TPR), lesion false positive rate, lesion true positive rate, and absolute volume difference (AVD). R1
refers to Rater #1, R2 to Rater #2, and “R1 vs. R2” denotes that R1 was regarded as the truth within the
comparison.

Symmetric Metrics

Dice 0.6340
ASSD 3.5290
Longitudinal Correlation -0.0053
Asymmetric Metrics R1 vs. R2 R2 vs. R1
PPV 0.7828 0.5688
TPR 0.5029 0.8224
Lesion FPR 0.1380 0.5630
Lesion TPR 0.4370 0.8620
AVD 0.3726 0.6117

2.4. Consensus Delineation

To avoid the biases of depending on either rater, we choose to construct a
Consensus Delineation for each of the 61 images included in Test Set A and B. To
achieve such a delineation, we employ the simultaneous truth and performance level
estimation (STAPLE) algorithm (Warfield et al., 2004). STAPLE is an expectation-
maximization algorithm for the statistical fusion of binary segmentations. The
algorithm considers several segmentations and computes a probabilistic estimate
of the true segmentation—as well as other quantities. Given that we have only
two manual delineations for each patient image, we have taken the Challenge
Delineations provide by each team (see Section 3 and Appendix B for details) and
included them with our two manual delineations in construction of the Consensus
Delineation. In brief, STAPLE estimates the true segmentation from an optimal
combination of the input segmentations, the weights for which are determined by
the estimated performance level of the individual segmentations. The resultant
Consensus Delineation, from the STAPLE combination of the 14 algorithms and
2 manual raters, is regarded as the “ground truth” for the comparisons within
Section 4. The Consensus Delineation provides the opportunity to simultaneously
compare the human raters and the Challenge participants across all of our metrics;
this—to our knowledge—is something that has not been reported in any previous
Challenge (Styner et al., 2008; Schaap et al., 2009; Heimann et al., 2009; Menze
et al., 2015; Mendrik et al., 2015; Maier et al., 2017).
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3. Methods Overview

We present a brief overview of each of the methods used in this paper, complete
details of each approach are available in Appendix B. Figures 2 and 3 show results
of each algorithm on a typical slice from one time-point of one of our data sets, as
well as the corresponding MPRAGE, FLAIR, and T,-w images. Ten teams originally
submitted results for the Challenge data sets and were able to participate in the
Challenge event (see Section 2.1 for a complete description of the data). In addition
to these methods, we received results for two methods from teams that did not
participate in the Challenge event. To provide some context with the 2008 MICCAI
MS Lesion challenge (Styner et al., 2008), we also include the methods that finished
first and third in that challenge. Where we present descriptions or results of the
methods, we use a colored square to help identify methods and within that square
we denote methods that are unsupervised with the letter U and those that require
some training data (supervised methods) with the letter S. When considering the
Consensus Delineation in Section 4, we identify Rater #1 and #2 with colored
squares with the letter M to denote manual delineations.

3.1. Challenge Participants

Team CMIC

Multi-Contrast PatchMatch Algorithm for Multiple Sclerosis Lesion Detection

(F. Prados, M. J. Cardoso, N. Cawley, O. Ciccarelli, C. A. M. Wheeler-Kingshott, &
S. Ourselin)

Team CMIC used the PatchMatch (Barnes et al., 2010) algorithm for MS lesion
detection. The main contribution of this work is the generalization of the optimized
PatchMatch algorithm to the context of MS lesion detection and its extension to
multimodal data.

U Team VISAGES GCEM
Automatic Graph Cut Segmentation of Multiple Sclerosis Lesions
(L. Catanese, O. Commowick, & C. Barillot)

Team VISAGES GCEM used a robust Expectation-Maximization (EM) algorithm
to initialize a graph, followed by a min-cut of the graph to detect lesions, and an
estimate of the WM to help remove false positives. GCEM stands for Graph-cut with
Expectation-Maximisation.

§ Team VISAGES DL

Sparse Representations and Dictionary Learning Based Longitudinal Segmentation
of Multiple Sclerosis Lesions

(H. Deshpande, P. Maurel, & C. Barillot)

Team VISAGES DL used sparse representation and a dictionary learning paradigm
to automatically segment MS lesions within the longitudinal MR data. Dictionaries
are learned for the lesion and healthy brain tissue classes, and a reconstruction
error-based classification approach for prediction.
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Team CRL
Model of Population and Subject (MOPS) Segmentation
(X. Tomas-Fernandez & S. K. Warfield)

Inspired by the ability of experts to detect lesions based on their local signal
intensity characteristics, Team CRL proposes an algorithm that achieves lesion and
brain tissue segmentation through simultaneous estimation of a spatially global
within-the-subject intensity distribution and a spatially local intensity distribution
derived from a healthy reference population.

S Team IIT Madras

Longitudinal Multiple Sclerosis Lesion Segmentation using 3D Convolutional Neural
Networks

(S. Vaidya, A. Chunduru, R. Muthuganapathy, & G. Krishnamurthi)

Team IIT Madras modeled a voxel-wise classifier using multi-channel 3D patches
of MRI volumes as input. For each ground truth, a convolutional neural net-
work (CNN) is trained and the final segmentation is obtained by combining the
probability outputs of these CNNs. Efficient training is achieved by using sub-
sampling methods and sparse convolutions.

S Team PVG One

Hierarchical MRF and Random Forest Segmentation of MS Lesions and Healthy
Tissues in Brain MRI

(A. Jesson & T. Arbel)

Team PVG One built a hierarchical framework for the segmentation of a variety of
healthy tissues and lesions. At the voxel level, lesion and tissue labels are estimated
through a MRF segmentation framework that leverages spatial prior probabilities for
nine healthy tissues through multi-atlas label fusion (MALF). A random forest (RF)
classifier then provides region level lesion refinement.

Team IMI
MS-Lesion Segmentation in MRI with Random Forests
(O. Maier & H. Handels)

Team IMI trained a RF with supervised learning to infer the classification function
underlying the training data. The classification of brain lesions in MRl is a complex
task with high levels of noise, hence a total of 200 trees are trained without any
growth-restriction. Contrary to reported observations, no overfitting occurred.

U Team MSmetrix
Automatic Longitudinal Multiple Sclerosis Lesion Segmentation
(S. Jain, D. M. Sima, & D. Smeets)

MSmetrix (Jain et al., 2015) is presented, which performs lesion segmentation
while segmenting brain tissue into CSF, GM, and WM, with lesions identified based
on a spatial prior and hyperintense appearance in FLAIR.
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Team DIAG
Convolution Neural Networks for MS Lesion Segmentation
(M. Ghafoorian & B. Platel)
Team DIAG utilizes a deep CNN with five layers in a sliding window fashion to
create a voxel-based classifier.

Team TIG

Model Selection Propagation for Application on Longitudinal MS Lesion Segmenta-
tion

(C. H. Sudre, M. J. Cardoso, & S. Ourselin)

Based on the assumption that the structural anatomy of the brain should be
temporally consistent for a given patient, Team TIG proposes a lesion segmentation
method that first derives a GMM separating healthy tissues from pathological and
unexpected ones on a multi-time-point intra-subject group-wise image. This average
patient-specific GMM is then used as an initialization for a final time-point specific
GMM from which final lesion segmentations are obtained. Team TIG submitted new
results after the completion of the Challenge to address a bug in their code, the
second submitted results are denoted TIG BF. Both sets of results are included in
Appendix C; however, the Consensus Delineation was only compared to the bug
fixed results (TIG BF).

3.2. Other Included Methods

These methods did not participate in the Challenge, however they are included
to add to the richness and variety of the methods presented. MORF and Lesion-
TOADS represent methods that finished first and third in the 2008 MICCAI MS
Lesion challenge (Styner et al., 2008), respectively, and as such offer the opportunity
to provide a reference between the two challenges. In particular, the two algorithms
offer different perspectives on the problem (supervised versus unsupervised, respec-
tively) while also testing the ongoing viability of these two methods within the field.
Our third included method (MV-CNN)—based on deep-learning—is a state-of-the-art
approach; the authors of MV-CNN submitted their results to the Challenge Website
while this manuscript was in preparation. As a deep-learning method, MV-CNN
represents a key direction in which the medical imaging community is moving. While
the fourth included method, BAUMIP, submitted results for both Challenge data sets
but was unable to participate at the Challenge event.

U BAUMIP
Automatic White Matter Hyperintensity Segmentation using FLAIR MRI
(L. O. Iheme & D. Unay)

BAUMIP is a method based on intensity thresholding and 3D voxel connectivity
analysis. A simple model is trained that is optimized by searching for the maximum
obtainable Dice overlap.
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S MV-CNN
Multi-View Convolutional Neural Networks
(A. Birenbaum & H. Greenspan)

MV-CNN is a method based on a Longitudinal Multi-View CNN (Roth et al., 2014).
The classifier is modeled as a CNN, whose input for every evaluated voxel are
patches from axial, coronal, and sagittal views of the T-w, T»-w, PD-w, and FLAIR
images of the current and previous time-points. That is multiple contrasts, multiple
views, and multiple time-points. MV-CNN consists of three phases: Preprocessing
the Challenge data, Candidate Extraction, and CNN Prediction. The Challenge
data is preprocessed by intensity clamping the top and bottom 1% and the intensity
values are scaled to the range [0, 1].

S MORF
Multi-Output Random Forests for Lesion Segmentation in Multiple Sclerosis
(A. Jog, A. Carass, D. L. Pham, & J. L. Prince)

MORF is an automated algorithm to segment WML in MR images using multi-
output random forests. The work is similar to Geremia et al. (2011) in that it uses
binary decision trees that are learned from intensity and context features. However,
instead of predicting a single voxel, an entire neighborhood or patch is predicted for
a given input feature vector. The multi-output decision trees implementation has sim-
ilarities to output kernel trees (Geurts et al., 2007). Predicting entire neighborhoods
gives further context information such as the presence of lesions predominantly
inside WM, which has been shown to improve patch based methods (Jog et al.,
2017). This approach was originally presented in Jog et al. (2015). Geremia et al.
(2011) finished first at the 2008 MICCAI MS Lesion challenge (Styner et al., 2008),
and thus this should represent a good proxy for that work.

U Lesion-TOADS
A topology-preserving approach to the segmentation of brain images with multiple
sclerosis lesions
(N. Shiee, P--L. Bazin, A. Ozturk, D. S. Reich, P. A. Calabresi, & D. L. Pham)
Lesion-TOADS (Shiee et al., 2010) is an atlas-based segmentation technique
employing topological and statistical atlases. The method builds upon previous
work (Bazin and Pham, 2008) by handling lesions as topological outliers that can
be addressed in a topology-preserving framework when grouped together with the
underlying tissues. Lesion-TOADS finished third at the 2008 MICCAI MS Lesion
challenge (Styner et al., 2008), however there have been some improvements in the
method in the intervening years.

4. Consensus Comparison

We construct a Consensus Delineation for each test data set by using the
simultaneous truth and performance level estimation (STAPLE) algorithm (Warfield
et al., 2004). The Consensus Delineation uses the two manual delineations created
by our raters as well as the output from all fourteen algorithms. The manual
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MPRAGE FLAIR

Rater #1 Rater #2

cMmiC

Figure 2: Delineations are shown for a sample slice from the preprocessed MPRAGE, FLAIR, and T,-w
images for a time-point of a test data set, followed by our Consensus Delineation and the results for the
top eight delineations as ranked by their Dice Score with the Consensus. For ease of reference, a grid
has been added underneath the delineations. The bottom eight delineations, as ranked by their Dice
Score with the Consensus, can be see in Fig. 3.
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MPRAGE FLAIR

S IIT Madras

U Lesion-TOADS U MSmetrix

Figure 3: Delineations are shown for a sample slice from the preprocessed MPRAGE, FLAIR, and T»-w
images for a time-point of a test data set, followed by our Consensus Delineation and the results for the
bottom eight delineations as ranked by their Dice Score with the Consensus. For ease of reference, a
grid has been added underneath the delineations. The top eight delineations, as ranked by their Dice
Score with the Consensus, can be see in Fig. 2.
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delineations and the fourteen algorithms are treated equally within the STAPLE
framework. In the remainder of this section, we regard the Consensus Delineation as
the “ground truth” and using our metrics compare the human raters and all fourteen
algorithms to this ground truth. The TIG BF results from Team TIG were used in the
construction of the Consensus Delineation. We refer to the collection (two manual
raters and fourteen algorithms results) as the Segmentations. The construction of
a Consensus Delineation provides the opportunity to simultaneously compare the
human raters and the Challenge participants across all of our metrics. This may
help us answer the question:

Can automated lesion segmentation now replace the human rater?

Table 3 presents the Dice overlap score between the Consensus Delineation
and the Segmentations; which include the mean Dice overlap across the 61 patient
images in Test Set A and B, as well as the standard deviation, and the range of
reported values. Figure 4 shows a least squares linear regression between the
lesion load estimated by each of the Segmentations and that given by the Consensus
Delineation. Figure 5 shows two plots summarizing true positive rate (TPR) against
positive predictive value (PPV) for the Segmentations. The plot was split into two
plots, each containing a group of eight segmentations, for ease of viewing. Table 4
includes the mean, standard deviation, and range of the average symmetric surface
distance (ASSD). Within Table 4, the Segmentations are ranked by their mean ASSD
with the Consensus Delineation. Figure 6 shows two plots summarizing the lesion
true positive rate (LTPR) and the lesion false positive rate (LFPR)—again this plot is
split into two groups of eight for ease of viewing. Finally, we have Table 5 which has
the mean, standard deviation, and range for the longitudinal correlation (LongCorr).

5. Discussion and Conclusions

5.1. Inter-rater Comparison

As organizers, we felt that the overall performance of our two raters relative to
each other was disappointing (see Table 2). For example, the inter-rater Dice overlap
of 0.6340 was below that of other inter-rater studies of MS lesions: Zijdenbos et al.
(1994) reports a mean inter-rater Dice overlap of 0.700, they refer to Dice overlap as
similarity. They also note that when restricted to the same scanner their inter-rater
Dice overlap rose to 0.732—as reported earlier all of our data was acquired on
the same scanner. However, the 2008 MICCAI MS Lesion challenge (Styner et al.,
2008) had two raters repeat ten of the scans and their inter-rater mean Dice overlap
was 0.2498. We therefore believe that our inter-rater performance is acceptable,
especially considering our raters worked on 82 data sets—61 in Test Set A and B,
and another 21 in the Training Set.

5.2. Consensus Delineation

The Consensus Delineation afforded us the opportunity to directly compare
the quality of our two manual raters with the submitted results. When performing
statistical comparisons we use an « level of 0.001. If the Dice overlap (Table 3)

18



530

535

540

545

Table 3: Mean, standard deviation (SD), and range of Dice overlap scores for the Segmentations against
the Consensus Delineation. The Segmentations are ranked by their mean Dice overlap.

Dice

Method Mean (SD) Range

Rater #2 0.670 (x0.178) [0.246, 0.843]
Rater #1 0.658 (x0.149) [0.218, 0.852]
S Team PVG One 0.638 (+0.164) [0.291, 0.872]
Team DIAG 0.614 (x0.133) [0.282, 0.824]
S MV-CNN 0.614 (+£0.164) [0.177,0.830]
Team IMI 0.609 (x0.160) [0.035, 0.829]
U Team VISAGES GCEM 0.607 (x£0.147) [0.235, 0.832]
Team CMIC 0.598 (x0.177) [0.200, 0.816]
U Lesion-TOADS 0.579 (x0.121) [0.279, 0.773]
Ul| Team MSmetrix 0.561 (x0.131) [0.245, 0.764]
S Team IIT Madras 0.550 (+0.153) [0.233, 0.811]
U Team TIG BF 0.540 (x0.139) [0.190, 0.719]
S MORF 0.474 (+0.180) [0.068, 0.747]
S Team VISAGES DL 0.432 (x0.196) [0.039, 0.827]
U BAUMIP 0.426 (+0.123) [0.136, 0.631]
Team CRL 0.415 (x0.172) [0.000, 0.664]

is considered the definitive metric for rating lesion segmentation then the expert
human raters are still better than algorithms. However, the level of expertise is
important, we note that Rater #2 has a decade more delineation experience than
Rater #1. A two-sided Wilcoxon Signed-Rank Paired Test (Wilcoxon, 1945) between
the highest ranking algorithm (Team PVG One) and the highest ranking manual
delineation (Rater #2) reaches significance with a a p-value of 0.0093. Whereas,
the same test, between Team PVG One and Rater #1 does not reach significance
(p-value of 0.1076). Of course Dice overlap is a crude metric with volumetric
insensitivities. From Fig. 4, we can see that the least squares linear regression of
Rater #2 is closest to the line of unit slope suggesting that it may be a proxy for
the lesion load as represented by the Consensus Delineation. We do note that the
Consensus Delineation, as generated by STAPLE, may be overly inclusive—which
would explain the grouping together of all the other Segmentations in Fig. 4. Figure 5
shows a cross-hairs plot of the range of true positive rate (TPR) versus the positive
predictive value (PPV). The desired operating point for any segmentation in this plot
is the upper right hand corner (TPR = 1, PPV =1). Rater #2 is the closest to this
desired operating point, with Rater #1 second, and Team PVG One third. A two-
sided Wilcoxon Signed-Rank Paired Test comparing the distance from the operating
points to the desired operating point between either Rater #2 or Rater #1 and Team
PVG One had p-values of 0.0058 and 0.0458, respectively. Again, suggesting that

19



550

555

Lesion Load

-10*
3 [
S
c
2 2|
S
c
(0]
£
g 1
!
0 [
Consensus Delineation Vol. 10
Rater #2 U Lesion-TOADS
Rater #1 U] Team MSmetrix
S Team PVG One § Team IIT Madras
Team DIAG U Team TIG BF
$ MV-CNN S MORF
Team IMI S Team VISAGES DL
U} Team VISAGES GCEM U BAUMIP
Team CMIC Team CRL

Figure 4: The plot shows a least squares linear regression fit between the lesion load estimated by each
of the Segmentations and that from the Consensus Delineation. The dashed line represents a line of unit
slope. All volumes are in mm>.

the level of expertise is critical in achieving the best results. A similar analysis of
Fig. 6 shows that MV-CNN operates closest to the desired optimal point (in this
case the lower right hand corner), with Rater #1 second, and Lesion-TOADS third.
Moreover, the two-sided Wilcoxon Signed-Rank Paired Test has a p-value of <
0.0001 between MV-CNN and Rater #1. This suggests that MV-CNN may be better
than manual delineators when it comes to LFPR and LTPR. Tables 4 and 5 show
other metrics that are generally not reported in the lesion segmentation literature.
However, both of which suggest advantages to the use of algorithms over manual
raters. For the average symmetric surface distance (ASSD); of the algorithms that
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Figure 5: Each subplot shows the range of values for the true positive rate (TPR) and the positive
predictive value (PPV) between eight of the Segmentations and the Consensus Delineation. The top
plot shows the top eight Segmentations as ranked by the Dice overlap, and the bottom plot shows the
remaining eight Segmentations. The desirable point on each of the subplots is the upper right hand
corner, where TPRis 1 and PPV is 1.
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Figure 6: Each subplot shows the range of values for the lesion true positive rate (LTPR) and the lesion
false positive rate (LFPR) between eight of the Segmentations and the Consensus Delineation. The
top plot shows the top eight Segmentations as ranked by the Dice overlap, and the bottom plot shows
the remaining eight Segmentations. The desirable point on each of the subplots is the lower right hand
corner, where LTPR is 1 and LFPR is 0.
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Table 4: Mean, standard deviation (SD), and range of the average symmetric surface distance (ASSD)
for the Segmentations against the Consensus Delineation. The Segmentations are ranked by their mean

ASSD.
ASSD

Method Mean (SD) Range

S Team PVG One 2.16 (+3.83) [0.54, 18.86]
S MV-CNN 2.26 (+1.78) [0.54, 7.16]
B Team DIAG 2.29 (+1.43) [0.84, 7.53]
U Team TIG BF 2.38 (+1.89) [0.80, 8.15]
U Lesion-TOADS 2.71 (+1.33) [1.60, 8.03]
S Team IIT Madras 2.86 (+2.08) [0.66, 9.27]
Rater #2 2.99 (+£3.45) [0.58, 17.96]
U BAUMIP 3.06 (+1.65) [1.07, 7.37]
Rater #1 3.11 (+2.80) [0.55, 11.96]
U Team VISAGES GCEM 3.26 (+2.57) [0.89, 11.49]
U Team MSmetrix 3.31 (£2.10) [1.08, 9.26]
B Team i 3.59 (+4.80) [0.81, 35.83]
Team CMIC 3.85 (+2.68) [0.97, 10.36]
S Team VISAGES DL 5.28 (+4.69) [0.84, 26.68]
S MORF 5.68 (£4.42) [1.67, 25.07]
B Team CRL 6.14 (+6.36) [1.56, 7.53]

rank above Rater #2, only Team PVG One is statistically significantly different with a
p-value of < 0.0001. However, with respect to longitudinal correlation (see Table 5)
none of the algorithms are statistically significantly better than the highest rated
manual delineation, which comes from Rater #2. Based on the comparison to
the Consensus Delineation, there is not clear evidence to suggest that any of the
automated algorithms is better than the manual delineations of Rater #1 and #2.

5.3. Best Algorithm

We caution that we cannot truly answer the question of which algorithm is the
true best for WML segmentation. We have chosen a metric collection that was felt to
best represent desirable properties in a longitudinal lesion segmentation algorithm.
However, as can be seen in Section 4, arguments can be made for several of the
algorithms to be named the best depending on the chosen criteria. For example, if
LongCorr (see Table 5) is deemed most important, then Team IIT Madras would be
considered the best. By switching to consider the Dice overlap, Team IIT Madras
with a mean score of 0.550 is behind eight other algorithms, and both human raters.
In contrast several methods (Team PVG One, Team DIAG, MV-CNN, Team IMI, &
Team VISAGES GCEM) have mean Dice overlap above 0.600 with the Consensus
Delineation. With Team PVG One having 42 cases (out of 61) with a Dice overlap
over 0.600. Details about the Winner of the Challenge is in Appendix C.
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Table 5: Mean, standard deviation (SD), and range of the longitudinal correlation (LongCorr) for the
Segmentations against the Consensus Delineation. The Segmentations are ranked by their mean
LongCorr.

LongCorr

Method Mean (SD) Range

8 Team lIT Madras 0.657 (+0.483) [-0.583, 0.997]
Team CMIC 0.607 (+0.582) [-0.693, 1.000]
Team CRL 0.432 (+0.524) [-0.567, 1.000]
Rater #2 0.424 (+0.634) [-0.763, 0.998]
U BAUMIP 0.421 (+0.615) [-0.919, 0.999]
Team DIAG 0.402 (+0.634) [-0.974, 0.990]
U Lesion-TOADS 0.376 (+0.654) [-0.636, 1.000]
S Team PVG One 0.340 (+0.623) [-0.955, 0.998]
S Team VISAGES DL 0.327 (+0.679) [-0.900, 0.970]
U Team TIG BF 0.249 (+0.696) [-0.943, 0.998]
Team IMI 0.220 (+0.728) [-0.981, 0.984]
S MORF 0.181 (£0.540) [-0.785, 0.976]
Rater #1 0.171 (+0.634) [-0.899, 0.969]
U Team MSmetrix 0.153 (£0.746) [-0.930, 1.000]
U Team VISAGES GCEM 0.042 (+0.675) [-0.999, 0.991]
S MV-CNN 0.031 (+0.683) [-0.980, 0.999]

5.4. Future Work

As organizers, we were surprised that most of the submitted approaches did not
take advantage of the longitudinal nature of the data. For example, Team MSmetrix
used a temporally consistency step to correct their WML segmentations, yet had bad
longitudinal correlation, LTPR, & LFPR, relative to the other Challenge participants
in the comparison with the Consensus Delineation. This would seem to imply that
existing ideas about temporal consistency do not represent the biological reality
underlying the appearance and disappearance of WMLs. It should be noted that
the longitudinal consistency of the raters was poor, as the raters were presented
with each scan independently and were themselves not aiming for longitudinal
consistency. Longitudinal manual delineation protocols should be augmented so
as not to blind the raters to the ordering of the data. The hope would be that all
the information can be used to obtain the most accurate and consistent results
possible. However, it remains a challenge as to how the longitudinal information can
be incorporated into the manual delineation protocol. We believe that by making
this challenging data set available and providing an automated site for method
comparisons, the Challenge data will foster new efforts and developments to further
improve algorithms and increase detection accuracy.

The results of the Consensus Delineation suggest that there is still work to be
done before we can stop depending on manual delineations to identify WMLs. This
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is a disappointing state, considering the amount of research that has been done in
this area in the last two decades. The situation is made worse when considering
the shortcomings of the manual delineations and the automated algorithms. Clearly
longitudinal consistency is an area in which all the automated algorithms could
improve. Our human raters were blinded to the temporal ordering of the data, unlike
the algorithms, and it is not clear at this juncture how the human raters performance
might have changed given this information. Of course, this only covers what we
would reasonably expect WML segmentation algorithms to do today. We should
expect them to be able to classify the three types of WML (enhancing, black hole, &
T»-w) and localize as periventricular or cortical lesions, eventually providing more
specific location classifications such as juxtacortical, leukocortical, intracortical, and
subpial. These properties may be important in distinguishing the status of patients.
The next generation of MS lesion detection software needs to address these issues.

An issue which we had not intended to explore was the failure of global measures.
Lesion load—as determined by lesion segmentation—is an important clinical mea-
sure; the reduction (or stabilization) of which through automated or semi-automatic
image analysis methods is one of the primary outcome measures to determine the
efficacy of MS therapies. Lesion load and several other global measures fail to
predict the disease course; instead we need to use location specific measures—as
mentioned above—to serve as outcome predictors or staging criteria for monitoring
therapies (Filippi et al., 2014). Beyond this there is a desire for measures that help
in identifying the pathophysiologic stages of MS lesions (pre-active, active, chronic
active, or chronic inactive) (Jonkman et al., 2015).
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Appendix A. Lesion Protocol

The following protocol was used in the creation of the MS lesion masks, which
were created in our 1 mm isotropic MNI space.

1. Review the possibilities for presentation of MS lesions in brain scans, an
excellent resource is Sahraian and Radue (Sahraian and Radue, 2007). It is
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also a good idea to familiarize yourself with the paint and mask functions in
MIPAV (McAuliffe et al., 2001; Bazin et al., 2005) before you begin, although
this protocol description can serve as a basic guide.

Open MIPAV. If you have not done so in the past, add the Paint toolbar to the
interface (Toolbars > Paint toolbar). The Image toolbar should be present by
default; if not, go to Toolbars > Image toolbar.

Open two copies of the FLAIR scan and one copy each of the T-w, T5-w,
and PD-w scans (File > Open image (A) from disk > select files > Open).
These should be appropriately co-registered in the axial view with identical
slice thickness and field of view values before beginning this process.

Click on the T,-w scan to select it, then click on the WL button on the MIPAV
toolbar to bring up the Level and Window adjuster. This should automatically
result in a reasonable tissue contrast for viewing potential lesions on the T';-w.
If the contrast is inadequate, change the window and level settings. Close the
tool when you are satisfied with the contrast.

Enlarge each image three times using the magnifying glass + button on the
Image toolbar for a total magnification of 4x. Arrange the images on your
display with the two FLAIR copies next to each other. Ensure that the scans
are properly aligned with one another horizontally. This will enable you to
quickly check the other images to identify and verify tissue abnormalities as
lesions (or not) while working on the FLAIR mask.

Link the scans together by first clicking on the Sync slice number button on
the Image toolbar (two arrows one pointing left and the other pointing right).
Then click on each scan and select the Link images button (broken links next
to Sync slice number button; the broken links change to an intact link when
activated). This will ensure that all of the scans stay on the same slice as the
FLAIR while you work. Click on one of the scans, then scroll up and down
while looking from side to side over the images to verify proper registration
and check for image processing errors (e.g., missing pieces of brain).

Select one of the FLAIR scans, then click on the Paint Grow button (looks like a
paint bucket) on the Paint toolbar to open the intensity and connectivity-based
paint mask generator.

Open the Paint Power Tools plugin. The icon (lightbulb) should be at the right
end of the Paint toolbar. Look at the Threshold section. Find the maximum
intensity value present in the scan by observing the number in the right-hand
box (upper threshold).

Look at the Paint Grow tool. Find the section marked Set maximum slider
values. Change the maximum slider values in the paint mask generator to
reflect the maximum intensity in the scan, and click Set.

Choose a lesion with well-defined borders and strong hyperintensity on the
FLAIR scan. Click on the most hyperintense area in the lesion.

Move the second slider (Delta below selected voxel intensity) to the right until
it encompasses most of the lesioned tissue.

Scroll up and down through the image to ensure that the selection is limited
to the lesioned area and does not include hyperintensities due to noise or
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artifact. If non-lesioned tissue is included, move the slider back to the left until
this tissue is deselected.

Move the first slider (Delta above selected voxel intensity) to the right to ensure
that all voxels of higher intensity in the lesion are selected.

Repeat this process until all well-defined lesions in the FLAIR scan have been
selected, remembering to scroll up and down frequently to prevent masking of
non-lesioned tissue. In general, this process will result in a rough draft of a
lesion mask.

Do not use this process for any area that is affected by scan artifact or for
any hyperintensity that is not clearly a lesion. Investigate questionable areas
during the later stages of the delineation process.

If a decision is to be made between fully encompassing a lesion and additional
non-lesioned tissue or partially covering a lesion without extraneous tissue,
choose the latter option. It tends to be easier, within MIPAV, to add to a mask
than subtract from it.

When you are satisfied with your rough mask, save it as an unsigned byte
mask (VOI > Paint conversion > Paint to Unsigned byte mask). This will give
you the binary mask data you have generated thus far. When the mask image
appears, go to the File menu and choose Save image as. Enter the file name
and desired extension, then click Save.

Close the binary mask and the Paint Grow tool.

To begin, move your pointer over the area around the edge of a lesion, hold the
mouse button down, and notice the intensity difference between the interior
and exterior of the lesion. Record the intensity value for the area at the edge
of the lesion.

Because many MS lesions are found in close proximity to the ventricles, it is
useful to start in the middle slice in the axial view. Delineate from the middle
axial slice to the superior aspect of the brain, scroll down to check your work,
and then delineate from the middle to the inferior view.

On the Paint Power Tools interface, click the box next to Threshold. Enter
the intensity value for the outside edge of the lesion in the first box; this will
restrict your paint to voxels between that intensity (lower threshold) value and
the value listed in the box to the right (upper threshold).

There is no need to change the value in the right box unless you are delineating
lacunes. In that case, you should set the left box to the lowest possible value,
and change the upper threshold to the highest value found on the edge of the
lacune.

Click on the paintbrush icon on the paint toolbar. Paint around the edge of
the lesion to test your threshold. You may need to paint and erase (paint =
left mouse button, erase = right mouse button) the first time you do it, and
then the threshold should be activated. You may also need to adjust the lower
threshold value (left box). If too many voxels are being excluded from the
lesion mask, lower the threshold value for a more inclusive range. If too many
voxels are being included, increase the threshold value.

If you wish, you can change the paintbrush size by clicking on the drop-down
menu in the center of the Paint toolbar and selecting one of the options.
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You may also customize your paintbrush options by clicking on the Paint brush
editor button (looks like a group of paintbrushes) to the right of this menu. This
will open a grid size selector that allows you to specify the width and height of
the grid for your paintbrush in pixels (default is 12x12). Click OK, and the grid
will open. Draw the shape you want for your paintbrush, then go to the “Grid
options” menu to save (Grid options > Save paint brush > input file name >
Save). Your custom paintbrush will appear in the menu the next time MIPAV is
opened, so restart the program if you want to use it immediately.

As you move to different slices, you may need to readjust the lower threshold.
Not all of the lesion edges have the same intensity value, and intensities often
differ between lesions at the anterior vs posterior areas of the same slice.
During this process, it is extremely important to scroll up and down frequently
in order to get a sense of each lesion’s shape and ensure mask continuity.
For every hyperintensity identified, scrolling up and down can also help to rule
out false positives. Be sure to look at the other scans, particularly the 7»-w, in
order to verify that what you are selecting is a lesion.

In some cases, a lesion may be much more readily visible on the T,-w scan.
If this occurs, it is possible to delineate that portion directly on the T,-w
scan and add this small mask area to your FLAIR mask. This is particularly
relevant when the FLAIR image contains a great deal of artifacts. If you cannot
adequately capture the lesion on the FLAIR, use the T5-w.

When debating what to include in the mask, keep these things in mind.

(a) Lesions usually have rounded or smoothed edges.

(b) Lesions appear distinctly hyper- or hypo- intense when compared with
surrounding tissue (usually hyperintense on FLAIR, PD-w, and T,-w
scans, and hypointense on T-w),

(c) Lesions will usually be found near the ventricles, in the corpus callo-
sum, or in the deep white matter, though juxtacortical lesions are not
uncommon.

(d) Lesions may appear in the cerebellum, brainstem, temporal lobes, or
basal ganglia at a lower intensity relative to the majority of the lesions.
It is especially important to use information from the other scans when
attempting to detect and delineate lesions in these areas.

(e) Include white matter encompassed by closed, well-defined clusters of
lesions. Do not include internal white matter if the cluster is open.

(f) Include all CSF inside lacunes.

(g) If alesion is adjacent to clearly hyperintense areas near the ventricles,
and you can confirm that these areas appear damaged in the T;-w scan,
include them in the mask. Lesioned tissue bordering the ventricles looks
ragged and dark on T|-w scans.

(h) Do not include diffusely abnormal white matter (DAWM) in the masks for
ISBI scans. The intensity of DAWM is between normal white matter and
lesioned tissue on FLAIR. DAWM looks mottled on T-w, may radiate
outward like a halo from a focal lesion, and is usually found around the
ventricles.
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24. Save your work frequently or use the automatic save function in the Paint
Power Tools interface. Check the box next to Auto save under Misc., then
set the number in the box to reflect how often you want the mask to be
automatically saved (default is 10 minutes).

25. For some lesions, you may need to turn the paint threshold off and use the
standard paint option, which will not restrict your paint to any specific intensity
values. To do this, simply uncheck the box next to Threshold.

26. When you have finished delineating the lower portions of the brain, go back
through the entire scan and check your work against the other images, focus-
ing specifically on any areas that may have been difficult to verify as lesions.
Edit as necessary.

27. Save your final mask.

28. To load a mask that you have worked on previously, select the FLAIR scan,
then click on the second button from the left on the paint toolbar (appears to
be a folder opening with a four-square gradient in front of it). Choose your
mask file, click Open, and your mask will be loaded over the FLAIR.

29. If you would like to edit your mask after opening it from a saved file, open the
Power Paint Tools, click on Mask to Paint under the Import/Export section at
the bottom of the interface, and continue working.

Appendix B. Methods

For completeness, we provide descriptions of the Challenge Participants in
Appendix B.1 and in Appendix B.2 we describe other methods that were not part of
the Challenge which we included in our evaluation. Where we present descriptions
or results of the methods, we use a colored square to help identify methods and
within that square we denote methods that are unsupervised with the letter U and
those that require some training data (supervised methods) with the letter S.

Appendix B.1. Challenge Participants

Table B.1 provides a synopsis of these methods and the MR sequences used by
each individual team during the Challenge.

Team CMIC

Multi-Contrast PatchMatch Algorithm for Multiple Sclerosis Les