

A Combination of Single-Nucleotide Polymorphisms Is Associated with Interindividual Variability in Cholecalciferol Bioavailability in Healthy Men

C. Desmarchelier, Patrick Borel, Aurélie Goncalves, R. Kopec, M. Nowicki, S. Morange, N. Lesavre, H. Portugal, Emmanuelle Reboul

▶ To cite this version:

C. Desmarchelier, Patrick Borel, Aurélie Goncalves, R. Kopec, M. Nowicki, et al.. A Combination of Single-Nucleotide Polymorphisms Is Associated with Interindividual Variability in Cholecalciferol Bioavailability in Healthy Men. Journal of Nutrition, 2016, 146 (12), pp.2421 - 2428. 10.3945/jn.116.237115. inserm-01478327

HAL Id: inserm-01478327 https://inserm.hal.science/inserm-01478327v1

Submitted on 15 Sep 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A Combination of Single-Nucleotide Polymorphisms Is Associated with the Interindividual Variability in Cholecalciferol Bioavailability in Healthy Men^{1,2,3,4}

Charles Desmarchelier,^{5,6} Patrick Borel,^{5,6*} Aurélie Goncalves,⁶ Rachel Kopec,^{7,8} Marion Nowicki,⁶ Sophie Morange,⁹ Nathalie Lesavre,¹⁰ Henri Portugal,⁶ Emmanuelle Reboul⁶

⁶NORT, Aix-Marseille Université, INRA, INSERM, 13005, Marseille, France

⁷French National Institute for Agricultural Research, UMR INRA 408, Avignon, France

⁸University of Avignon, Security and quality of plant products, Avignon, France

⁹Clinical Investigation Centre Hôpital de la Conception, Marseille, France

¹⁰Clinical Investigation Centre Hôpital Nord, Marseille, France

⁵ CD and PB contributed equally as joint first authors to this work.

¹ The present work has received research funding from the European Community's Sixth Framework Programme. The funding was attributed to the Lycocard project (n°016213) which was an Integrated Project within the framework of the "Food Quality and Safety" program. This publication reflects only the view of the authors. The Lycocard community is not liable for any use that may be made of the results.

² Author disclosures: C Desmarchelier, P Borel, A Goncalves, R Kopec, M Nowicki, S Morange, N Lesavre, H Portugal, E Reboul, no conflicts of interest.

³ Supplemental Tables 1-4, Supplemental Figures 1-3 and Supplemental Methods are available from the "Online Supporting Material" link in the online posting of the article and from the same link in the online table of contents at <u>http://jn.nutrition.org</u>.

⁴ Abbreviations used: 1,25(OH)₂D (1,25-dihydroxyvitamin D); 25(OH)D (25-hydroxyvitamin D); ABCB1 (ATP-binding cassette, sub-family B (MDR/TAP), member 1); ASBT (apical sodium-dependent bile acid transporter); D₂ (ergocalciferol); D₃ (cholecalciferol); DHCR7 (7-dehydrocholesterol reductase); GC (group-specific component, also known as vitamin D binding protein); PLS (partial least squares); SCARB1 (scavenger receptor class B, member 1); SNPs (single nucleotide polymorphisms); VIP (variable importance in the projection).

^{*} To whom correspondence and requests for reprints should be addressed: Patrick.Borel@univ-amu.fr UMR 1260 INRA/1062 INSERM/Aix-Marseille University
"Nutrition, Obesity and Risk of Thrombosis"
Faculté de Médecine
27, boulevard Jean Moulin
13005 Marseille
France
Phone: +33 (0)4 91 32 42 77
Fax: +33 (0)4 91 78 21 01

Authors' last names for PubMed indexing: Desmarchelier, Borel, Goncalves, Kopec, Nowicki, Morange, Lesavre, Portugal, Reboul

Word count: 6756

Number of figures: 4

Number of tables: 2

Running title: Cholecalciferol bioavailability characterization

1 ABSTRACT

Background: Most people require dietary vitamin D to achieve the recommended blood level
of 25-hydroxyvitamin D (25(OH)D). However, the blood response to vitamin D supplementation
is highly variable among individuals.

Objective: Our main objective was to assess whether the variability in cholecalciferol (D₃)
 bioavailability was associated with single nucleotide polymorphisms (SNPs) in candidate
 genes.

8 **Methods:** In a single-group design, 39 healthy adult men (age= 33 ± 2 ; BMI=22.9 \pm 0.3) were 9 genotyped using whole-genome microarrays. Following an overnight fast, plasma 25(OH)D 10 status was measured and the subjects then consumed a meal providing 5 mg D₃ as a 11 supplement. Plasma chylomicron D₃ concentration was measured over 8 h, and D₃ response 12 was assessed by calculating the postprandial area-under-the-curve. Partial least squares 13 regression was used to test the association of SNPs in or near candidate genes (61 genes 14 representing 3791 SNPs) with the postprandial D₃ response.

Results: The postprandial chylomicron D_3 concentration peaked at 5.4 h. The D_3 response was very variable among individuals (CV=47%). It correlated with the chylomicron triglyceride response (r=0.60, *P*<0.001) but not with the fasting plasma 25(OH)D concentration (r=0.04, *P*=0.83). A significant (*P*=1.32x10⁻⁴) partial least squares regression model, which included 17 SNPs in 13 genes (including 5 that have been associated with chylomicron triglyceride response), was associated with the variance in the D₃ response.

Conclusions: In healthy men, there is a high interindividual variability in D₃ bioavailability
 which is associated with a combination of SNPs located in/near genes involved in both vitamin
 D and lipid metabolism.

24 This trial was registered at <u>http://www.clinicaltrials.gov</u> as NCT02100774.

25

Key words: vitamin D, chylomicrons, nutrition, diet and dietary lipids, intestine, kinetics, nutrigenetics, 25-hydroxycholecalciferol, absorption, postprandial, genetic polymorphisms.

26

27 INTRODUCTION

28

29 Vitamin D is the generic name for compounds exhibiting the biological activity of 30 cholecalciferol (D_3). Vitamin D is essential for bone health and for regulating blood calcium and 31 phosphate concentrations, but it is also involved in other biological functions such as immunity, 32 cell proliferation, or apoptosis. To become hormonally active, D_3 needs two hydroxylations: 25-33 hydroxyvitamin D (25(OH)D) is produced in the liver upon 25-hydroxylase action (cytochrome 34 P450, family 2, subfamily R, member 1, CYP2R1) and, following its transport via the 35 bloodstream to the kidney bound to vitamin D binding protein (DBP), it undergoes a second 36 hydroxylation by $1-\alpha$ -hydroxylase (cytochrome P450 family 27, subfamily B, member 1, 37 CYP27B1) to form 1,25-dihydroxyvitamin D (1,25(OH)₂D) (1). In a recent Mendelian 38 randomization analysis, vitamin D status, which is usually estimated by measuring the plasma 39 25(OH)D concentration, has been negatively associated with all-cause and cancer mortality 40 (2). Although a significant fraction of total body vitamin D is produced in the skin after exposure 41 to ultraviolet light, a majority of individuals require at least some dietary vitamin D, either in 42 foods rich in vitamin D (3) or in supplements, to reach the serum level of vitamin D sufficiency. 43 D_3 is the main dietary source of vitamin D and is found in significant amounts in food items 44 such as milk and dairy products, fatty fish or cod liver oil. However, recent data suggests that 45 dietary vitamin D intakes in several Western countries are below recommended levels (current 46 RDA in the U.S. is 15 μ g) (4) and according to NHANES 2005–2006, 37% of the U.S. 47 population uses a dietary supplement containing vitamin D (5).

It is assumed that vitamin D uptake is governed by the same intra-luminal factors as those that have been described for lipids (6, 7). These include emulsification, solubilization in mixed micelles, and diffusion across the unstirred water layer before uptake by enterocytes. Triglycerides and vitamin D then show marked differences regarding their uptake by intestinal cells (8): although it was thought that vitamin D was absorbed *via* passive diffusion, recent results have shown that, at least at nutritional doses, intestinal cell membrane proteins are involved in the uptake of vitamin D on the apical side of the enterocyte. These proteins are 55 scavenger receptor class B type 1 (SR-BI), cluster determinant 36 (CD36), and Niemann-Pick 56 C1-like 1 (NPC1L1) (9). The list is likely not complete as it has been suggested that other 57 apical membrane transporters, for example the ATP-binding cassette sub-family G member 5 58 and 8 heterodimer (ABCG5/G8), might also be involved (7). Following its uptake, D_3 has to 59 reach the basolateral side of the cell to be secreted in the circulation, yet nothing is known 60 about its transport from the apical to the basolateral side of the enterocyte. It is assumed that 61 most absorbed D₃ is incorporated as such into chylomicrons, which are subsequently secreted 62 into the lymph (apolipoprotein B-dependent route) (10), but it is not known whether a fraction 63 of D₃ is incorporated into HDL secreted by the intestine, as described for cholesterol and 64 vitamin E (11, 12).

65 The heritability of blood vitamin D status is estimated at ~30% (13) and common 66 variants in CYP2R1 (2, 14-17), vitamin D binding protein (GC) (18), VDR (vitamin D (1,25-67 dihydroxyvitamin D) receptor) (19), 7-dehydrocholesterol reductase (DHCR7) (14, 15, 20) and 68 cytochrome P450, family 24, subfamily A, member 1 (CYP24A1) (14, 15, 19) have been 69 associated with fasting plasma 25(OH)D concentrations. There is also a wide variation in the 70 response of blood 25(OH)D to vitamin D supplementation, and this response has been shown 71 to be partly genetically modulated (2, 16, 17, 19, 21, 22). Moreover, as stated above, at least 72 a portion of vitamin D absorption requires protein transport (6, 7, 9, 23). Several groups, 73 including ours, have previously shown that genetic variants were associated with the variability 74 in the postprandial chylomicron triglyceride response (24-26) and chylomicrons are 75 responsible for the transport of newly absorbed D_3 into the peripheral circulation. Moreover, 76 we have also shown that the variation in the postprandial response to other lipid-soluble 77 micronutrients, i.e. tocopherol, lutein, lycopene and beta-carotene (27-30), which share 78 common absorption processes with D_3 , was modulated by SNPs in genes involved in both 79 intestinal transport of these micronutrients and chylomicron metabolism. This set of arguments 80 allows us to suggest that D_3 bioavailability could be, at least partly, genetically modulated.

81 The two main objectives of this study were 1) to describe the postprandial chylomicron 82 D₃ response to a D₃-rich meal and its interindividual variability and 2) to assess whether the

- 83 interindividual variability in D₃ bioavailability is associated with genetic variants located in or
- 84 near candidate genes involved in vitamin D or lipid metabolism.

85

86 SUBJECTS AND METHODS

87

88 Subject number and characteristics

89 Forty healthy, non-obese, non-smoking (31) men were recruited for the study. Subjects 90 reported normal energy consumption (i.e. \approx 2500 kcal/d) with <2% alcohol as total energy 91 intake. Subjects had no history of chronic disease, hyperlipidemia, or hyperglycemia and were 92 not taking any medication known to affect vitamin D or lipid metabolism the month before the 93 study or during the study period. Because of the relatively large volume of blood collected 94 during the study, blood hemoglobin concentration >13 g/dL was an inclusion criteria. The study 95 was approved by the regional committee on human experimentation (N°2008-A01354-51, 96 Comité de Protection des Personnes Sud Méditerranée I, France). Procedures followed were 97 in accordance with the Declaration of Helsinki of 1975 as revised in 1983. Objectives and 98 requirements of the study were fully explained to all participants before beginning the study. 99 and written informed consent was obtained from each subject. One subject left the study for 100 personal reasons before he participated in the postprandial experiment, which left 39 subjects 101 whose baseline characteristics are reported in **Table 1**.

102

103 **DNA preparation and genotyping methods**

DNA preparation and genotyping methods were performed as previously described (28). The whole genome was genotyped using HumanOmniExpress BeadChips (Illumina), which allowed for the analysis of $\approx 7.33 \times 10^5$ SNPs/DNA sample. Subjects were also genotyped for eleven additional SNPs as described below (refer to "Choice of candidate genes") (32).

109

110 **Postprandial experiments**

111 In order to assess D_3 bioavailability, we measured the postprandial chylomicron D_3 112 response to a D_3 -rich meal. This approach is commonly used for experimental assessment of 113 fat-soluble vitamin and carotenoid bioavailability (33-36). Because it has been shown that 114 season is an important prediction factor for vitamin D response variation (37), the postprandial 115 experiments were performed in a short time period, more precisely between September and 116 November. This postprandial experiment was part of a larger clinical research study where we 117 assessed the bioavailability of other lipid micronutrients and nutrients, *i.e.* lutein (30), 118 tocopherol (27), lycopene (29), beta-carotene (28) and cholesterol (unpublished data), in the 119 same group of subjects. In order to avoid carry-over and/or competition between the studied 120 compounds, a washout period of 2 weeks minimum was respected in between two test-meals. 121 Subjects were asked to refrain from the consumption of vitamin supplements and vitamin D-122 rich foods 48 h before the postprandial experiment (an exclusion list was provided by a 123 dietitian). In addition, subjects were asked to eat dinner between 19:00 and 20:00 the day 124 before the postprandial experiment and to abstain from any food or beverage consumption 125 afterward with the exception of water. After the overnight fast, subjects arrived at the local 126 Center for Clinical Investigation (Hôpital de la Conception, Marseille, France) and a baseline 127 blood sample was taken. Subjects then consumed the test meal together with 5 mg of 128 supplemental D₃ (2 vials of UVEDOSE 100 kIU, Crinex laboratory, Montrouge, France). The 129 meal also contained semolina (70 g) cooked in 200 mL of hot water, white bread (40 g), cooked 130 egg whites (60 g), peanut oil (50 g), and mineral water (330 mL). Subjects were asked to 131 consume the meal at a steady pace, with one half of the meal consumed in 10 min and the 132 remainder of the meal consumed within 30 min (to diminish the variability due to different rates 133 of intake and, thus, gastric emptying). No other food was permitted over the following 8 h. 134 However, subjects were allowed to drink any remaining water from the meal. Additional blood 135 samples were drawn 2, 3, 4, 5, 6 and 8 h after meal consumption. Blood was collected via 136 evacuated purple-top glass tubes containing K-EDTA. Tubes were immediately placed on ice 137 and covered with aluminum foil to avoid light exposure. Plasma was isolated by centrifugation 138 (10 min at 4 °C and 1620 x g) < 2 h after collection.

139

140 **Chylomicron preparation**

141 Chylomicrons were prepared from plasma samples as previously described (28).
142 Immediately after recovery, chylomicrons were stored at -80°C until analysis.

143

144 Ability of Caco-2 cells to convert D₃ to 25(OH)D

145 Caco-2 clone TC-7 cells were cultured as previously described (38). For each 146 experiment, cells were seeded and grown on 6-well plates during 14 days to obtain confluent 147 and highly differentiated cell monolayers. Twelve hours prior to each experiment, the complete 148 medium was replaced with DMEM supplemented with 1% antibiotics and 1% non-essential 149 amino acids. Cells were then incubated with DMEM supplemented with 1% antibiotics, 1% 150 non-essential amino acids, 1% BSA and 50 μ M D₃ up to 24h. After incubation, the cell medium 151 was harvested and the cells were scraped in ice-cold PBS. The samples were then stored at -152 80°C until analysis.

153

154 Vitamin D extraction and analysis by HPLC

155 Up to 2 mL of samples were deproteinated by adding 1 volume of ethanol, which also 156 contained ergocalciferol (D₂) as an internal standard, and vortexing for 30 s. After adding 157 2 volumes of hexane, the mixture was vortexed for 10 min and centrifuged at 500 x g for 10 min 158 at 4 °C. The upper phase (containing the different vitamin D forms) was collected and the 159 sample was extracted a second time with hexane following the same procedure. The hexane 160 phases were pooled and completely evaporated under nitrogen gas. The dried residue from 161 chylomicron samples was dissolved in 200 μ L of acetonitrile/methanol/water (60/38/2; v/v/v), 162 containing 20 mM sodium perchlorate and 10 mM perchloric acid, whereas the dried residue 163 from cell samples was dissolved in 200 µL of acetonitrile. A volume of 200 µL was used for 164 HPLC analysis.

 D_3 and D_2 from chylomicron samples were separated using a 250×4.6 mm reverse phase C18, 5-µm Zorbax column (Interchim, Montluçon, France) and a guard column and analyzed as previously described (9). D₃, 25(OH)D and D₂ from cell samples were separated using a 100×3 mm ACE 3 C18-AR column (AIT, Houilles, France). The mobile phase consisted of a gradient of acetonitrile (A) and water (pH10) (B). Flow rate was 0.22 mL/min and column temperature was 20°C. The gradient profile of the mobile phase (A:B) was set at 60:40 from 0 to 1.5 min. It then changed linearly to 100:0 for 6 min. This ratio was maintained for 12 min before the mobile phase was changed back to 60:40 from 18 to 18.5 min. This last ratio was finally maintained for 11.5 min.

175 **Plasma and chylomicron 25(OH)D analysis by chemiluminescence**

176 25(OH)D from fasting plasma and chylomicron samples was assessed using a
177 chemiluminescent immunoassay technology (Liaison analyzer, Diasorin, Antony, France),
178 according to the manufacturer's instructions.

179

180 Choice of candidate genes

181 Candidate genes included those for which the encoded protein has previously been 182 shown to be involved in D_3 uptake by the enterocyte in vitro (9), genes that have been 183 suggested to be involved (directly or indirectly) in the metabolism of fat-soluble micronutrients 184 in the enterocyte (23), and genes that have been associated with circulating blood 25(OH)D 185 concentration in genome-wide (15, 39-41) or candidate gene (18, 20, 21, 42-45) association 186 studies. Consequently, 61 genes were selected (Supplemental Table 1), representing 4608 187 SNPs. In addition, we added 27 SNPs in 14 genes associated with the postprandial 188 chylomicron triacylglycerol response in the same subjects (24). Indeed, chylomicrons are the 189 carrier of both newly absorbed triacylglycerols and D_3 (10) in the blood. Thus, we hypothesized 190 that genetic variants that affect the secretion and clearance of chylomicrons also likely affect 191 D_3 response. Finally, we added 11 SNPs that have been previously associated with lipid 192 metabolism and which were not genotyped with the BeadChips (Supplemental Table 2). After 193 genotyping of the subjects (see DNA preparation and genotyping methods), SNPs for which 194 the genotype call rate was <95%, or SNPs that presented a significant departure from the 195 Hardy-Weinberg equilibrium (P < 0.05; Chi-squared test), were excluded from all subsequent analysis (855 SNPs excluded, leaving 3791 SNPs for the partial least squares (PLS)
 regression analysis, Supplemental Figure 1).

198

199 Calculation and statistical analysis

The trapezoidal approximation method was used to calculate the AUC of the postprandial plasma chylomicron D_3 concentration over 8 h, henceforth referred to as " D_3 response".

All data were expressed as mean ± SEM.

Normality was assessed using the Kolmogorov-Smirnov and the Shapiro-Wilk tests. Statistical dependence between two variables was assessed by Pearson's correlation coefficient. Differences in the postprandial chylomicron 25(OH)D concentrations over time were tested by repeated-measures ANOVA. For all tests, the bilateral alpha risk was α =0.05. Statistical analyses were performed using Statview and SAS softwares (SAS Institute, Cary, NC, U.S.A.).

210

211 Statistics: partial least squares regression

212 To identify SNPs associated with the variability observed in the D₃ response, we used 213 PLS regression, following previously published rationale and model assumptions (24, 30). 214 Among the 3791 candidate SNPs, PLS identified those which were predictive of the D_3 215 response according to their variable importance in the projection (VIP) value. A general genetic 216 model was assumed. The 3 genotypes of each SNP (i.e. most frequent homozygote allele, 217 heterozygote, less frequent homozygote allele) were treated as separate categories, with no 218 assumption made about the effect conferred by the variant allele on D_3 response. Different 219 PLS regression models were built using increasing VIP threshold values. The selection of the 220 PLS regression model was carried out as previously shown (29). Additional validation criteria 221 and procedures of the PLS regression models are described in **Supplemental Methods**. 222 SIMCA-P13 software (Umetrics, Umeå, Sweden) was used for all multivariate data analyses 223 and modeling.

224 With the knowledge of a subject's genotype at the SNPs associated with the variability 225 observed in the D_3 response, it was possible to calculate the subject's ability to respond to D_3 226 according to the following equation:

227 RP = $a + \sum_{1}^{b} ri X$ genotype. (SNPi) (Equation 1) 228 with RP as the responder phenotype (i.e. the D₃ response), *a* as a constant (which is equal to 229 the mean D₃ response), *b* the number of SNPs in the selected PLS regression model, r_i as the 230 regression coefficient of the *i*th SNP included in the PLS regression model, and 231 "genotype.(SNP_i)" as a Boolean variable indicating the subject's genotype at the *i*th SNP.

232

In a second approach, we performed univariate analyses to compare the D_3 response between subgroups of subjects who bore different genotypes for the SNPs present in the selected PLS model. Differences obtained between the various genotype subgroups were analyzed by a Student's *t*-test with the Benjamini-Hochberg correction with QVALUE software (version 1.0, designed by researcher) (46) and R software (version 3.0.2, R foundation of statistical computing). For all tests, an adjusted *P*-value <0.05 was considered significant. 240 **RESULTS**

241

242 Vitamin D status of the subjects

As shown in **Table 1**, most subjects displayed a fasting plasma 25(OH)D concentration lower than the recommended concentration of 75 nmol/L (47), with 16 out of the 39 subjects exhibiting a concentration <50 nmol/L. The fasting plasma 25(OH)D concentration did not correlate with any of the reported characteristics of the subjects (all r were lower than 0.11 and all *P*-values were higher than 0.49, data not shown).

248

249 Chylomicron vitamin D responses to the D₃-rich meal

250 The mean D₃ response after consumption of the test meal is shown in **Figure 1**. Thirty-251 seven out of the 39 subjects had D_3 concentrations below our limit of detection in their fasting 252 chylomicron fraction, and the remaining 2 subjects had extremely low D_3 concentrations (0.27) 253 \pm 0.01 nmol/L). The maximal chylomicron D₃ concentration was obtained 5.4 \pm 0.3 h after meal 254 intake. Note that the subject with the lowest response exhibited an increase in his chylomicron 255 D₃ concentration only 8 h after meal intake. The individual responses ranked by increasing 256 AUC are shown in **Figure 2**. They followed a normal distribution (*P*=0.20 and *P*=0.92 following 257 the Kolmogorov-Smirnov and the Shapiro-Wilk test respectively; skewness=0.165 and 258 kurtosis=-0.394). The CV of the D_3 response was 47% and the ratio between the highest and 259 the lowest responder was ≈ 34 . The D₃ response correlated relatively well with the chylomicron 260 triglyceride response (r=0.60, P < 0.001) as well as with fasting TG (r=0.478; P=0.002). Note 261 that the D_3 response was not related to the vitamin D status of the subjects (as estimated by 262 their fasting plasma 25(OH)D concentrations) (r=0.04, P=0.83).

263 The postprandial chylomicron 25(OH)D concentrations are shown in **Figure 3**. These 264 concentrations did not vary significantly over the postprandial period (*P*=0.20).

265

266

267

268 Genetic variants associated with the D₃ response to the D₃-rich meal

The PLS regression model that included all 3791 candidate SNPs (used as qualitative 269 270 X variables) in 61 candidate genes (**Supplementary Table 1**) described the D_3 response with 271 good accuracy ($R^2 = 0.879$), but was not predictive of this response ($Q^2 = -0.1$; R^2 after cross-272 validation). Therefore, to improve the model and find an association of SNPs more predictive 273 of the D₃ response, we filtered out those that displayed the lowest VIP value (i.e. those that 274 made no important contribution to the PLS regression model). After the application of several 275 increasing VIP value thresholds, we selected a model with a VIP threshold value of 2.1 that 276 included 18 SNPs, of which 17 were not in linkage disequilibrium. The 17 SNPs were located 277 in or near 13 genes (**Table 2**) and described 63.5% of the variance (R²), with a prediction index 278 Q^2 of 47.6%. The measured and the predicted D_3 responses were positively correlated (r=0.80, 279 P < 0.001). The robustness and the stability of the model was validated by 3 additional methods 280 (see Supplemental methods). Of note, when the quantitative X variables BMI, age, fasting 281 plasma triglycerides, cholesterol, glucose and hemoglobin concentrations were included, only 282 triglyceride concentration, age and BMI made a significant contribution to the PLS regression 283 model (with VIP values of 7.4, 4.0 and 2.1 and regression coefficients of 1.32, -0.02, -0.07 284 respectively).

The association of the 17 selected SNPs with the D_3 response was further evaluated using univariate statistics by comparing the D_3 response of subjects who bore different genotypes for each SNP (**Table 2**). For 11 of these 17 SNPs, subjects who bore different genotypes exhibited a significantly different D_3 response (adjusted *P*-value <0.05).

289

290 Genetic score to calculate the D₃ response of a genotyped subject

With the knowledge of a subject's genotype at the 17 aforementioned loci, it was possible to calculate the subject's ability to respond to D_3 according to equation 1 with a=114.18 and b=17. A list of regression coefficients calculated by the SIMCA-P13 software can be found in **Supplemental Table 4**.

295

296 Conversion of D_3 to 25(OH)D by Caco-2 cells

297 Following a 24 h-incubation with 50 µM D₃, only about 2.3 % of vitamin D recovered in

- the apical medium was found as 25(OH)D (Fig. 4A) and only about 0.2% of the vitamin D taken
- up by the cells was recovered as 25(OH)D (Fig. 4B) (secondary outcomes).
- 300
- 301

302 **DISCUSSION**

303

To the best of our knowledge, this study is only the second report of the chylomicron D_3 response to a D_3 -rich meal in humans (48). The increased subject number and longer duration of time points taken post-prandially provide a more complete picture of D_3 bioavailability in humans, as compared to the previous work.

The subjects enrolled in our study were apparently healthy. However, most of them presented sub-deficient vitamin D levels, as classified by a fasting plasma 25(OH)D concentration <75 nmol/L (47). This observation was not surprising, since the prevalence of vitamin D insufficiency is high in France, as elsewhere (49, 50).

312 The first major observation of this study was that the interindividual variability in D_3 313 bioavailability was guite large, with a 34-fold difference in AUC observed between the highest 314 and lowest D_3 responders. The lack of a significant correlation between the chylomicron D_3 315 response and the fasting plasma 25(OH)D concentration in our subjects could suggest that the 316 variability in D₃ bioavailability does not significantly affect long-term vitamin D status in these 317 individuals. This is perhaps due to the fact that the fasting plasma 25(OH)D concentration is 318 the result of interactions between several factors, including vitamin D synthesis by the skin, 319 dietary vitamin D intake, vitamin D absorption efficiency, hepatic vitamin D metabolism to 320 25(OH)D, and rates of renal conversion to $1,25(OH)_2D$.

321 In order to identify genetic variants that are associated with the interindividual variability 322 in the chylomicron D_3 response, we employed a statistical approach that previously allowed us 323 to identify combinations of candidate SNPs involved in the variability of the postprandial 324 chylomicron response to other fat-soluble vitamins, i.e. vitamin E and A (27, 28). This approach 325 revealed that a significant 63.5% of the interindividual variability in the postprandial D₃ response was explained by 17 SNPs in or near 13 genes. Five of these genes [ATP-binding 326 327 cassette, sub-family A, member 1 (ABCA1), apolipoprotein B (APOB), blocked early in 328 transport 1 homolog (BET1), lipoprotein lipase (LPL) and N-acetyltransferase 2 (NAT2)] have 329 been associated with the postprandial chylomicron triacylglycerol response in the same group

of subjects (24). Since it is assumed that most newly absorbed D_3 is carried from the intestine to peripheral organs and the liver via chylomicrons (48), it is plausible that SNPs in these genes have an indirect effect on the D_3 response by modulating chylomicron metabolism. Indeed, three of these SNPs (*BET1*-rs10464587, *LPL*-rs10096561 and *NAT2*-rs4921920) have been previously associated with the variability in the postprandial chylomicron triglyceride response in the same group of subjects (24). This is further illustrated by the significant correlation between the D_3 and the chylomicron triglyceride responses.

337 Yet, this correlation was only partial, highlighting the fact that a significant part of the 338 variance of the D3 response can be attributed to factors other than the variance in the 339 chylomicron TG response, such as processes specific to D₃ metabolism. Indeed, several SNPs 340 associated with the interindividual variability in the D₃ response were located in genes involved 341 more directly in vitamin D metabolism and transport. Intestine specific homeobox (ISX) is an 342 intestinal transcription factor that modulates SCARB1 (scavenger receptor class B, member 1) 343 expression (51). SCARB1 encodes SR-BI, an apical membrane protein which is involved in D_3 344 uptake by enterocytes (9). Additionally, a SNP in SCARB1 was significantly associated with 345 the D_3 response in our PLS regression model. SLC10A2 (solute carrier family 10 (sodium/bile 346 acid cotransporter), member 2) encodes for the apical sodium-dependent bile acid transporter 347 (ASBT), the main transporter involved in bile acid uptake in the distal ileum (52), and a 348 candidate transporter for D₃ uptake. Indeed, data from our laboratory suggests that ASBT is 349 involved in cellular uptake of D_3 by Caco-2 TC7 cells and by ASBT-transfected cells (data not 350 shown). GC encodes for vitamin D binding protein, which is responsible for the plasma 351 transport of 25(OH)D and several SNPs in this gene have been associated with plasma 352 25(OH)D concentration (20, 53). The association of a SNP in GC with the variability in D_3 353 bioavailability could suggest the existence of a feedback loop that regulates the circulating 354 25(OH)D concentration. ABCB1 (ATP-binding cassette, sub-family B (MDR/TAP), member 1) 355 encodes for P-glycoprotein (also known as multidrug resistance protein 1, MDR1) which is 356 involved in the efflux of xenobiotic compounds with a broad substrate specificity. Unpublished 357 data from our lab, which have shown that ABCB1-transfected cells effluxed more D₃ than 358 control cells, further support that this apical membrane protein could also be involved in D_3 359 efflux. The association of 2 SNPs in pancreatic lipase (PNLIP) with the D₃ response suggests 360 that the hydrolysis efficiency of dietary triglycerides, in which D_3 is assumed to be solubilized, 361 is an important factor regarding D_3 absorption efficiency. This can be due either to the fact that 362 pancreatic lipase allows the release of D₃ from triglycerides and its incorporation in micelles or 363 that the lipolysis products of triglycerides by pancreatic lipase, i.e. fatty acids, facilitate D_3 364 absorption (38). In support of this hypothesis it has been shown that patients with cystic fibrosis 365 with pancreatic insufficiency display lower D₃ absorption (54). Finally, we observed the 366 association of a SNP in DHCR7 with D3 bioavailability. DHCR7 encodes for 7-367 dehydrocholesterol reductase, an enzyme that catalyzes the conversion of 7-368 dehydrocholesterol to cholesterol. 7-dehydrocholesterol also serves as a precursor of D₃ in 369 keratinocytes upon UVB exposure (55). It could be hypothesized that increased activity of 370 DHCR7 would reduce the pool of 7-dehydrocholesterol available for D₃ synthesis following sun 371 exposure, inducing in turn an upregulation in D_3 bioavailability to maintain homeostatic levels. 372 This hypothesis is further supported by the fact that DHCR7 variants have been previously 373 associated with plasma 25(OH)D concentrations (2, 14, 15, 20), although future studies are 374 required to test this hypothesis.

375 25(OH)D was observed in the chylomicron-containing fraction of blood sampled during 376 the postprandial period. This measurement was carried out to assess whether a fraction of 377 ingested D_3 was immediately metabolized to 25(OH)D in the enterocyte, and then packaged 378 into the chylomicrons. Indeed, although it is well-known that the liver is the main organ that 379 converts D_3 to 25(OH)D, there is no clinical data on the possibility that the intestine can convert 380 a significant fraction of newly absorbed D_3 to 25(OH)D and incorporate it into chylomicrons. 381 Yet, it has been shown that the human intestinal Caco-2 cells possess 25-hydroxylase activity 382 (56) suggesting that the intestinal cell can convert a fraction of newly absorbed D_3 to 25(OH)D. 383 Furthermore, it is possible that, if newly absorbed D_3 is converted to 25(OH)D in the intestine, 384 it is directly transported to the liver via the portal vein, as was reported in rats (57). In our study, 385 the fact that 25(OH)D concentration did not significantly vary in the chylomicron fraction during

the postprandial period, together with the fact that our complementary experiment in Caco-2 showed that the fraction of D₃ converted to 25(OH)D in the intestinal cell was very low (i.e. 2.3%), and even non detectable when D₃ was provided to the Caco-2 monolayers in micelles containing cholesterol (data not shown), suggests that 25(OH)D recovered in the chylomicron fraction did not come from the D₃ ingested by the subjects. 25(OH)D in the chylomicron fraction was most likely due to the presence of plasma 25(OH)D, i.e. 25(OH)D associated to DBP, in the triglyceride-rich lipoprotein fraction isolated from blood.

393 To conclude, results of this study allow us to describe the interindividual variability in D_3 394 bioavailability. They also suggest for the first time that this variability is, at least partly, 395 explained by a combination of SNPs in genes involved in D_3 and chylomicron metabolism, and 396 that ASBT and ABCB1 are involved in D₃ bioavailability, likely in its intestinal uptake. We 397 acknowledge some limitations of the study: it is likely that SNPs that have a significant effect on D₃ bioavailability were not entered in the PLS regression analysis because they were not 398 399 present on the BeadChips, they were excluded from the analysis (for not following the Hardy-400 Weinberg equilibrium) or simply because they were not located in the candidate genes. 401 Moreover, these findings need to be tested in other population groups (based on *e.g.* sex, age, 402 or genetic backgrounds). Thus future studies are required to confirm these associations and 403 to identify other genes/SNPs involved in D₃ bioavailability.

AUTHORS' CONTRIBUTIONS TO MANUSCRIPT:

All authors have read and approved the final manuscript.

PB designed the research project. PB and ER designed the protocol; MN, SM and NL conducted the clinical study; AG analyzed chylomicron D₃ by HPLC with assistance from ER; HP analyzed plasma and chylomicron 25(OH)D; ER conducted the cellular study from culture to result interpretation; CD and PB analyzed the results; CD performed statistical analyses; PB and CD wrote the paper with consultation from ER and RK; PB and CD had primary responsibility for the final content of the manuscript.

REFERENCES

- 1. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol Rev 2016;96(1):365-408. doi: 10.1152/physrev.00014.2015.
- 2. Afzal S, Brondum-Jacobsen P, Bojesen SE, Nordestgaard BG. Genetically low vitamin D concentrations and increased mortality: mendelian randomisation analysis in three large cohorts. BMJ 2014;349:g6330. doi: 10.1136/bmj.g6330.
- Lehmann U, Gjessing HR, Hirche F, Mueller-Belecke A, Gudbrandsen OA, Ueland PM, Mellgren G, Lauritzen L, Lindqvist H, Hansen AL, et al. Efficacy of fish intake on vitamin D status: a meta-analysis of randomized controlled trials. Am J Clin Nutr 2015;102:837-47. doi: 10.3945/ajcn.114.105395.
- 4. Troesch B, Hoeft B, McBurney M, Eggersdorfer M, Weber P. Dietary surveys indicate vitamin intakes below recommendations are common in representative Western countries. Br J Nutr 2012;108(4):692-8. doi: 10.1017/S0007114512001808.
- 5. Bailey RL, Dodd KW, Goldman JA, Gahche JJ, Dwyer JT, Moshfegh AJ, Sempos CT, Picciano MF. Estimation of total usual calcium and vitamin D intakes in the United States. J Nutr 2010;140(4):817-22. doi: 10.3945/jn.109.118539.
- 6. Borel P, Caillaud D, Cano NJ. Vitamin D bioavailability: State of the art. Crit Rev Food Sci Nutr 2013;55:1193-205. doi: 10.1080/10408398.2012.688897.
- 7. Reboul E. Intestinal absorption of vitamin D: from the meal to the enterocyte. Food Funct 2014;6:356-62. doi: 10.1039/c4fo00579a.
- 8. Abumrad NA, Davidson NO. Role of the gut in lipid homeostasis. Physiol Rev 2012;92(3):1061-85. doi: 10.1152/physrev.00019.2011.
- 9. Reboul E, Goncalves A, Comera C, Bott R, Nowicki M, Landrier JF, Jourdheuil-Rahmani D, Dufour C, Collet X, Borel P. Vitamin D intestinal absorption is not a simple passive diffusion: Evidences for involvement of cholesterol transporters. Mol Nutr Food Res 2011;55:691-702.
- 10. Dueland S, Pedersen JI, Helgerud P, Drevon CA. Absorption, distribution, and transport of vitamin D3 and 25-hydroxyvitamin D3 in the rat. Am J Physiol 1983;245(5 Pt 1):E463-7.
- 11. Anwar K, Kayden HJ, Hussain MM. Transport of vitamin E by differentiated Caco-2 cells. J Lipid Res 2006;47(6):1261-73.
- 12. Reboul E, Trompier D, Moussa M, Klein A, Landrier JF, Chimini G, Borel P. ATPbinding cassette transporter A1 is significantly involved in the intestinal absorption of alpha- and gamma-tocopherol but not in that of retinyl palmitate in mice. Am J Clin Nutr 2009;89(1):177-84.
- 13. Shea MK, Benjamin EJ, Dupuis J, Massaro JM, Jacques PF, D'Agostino RB, Sr., Ordovas JM, O'Donnell CJ, Dawson-Hughes B, Vasan RS, et al. Genetic and nongenetic correlates of vitamins K and D. Eur J Clin Nutr 2009;63(4):458-64. doi: 10.1038/sj.ejcn.1602959.
- Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, Kiel DP, Streeten EA, Ohlsson C, Koller DL, et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 2010;376(9736):180-8. doi: 10.1016/S0140-6736(10)60588-0.
- 15. Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML, Gallicchio L, Jacobs EJ, Ascherio A, Helzlsouer K, Jacobs KB, et al. Genome-wide association study of circulating vitamin D levels. Hum Mol Genet 2010;19(13):2739-45.

- 16. Nissen J, Vogel U, Ravn-Haren G, Andersen EW, Madsen KH, Nexo BA, Andersen R, Mejborn H, Bjerrum PJ, Rasmussen LB, et al. Common variants in CYP2R1 and GC genes are both determinants of serum 25-hydroxyvitamin D concentrations after UVB irradiation and after consumption of vitamin D3-fortified bread and milk during winter in Denmark. Am J Clin Nutr 2015;101(1):218-27. doi: 10.3945/ajcn.114.092148.
- 17. Waterhouse M, Tran B, Armstrong BK, Baxter C, Ebeling PR, English DR, Gebski V, Hill C, Kimlin MG, Lucas RM, et al. Environmental, personal, and genetic determinants of response to vitamin D supplementation in older adults. J Clin Endocrinol Metab 2014;99(7):E1332-40. doi: 10.1210/jc.2013-4101.
- 18. Nissen J, Rasmussen LB, Ravn-Haren G, Andersen EW, Hansen B, Andersen R, Mejborn H, Madsen KH, Vogel U. Common variants in CYP2R1 and GC genes predict vitamin D concentrations in healthy Danish children and adults. PLoS One 2014;9(2):e89907. doi: 10.1371/journal.pone.0089907.
- 19. Barry EL, Rees JR, Peacock JL, Mott LA, Amos CI, Bostick RM, Figueiredo JC, Ahnen DJ, Bresalier RS, Burke CA, et al. Genetic variants in CYP2R1, CYP24A1, and VDR modify the efficacy of vitamin D3 supplementation for increasing serum 25-hydroxyvitamin D levels in a randomized controlled trial. J Clin Endocrinol Metab 2014;99(10):E2133-7. doi: 10.1210/jc.2014-1389.
- 20. Batai K, Murphy AB, Shah E, Ruden M, Newsome J, Agate S, Dixon MA, Chen HY, Deane LA, Hollowell CM, et al. Common vitamin D pathway gene variants reveal contrasting effects on serum vitamin D levels in African Americans and European Americans. Hum Genet 2014;133(11):1395-405. doi: 10.1007/s00439-014-1472-y.
- 21. Didriksen A, Grimnes G, Hutchinson MS, Kjaergaard M, Svartberg J, Joakimsen RM, Jorde R. The serum 25-hydroxyvitamin D response to vitamin D supplementation is related to genetic factors, BMI, and baseline levels. Eur J Endocrinol 2013;169(5):559-67. doi: 10.1530/EJE-13-0233.
- 22. Zhou Y, Zhao LJ, Xu X, Ye A, Travers-Gustafson D, Zhou B, Wang HW, Zhang W, Lee Hamm L, Deng HW, et al. DNA methylation levels of CYP2R1 and CYP24A1 predict vitamin D response variation. J Steroid Biochem Mol Biol 2014;144 Pt A:207-14. doi: 10.1016/j.jsbmb.2013.10.004.
- 23. Reboul E, Borel P. Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. Prog Lipid Res 2011;50:388-402.
- 24. Desmarchelier C, Martin JC, Planells R, Gastaldi M, Nowicki M, Goncalves A, Valero R, Lairon D, Borel P. The postprandial chylomicron triacylglycerol response to dietary fat in healthy male adults is significantly explained by a combination of single nucleotide polymorphisms in genes involved in triacylglycerol metabolism. J Clin Endocrinol Metab 2014;99(3):E484-8. doi: 10.1210/jc.2013-3962.
- 25. Perez-Martinez P, Delgado-Lista J, Perez-Jimenez F, Lopez-Miranda J. Update on genetics of postprandial lipemia. Atheroscler Suppl 2010;11(1):39-43.
- 26. Perez-Martinez P, Lopez-Miranda J, Perez-Jimenez F, Ordovas JM. Influence of genetic factors in the modulation of postprandial lipemia. Atheroscler Suppl 2008;9(2):49-55.
- 27. Borel P, Desmarchelier C, Nowicki M, Bott R, Tourniaire F. Can genetic variability in alpha-tocopherol bioavailability explain the heterogeneous response to alpha-tocopherol supplements? Antioxid Redox Signal 2015;22:669-78. doi: 10.1089/ars.2014.6144.
- 28. Borel P, Desmarchelier C, Nowicki M, Bott R. A Combination of Single-Nucleotide Polymorphisms Is Associated with Interindividual Variability in Dietary beta-Carotene Bioavailability in Healthy Men. J Nutr 2015;145:1740-7. doi: 10.3945/jn.115.212837.

- 29. Borel P, Desmarchelier C, Nowicki M, Bott R. Lycopene bioavailability is associated with a combination of genetic variants. Free Radic Biol Med 2015;83:238-44. doi: 10.1016/j.freeradbiomed.2015.02.033.
- 30. Borel P, Desmarchelier C, Nowicki M, Bott R, Morange S, Lesavre N. Interindividual variability of lutein bioavailability in healthy men: characterization, genetic variants involved, and relation with fasting plasma lutein concentration. Am J Clin Nutr 2014;100(1):168-75. doi: 10.3945/ajcn.114.085720.
- 31. Kassi EN, Stavropoulos S, Kokkoris P, Galanos A, Moutsatsou P, Dimas C, Papatheodorou A, Zafeiris C, Lyritis G. Smoking is a significant determinant of low serum vitamin D in young and middle-aged healthy males. Hormones (Athens) 2015;14:245-50. doi: 10.14310/horm.2002.1521.
- 32. Lecompte S, Szabo de Edelenyi F, Goumidi L, Maiani G, Moschonis G, Widhalm K, Molnar D, Kafatos A, Spinneker A, Breidenassel C, et al. Polymorphisms in the CD36/FAT gene are associated with plasma vitamin E concentrations in humans. Am J Clin Nutr 2011;93(3):644-51. doi: 10.3945/ajcn.110.004176.
- 33. Borel P, Tyssandier V, Mekki N, Grolier P, Rochette Y, Alexandre-Gouabau MC, Lairon D, Azais-Braesco V. Chylomicron beta-carotene and retinyl palmitate responses are dramatically diminished when men ingest beta-carotene with medium-chain rather than long-chain triglycerides. J Nutr 1998;128(8):1361-7.
- 34. Borel P, Grolier P, Mekki N, Boirie Y, Rochette Y, Le Roy B, Alexandre-Gouabau MC, Lairon D, Azais-Braesco V. Low and high responders to pharmacological doses of betacarotene: proportion in the population, mechanisms involved and consequences on betacarotene metabolism. J Lipid Res 1998;39(11):2250-60.
- 35. Lietz G, Oxley A, Leung W, Hesketh J. Single Nucleotide Polymorphisms Upstream from the beta-Carotene 15,15'-Monoxygenase Gene Influence Provitamin A Conversion Efficiency in Female Volunteers. J Nutr 2012;142:161S-5S.
- 36. Leung WC, Hessel S, Meplan C, Flint J, Oberhauser V, Tourniaire F, Hesketh JE, von Lintig J, Lietz G. Two common single nucleotide polymorphisms in the gene encoding beta-carotene 15,15'-monoxygenase alter beta-carotene metabolism in female volunteers. Faseb J 2009;23:1041-53.
- 37. Zhao LJ, Zhou Y, Bu F, Travers-Gustafson D, Ye A, Xu X, Hamm L, Gorsage DM, Fang X, Deng HW, et al. Factors predicting vitamin D response variation in non-Hispanic white postmenopausal women. J Clin Endocrinol Metab 2012;97(8):2699-705. doi: 10.1210/jc.2011-3401.
- 38. Goncalves A, Gleize B, Roi S, Nowicki M, Dhaussy A, Huertas A, Amiot MJ, Reboul E. Fatty acids affect micellar properties and modulate vitamin D uptake and basolateral efflux in Caco-2 cells. J Nutr Biochem 2013;24(10):1751-7. doi: 10.1016/j.jnutbio.2013.03.004.
- 39. Dastani Z, Li R, Richards B. Genetic regulation of vitamin D levels. Calcif Tissue Int 2013;92(2):106-17. doi: 10.1007/s00223-012-9660-z.
- 40. Zhu H, Wang X, Shi H, Su S, Harshfield GA, Gutin B, Snieder H, Dong Y. A genomewide methylation study of severe vitamin D deficiency in African American adolescents. J Pediatr 2013;162(5):1004-9. doi: 10.1016/j.jpeds.2012.10.059.
- 41. Anderson D, Holt BJ, Pennell CE, Holt PG, Hart PH, Blackwell JM. Genome-wide association study of vitamin D levels in children: replication in the Western Australian Pregnancy Cohort (Raine) study. Genes Immun 2014;15(8):578-83. doi: 10.1038/gene.2014.52.
- 42. Levin GP, Robinson-Cohen C, de Boer IH, Houston DK, Lohman K, Liu Y, Kritchevsky SB, Cauley JA, Tanaka T, Ferrucci L, et al. Genetic variants and

associations of 25-hydroxyvitamin D concentrations with major clinical outcomes. JAMA 2012;308(18):1898-905. doi: 10.1001/jama.2012.17304.

- 43. Touvier M, Deschasaux M, Montourcy M, Sutton A, Charnaux N, Kesse-Guyot E, Assmann KE, Fezeu L, Latino-Martel P, Druesne-Pecollo N, et al. Determinants of Vitamin D Status in Caucasian Adults: Influence of Sun Exposure, Dietary Intake, Sociodemographic, Lifestyle, Anthropometric, and Genetic Factors. J Invest Dermatol 2014;135:378-88. doi: 10.1038/jid.2014.400.
- 44. Elkum N, Alkayal F, Noronha F, Ali MM, Melhem M, Al-Arouj M, Bennakhi A, Behbehani K, Alsmadi O, Abubaker J. Vitamin D insufficiency in Arabs and South Asians positively associates with polymorphisms in GC and CYP2R1 genes. PLoS One 2014;9(11):e113102. doi: 10.1371/journal.pone.0113102.
- 45. Slater NA, Rager ML, Havrda DE, Harralson AF. Genetic Variation in CYP2R1 and GC Genes Associated With Vitamin D Deficiency Status. J Pharm Pract 2015;[Epub ahead of print]. doi: 10.1177/0897190015585876.
- 46. Storey JD. A direct approach to false discovery rates. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 2002;64:479-98.
- 47. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: an Endocrine Society Clinical Practice Guideline. The Journal of Clinical Endocrinology & Metabolism 2011;96(7):1911-30. doi: doi:10.1210/jc.2011-0385.
- 48. Compston JE, Merrett AL, Hammett FG, Magill P. Comparison of the appearance of radiolabelled vitamin D3 and 25-hydroxy- vitamin D3 in the chylomicron fraction of plasma after oral administration in man. Clin Sci (Lond) 1981;60(2):241-3.
- 49. Mithal A, Wahl DA, Bonjour JP, Burckhardt P, Dawson-Hughes B, Eisman JA, El-Hajj Fuleihan G, Josse RG, Lips P, Morales-Torres J, et al. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int 2009;20(11):1807-20. doi: 10.1007/s00198-009-0954-6.
- 50. Personne V, Partouche H, Souberbielle JC. Vitamin D insufficiency and deficiency: epidemiology, measurement, prevention and treatment. Presse Med 2013;42(10):1334-42. doi: 10.1016/j.lpm.2013.06.013.
- 51. Lobo GP, Amengual J, Baus D, Shivdasani RA, Taylor D, von Lintig J. Genetics and diet regulate vitamin A production via the homeobox transcription factor ISX. Journal of Biological Chemistry 2013;288:9017-27.
- 52. Ho RH, Leake BF, Urquhart BL, Gregor JC, Dawson PA, Kim RB. Functional characterization of genetic variants in the apical sodium-dependent bile acid transporter (ASBT; SLC10A2). J Gastroenterol Hepatol 2011;26(12):1740-8. doi: 10.1111/j.1440-1746.2011.06805.x.
- 53. Stiles AR, Kozlitina J, Thompson BM, McDonald JG, King KS, Russell DW. Genetic, anatomic, and clinical determinants of human serum sterol and vitamin D levels. Proc Natl Acad Sci U S A 2014;111(38):E4006-14. doi: 10.1073/pnas.1413561111.
- 54. Rovner AJ, Stallings VA, Schall JI, Leonard MB, Zemel BS. Vitamin D insufficiency in children, adolescents, and young adults with cystic fibrosis despite routine oral supplementation. Am J Clin Nutr 2007;86(6):1694-9.
- 55. Glossmann HH. Origin of 7-dehydrocholesterol (provitamin D) in the skin. J Invest Dermatol 2010;130(8):2139-41. doi: 10.1038/jid.2010.118.
- 56. Vantieghem K, Overbergh L, Carmeliet G, De Haes P, Bouillon R, Segaert S. UVBinduced 1,25(OH)2D3 production and vitamin D activity in intestinal CaCo-2 cells and in THP-1 macrophages pretreated with a sterol Delta7-reductase inhibitor. J Cell Biochem 2006;99(1):229-40. doi: 10.1002/jcb.20910.

57. Maislos M, Silver J, Fainaru M. Intestinal absorption of vitamin D sterols: differential absorption into lymph and portal blood in the rat. Gastroenterology 1981;80(6):1528-34.

FIGURE LEGENDS

Figure 1: Baseline-adjusted chylomicron D_3 concentration over 8 h after consumption of a meal providing 5 mg of supplemental D_3 in 39 healthy men.

For each subject, postprandial chylomicron D_3 concentrations were baseline-adjusted by subtracting the fasting chylomicron D_3 concentration at time 0.

Figure 2: Individual AUCs of the postprandial chylomicron D_3 concentration after consumption of 5 mg supplemental D_3 in 39 healthy men.

Subjects were sorted by increasing postprandial chylomicron D_3 response. Each bar represents the baseline-adjusted AUC over 8 h.

Figure 3: Chylomicron 25(OH)D concentration over 8 h after consumption of 5 mg supplemental D_3 in 39 healthy men.

Data points represent the mean ± SEM at each time point in the 39 subjects.

Figure 4: Conversion of D_3 to 25(OH)D by Caco-2 TC7 cells.

The differentiated cell monolayers received serum-free complete medium supplemented with 1% BSA and 50 μ M D₃. Incubation time ranged from 4 to 24 h. **A**: 25(OH)D appearance in the apical medium was expressed as a percentage of total vitamin D (D₃₊25(OH)D) recovered in this medium. **B**: 25(OH)D cellular content was expressed as a percentage of total vitamin D recovered in the cells. Data are means ± SEM of 3 assays.

TABLES

Value
33 ± 2
73.5 ± 1.3
22.9 ± 0.3
4.8 ± 0.1
0.78 ± 0.06
1.65 ± 0.06
15.1 ± 0.2
51.4 ± 2.8

 Table 1. Baseline characteristics of healthy men¹

¹ Values are means \pm SEM, n = 39.

² Fasting plasma values.

³ Fasting total blood value.

³ Min-max (11.2-86.7), 3 subjects > 75 nmol/L.

Gene and SNP rs no. ²	Biological role of the encoded protein ³	VIP value	SNP minor allele	Adjusted P-value
			frequency	
LPL-rs6586874	Chylomicron clearance	3.85	0.173	0.013
LPL-rs10096561	Chylomicron clearance	3.71	0.128	0.013
ISX-rs5754862	Transcriptional regulation	2.95	0.253	0.025
SLC10A2-rs9558203	Apical transport	2.78	0.198	0.016
GC-rs6845026	Plasma transport	2.67	0.133	0.032
SCARB1-rs12580803	Apical transport	2.64	0.150	0.032
PNLIP-rs2915775	Dietary fat hydrolysis	2.50	0.257	0.046
DHCR7-rs11604724	Conversion of 7-dehydrocholesterol to cholesterol	2.44	0.197	0.036
ABCA1-rs7043894	Basolateral efflux transport	2.41	0.240	0.040
ABCB1-rs2235023	Apical efflux transport	2.31	0.106	0.040
ABCB1-rs10260862	Apical efflux transport	2.29	0.215	0.062
PNLIP-rs3010494	Dietary fat hydrolysis	2.26	0.293	0.062
APOB-rs2854725	Chylomicron formation	2.26	0.087	0.042

Table 2. Genes and single nucleotide polymorphisms associated with the postprandial chylomicron cholecalciferol response in healthy men¹

MAPRE2-rs1125425	Unknown	2.23	0.279	0.055
BET1-rs10464587	Transit of chylomicrons through the enterocyte	2.21	0.297	0.062
NAT2-rs4921920	Unknown	2.19	0.101	0.062
SLC10A2-rs9555166	Apical transport	2.17	0.197	0.055

¹ Abbreviations: rs, reference single nucleotide polymorphism; SNP, single nucleotide polymorphism; VIP, variable importance in the projection. See **Supplemental Table 1** for a complete list of gene names and symbols.

² Single nucleotide polymorphisms (SNPs) present in the selected partial least squares regression model. SNPs are ranked by decreasing variable importance in the projection (VIP) value. Note that *ABCB1*-rs2235015 and *ABCB1*-rs10260862 were in linkage disequilibrium. We kept one of them, chosen at random (*ABCB1*-rs10260862), in the final selected partial least squares regression model and removed the other as it provided redundant information.

³ The given biological role of the protein is that in relation to vitamin D bioavailability.