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Abstract— Non-alcoholic fatty liver disease (NAFLD) is de-
fined as an excessive accumulation of fat in the liver in the
absence of excessive drinking of alcohol. Initially considered as
benign and self-limited, NAFLD may progress to the malignant
stage of non-alcoholic steatohepatitis (NASH) characterized by
degenerate hepatocellular ballooning and lobular inflammation.
NASH can lead to hepatic fibrosis and ultimately to cirrhosis
and hepatocellular carcinoma. Unfortunately, the transition
from NAFLD to NASH is difficult to detect so far. In this
paper, we propose to evaluate the characterization of NASH
using mid infrared fiber evanescent wave spectroscopy on blood
serum. We used an heuristic variable selection method and a
generalized linear model to classify NAFLD and NASH spectra.
The obtained results proved that this technique is a promising
non-invasive and simple diagnosis tool for NASH.

I. INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) can evolve to
the necroinflammatory state of non-alcoholic steatohepatitis
(NASH) that degenerates to mortal stages in 20% of the
time [1]. Recent statistics warn of the high prevalence of
NAFLD. Ten percent to 30% of the general population
in the western world is affected [1]. Metabolic syndrome,
obesity and insulin resistance are the most important factors
responsible for the incidence of the disease. In fact, NAFLD
incidence increases to 70% in type two diabetes and to 90%
in obese people [2]. Other factors such as gender, genetics
and ethnicity are proved influential [3]. Though only 1.5%
to 6.5% of NAFLD patients evolves to NASH, this latter has
been recognized as one of the leading causes of cirrhosis
in adults and the second indication for liver transplants in
the United States [1]. The high prevalence of NAFLD and
its potential progression to NASH and mortal liver diseases
make the screening task very challenging, especially that
NAFLD patients are asymptomatic during the pre-cirrhotic
stage.

Histologic diagnosis by liver biopsy is the gold standard
to detect the transition from NAFLD to NASH. Nevertheless,
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this procedure is invasive with inherent risks of complications
at the biopsy site (bleeding, infection and accidental injury to
other organs) and a high possibility of hospitalization after-
ward. Therefore, patients are generally reluctant to undergo
this test especially when they are still asymptomatic. Several
non-invasive imaging-based diagnosis tools are proposed.
Ultrasonography is the most popular technique thanks to
its availability, low cost and absence of radiation exposure.
However, it has many flaws. It cannot detect mild stages
of NASH, it is operator dependent, interfered by intra-
abdominal gas and returns poor image quality in obese
patients [2]. Computed tomography (CT) scan, magnetic
resonance imaging (MRI) and magnetic resonance spec-
troscopy (MRS) are also used and perform better than the
ultrasound modality [4]. Yet, they can only detect steatosis
higher than 20-30% [4]. They also suffer from cost and
availability limitations, radiation exposure risks for CT, and
sequence dependency for MRI and MRS. Other non-invasive
strategies are oriented to look for potential serum biomarkers,
mainly proteins and cytokines, to build prediction models and
scores [5]. Physical parameters, e.g. age, sex, body mass
index and weight are also incorporated into some models
to improve their performances. Nevertheless, most of the
proposed clinical models suffer from low sensitivity (<
66%), lack of generalisability and discrepancies between the
published results and the external validations [6].

In addition to high performance, a perfect screening
method should be non-invasive, simple, objective and cheap.
Unfortunately, this is not fully satisfied by the existing
techniques. In our work, we investigated the direction of
optical methods, mainly the technique of fiber evanescent
wave spectroscopy (FEWS) [7]. FEWS is an infrared remote
spectroscopy that combines the principle of attenuated total
reflection (ATR) and the technology of fiber sensors to
allow rapid and in-situ analysis of samples. In FEWS, an
infrared signal is transmitted in an optical fiber by total
internal reflection. ATR occurs when a chemical sample is
brought into contact with the fiber, thereby generating a
partial absorption of the infrared signal in the fiber interface.
The spectrum of the attenuated infrared wave picked up at
the fiber output provides the metabolic characteristics of the
sample. The development of chalcogenide glass optical fibers
played a key role in implementing FEWS for biomedical and
clinical applications [8]. These bio-sensors are characterized
by a large optical window covering the mid-infrared (MIR)
range where are located the fundamental vibrational modes
of most of the interesting biomolecules [8]. In [9], authors



proved that analyzing blood serum using this technique pro-
vides useful fingerprints to diagnose patients with diseases
having metabolic consequences. In this study, we explored
the potential use of FEWS to diagnose NASH via blood
serum. In our experiments, we are the first to test the new
patented MIR bio-sensors developed by the company Diafir
[10].

A description of the materials and the discrimination meth-
ods is presented in section II. In section III, classification
scores are computed and discussed. Finally, we conclude in
section IV.

II. MATERIALS AND METHODS

A. Dataset

A multi-centric cohort of 58 patients from Rennes and
Bordeaux hospitals was composed. All of them were cog-
nizant volunteers for clinical study, aged over 18 (men or
women), with a suspicion of steatosis, but free of viral hepati-
tis, liver cancer or other inflammatory disease. Liver biopsy
were collected on each patient to establish gold standard
decision. Liver biopsies were embedded in paraffin, slices
were sectioned and stained with hematoxylin-eosin-safran
(HES) for global observation, and with Sirius Red to assess
fibrosis. NASH severity was assessed by pathologists via
histological analysis using NAS Score. This method assesses
three parameters: steatosis level, inflammatory status and
ballooning. Patients with positive score in all categories are
considered affected by NASH [11]. The final verdict resulted
in 35 patients diagnosed with NASH and 23 diagnosed
with NAFLD. Blood samples were collected from these
patients for routine analysis in the laboratory. They were
frozen at -80◦C before the analysis. After clotting, they were
centrifuged to extract the serum. A partial amount of this
serum was used for MIR spectroscopy examination.

B. MIR spectroscopy

The experimental setup consisted of an SPID™ non
cooled spectrometer, coupled with a chalcogenide glass fiber
enclosed in LS23™ sensor developed by Diafir (Fig. 1).
SPID™ is a Fourier transformed infrared (FTIR) spectrom-
eter that was especially conceived to accommodate bio-
sensors developed by Diafir. It is made compact compared
to classical spectrometers so that it can be used in point of
care application. Chalcogenide glass fibers enjoy rheological
properties that made them an optimal choice for FEWS
implementation. They exhibit a large optical transparency
in the MIR spectral range from 2 to 12 µm with optical
losses below 1 dB.m−1 in the 6-9 µm region [12]. Diafir
managed to develop tapered fibers that have compact looped
sensing heads with diameter reaching 2 mm, making them
the most sensitive and robust sensors so far. Their fabrication
procedure is detailed in [13]. These sensors were used in our
experiments, they are single use and require roughly 7 µl
volume of serum per analysis.

The FTIR spectra were acquired in the absorption mode in
the [4000,400] cm−1 frequency range. The nominal spectral
resolution was set to 4 cm−1 and a zero-filling factor of 2

was employed, yielding a discrete spectral point spacing of
2 cm−1. A Blackman Harris three-term apodisation function
was used for Fourier transformation. Sixty-four scans were
recorded and averaged to yield the sample absorption inten-
sity. The optical signal was recorded at the output extremity
of the fiber, providing the infrared single beam spectra.
A single beam reference spectrum was obtained for the
background (without sample) before each sample analysis,
yielding for every wavenumber a reference intensity. This
step is necessary to take into consideration possible side
effects in the experiment such as the entrance/exit conditions
of the infrared beam, the interaction and attenuation along
the optical signal transportation section, the transition of the
modes during the taper to the sensing zone, and effects
related to fiber bending or surface roughness [14]. The
sample and reference spectra of each patient were processed
to derive only one “intensity ratio” spectrum that was used
as input data in the statistical analysis presented afterward.

C. Discrimination methods

The resulting NAFLD and NASH raw spectra are pre-
sented in Fig. 2. Initial portion before 900 cm−1 was re-
moved to avoid artifacts. The portion between 1800 cm−1and
2800 cm−1 was also omitted to eliminate the contribution
of the environmental CO2. We notice that spectra from both
categories are similar in average. Therefore we expect that
intergroup correlations will be important. The hydrophobic
property of chalcogenide glass fibers helps to minimize
the effect of water, but it does not remove it completely,
especially when the analyzed samples are liquids as in our
case. We can see the influence of water in the presence of a
baseline (slow wave) and a significant lobe after 3000 cm−1

in all spectra. This internal artifact is very disturbing since
it may screen small details that are important for discrim-
ination. Moreover, it increases the intergroup correlations
and brings a spurious similarity into the intragroup samples.
In Fig. 3, we notice clearly the homogeneity between the
diagonal blocks (intragroup correlations) and the off diagonal
blocks (intergroup correlations) of the correlation matrix,
which makes the discrimination task very complicated.

For signal analysis, we proposed three main steps: i) we
computed the standardized form of signals (mean centered
and divided by standard deviation) in order to ensure their
comparability and detect the potential presence of outliers.
In our case, all spectra were eligible for tests, ii) we then
considered baseline correction. A classical method consists
in using the first derivative of signals that is computed by a
simple difference between two consecutive samples. In some
cases, the first derivative is not good enough to reduce the
baseline effect correctly, second order derivative is thus used.
The classification procedure was separately applied on raw
data and also on both first and second derivatives, iii) we
implemented three different classifiers. The first classifier,
k-means, is an unsupervised method where a dataset is
partitioned into k clusters by minimizing a certain distance
[15]. In our case, we had two clusters (k = 2) and the
criterion was set to the Euclidean distance. The second



classifier is a support vector machine (SVM) that is based
on learning models (kernel functions) from a control dataset
to build a hyperplane separating data in two classes [15]. In
our tests, we set a linear kernel and applied a leave-one-out
cross-validation (LOOCV) scheme to evaluate classification
scores. In this method, one patient is removed from the given
dataset, in turn, and used as a test set. The LOOCV scheme
is justified by the small dataset available (58 patients). The
third classifier consisted in using a generalized linear model
(GLM) which is a generalization of linear regression. In
GLM, the response variable is related to the linear model via
a link function. In the case of binary response variable with
a Bernoulli distribution, the typical choice of link function
is the logit link [16]:

XTβ = ln
p

1− p
, (1)

where X is the M×N matrix of dataset, here M and
N denote the size of one spectrum and the number of
patients, respectively. β is the M-length vector of coef-
ficients estimated with the control set, and p is the N-
length probability vector such that pn, the nth component
of p, is the probability of classifying patient n as positive
(NASH in our context). pn is compared to a threshold learned
with the control set. A labeling is then assigned to the
corresponding patient. We used the same LOOCV scheme
as with SVM. However, the spectrum size in our dataset
is M = 1027 wavenumbers (variables). Hence, the use of
GLM classifier implies the estimation of 1027 coefficients
for N = 58 leave-one-out sweeps, which makes computations
very cumbersome. Moreover, the more variables we use the
higher the risk of correlated data is, and GLM method fails
for correlated data. To alleviate this problem, we proposed
a simple variable selection pretreatment based on statistical
significance measurement. We run the GLM test individually
for each variable (each column of X) and compute the
corresponding p-value. The variable is kept when its p-
value is lower than a fixed threshold σ. In general, σ is
tuned in the interval (0,0.05]. In our simulations, we used
an heuristic fashion to tune σ by varying it in (0,0.05] and
computing each time the corresponding classification scores.
The optimal threshold was set to the value with the best
classification scores, provided that GLM converges.

In summary, We used three classifiers (k-means, SVM
and GLM) to test separately three inputs (raw spectra, first
derivative and second derivative), which resulted in running
nine tests.

III. RESULTS AND DISCUSSION

We used the classical classification scores: sensitivity (Se),
specificity (Sp) and accuracy (Acc) rates to evaluate and
compare the different tests. All results are summarized in
table I. As expected, the use of derivatives improved clas-
sification scores as they removed the fallacious correlation
between the variables. The second derivative gave better
results than the first derivative probably because the latter
was not efficient enough to remove the baseline properly.

Fig. 1. SPID™ spectrometer and LS23™ sensor patented by Diafir.

k-means gave poor scores with the three types of inputs.
SVM was more sensitive especially with the derivatives
but unfortunately the specificity is still poor. We notice the
superiority of GLM classifier that gave the best performance
in all cases. The optimal result was obtained with the
second derivative where an accuracy of 81% is achieved.
The variable selection pretreatment selected only 4 variables
when directly run on spectra ( σ = 5.5 10−3), 5 variables on
the first derivative ( σ = 4.32 10−3) and finally 12 variables
on second derivative (σ = 1.53 10−2). The increasing number
of selected variables shows once again the role of the second
derivative to bring out more discriminative patterns screened
by the presence of water beforehand. The selected wavenum-
bers lie close to the small fluctuations around 3000 cm−1

and in the interval (1800,900] cm−1. In addition to reducing
computations, variable selection pretreatment proved that
the sought discriminative patterns can be confined in only
few wavenumbers, which paves the ground for prospective
exploratory researches about the biochemical interpretation
of these wavenumbers.

Results obtained by the heuristic variable selection method
and GLM are promising and incite us to test our dataset
using more sophisticated variable selection techniques. In
this work, we used simple baseline correction methods,
namely, first and second derivatives. However, these methods
introduce some artifacts. Therefore, more optimized tech-
niques could be investigated in the future.

IV. CONCLUSION

In this paper, we investigated the use of FEWS and
chalcogenide glass bio-sensors to discriminate NASH from
NAFLD patients. We were the first to test the new bio-
sensors innovated by Diafir in this application. We tested
three classifiers and obtained encouraging results with GLM
associated with an heuristic variable selection pretreatment.
Preliminary results show that this non-invasive technology is
a promising simple diagnosis tool for NASH. However, there
are some limitations that should be investigated in future
work. The most important point is the validation of these
results in a larger patients cohort. There are also potential
variable selection algorithms that should be investigated to
find out more optimized discriminative patterns.
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Fig. 2. MIR spectra: NAFLD (blue), NASH (red) and their corresponding
averages (black).
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Fig. 3. Correlation matrix of spectra, a threshold is set to 0.98 where
correlation coefficients > 0.98 are set to 1 (red), 0 otherwise (blue).
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