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Spatiotemporal dynamics of HIV‑1 
transmission in France (1999–2014) and impact 
of targeted prevention strategies
Antoine Chaillon1*, Asma Essat2†, Pierre Frange3,4†, Davey M. Smith1,5, Constance Delaugerre6, Francis Barin7, 
Jade Ghosn3,8, Gilles Pialoux9, Olivier Robineau10, Christine Rouzioux3, Cécile Goujard2,11, Laurence Meyer2, 
Marie‑Laure Chaix6 and on behalf the ANRS PRIMO Cohort Study

Abstract 

Background:  Characterizing HIV-1 transmission networks can be important in understanding the evolutionary 
patterns and geospatial spread of the epidemic. We reconstructed the broad molecular epidemiology of HIV from 
individuals with primary HIV-1 infection (PHI) enrolled in France in the ANRS PRIMO C06 cohort over 15 years.

Results:  Sociodemographic, geographic, clinical, biological and pol sequence data from 1356 patients were collected 
between 1999 and 2014. Network analysis was performed to infer genetic relationships, i.e. clusters of transmission, 
between HIV-1 sequences. Bayesian coalescent-based methods were used to examine the temporal and spatial 
dynamics of identified clusters from different regions in France. We also evaluated the use of network information to 
target prevention efforts. Participants were mostly Caucasian (85.9%) and men (86.7%) who reported sex with men 
(MSM, 71.4%). Overall, 387 individuals (28.5%) were involved in clusters: 156 patients (11.5%) in 78 dyads and 231 
participants (17%) in 42 larger clusters (median size: 4, range 3–41). Compared to individuals with single PHI (n = 969), 
those in clusters were more frequently men (95.9 vs 83%, p < 0.01), MSM (85.8 vs 65.6%, p < 0.01) and infected with 
CRF02_AG (20.4 vs 13.4%, p < 0.01). Reconstruction of viral migrations across time suggests that Paris area was the 
major hub of dissemination of both subtype B and CRF02_AG epidemics. By targeting clustering individuals belong‑
ing to the identified active transmission network before 2010, 60 of the 143 onward transmissions could have been 
prevented.

Conclusion:  These analyses support the hypothesis of a recent and rapid rise of CRF02_AG within the French HIV-1 
epidemic among MSM. Combined with a short turnaround time for sample processing, targeting prevention efforts 
based on phylogenetic monitoring may be an efficient way to deliver prevention interventions but would require 
near real time targeted interventions on the identified index cases and their partners.
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Background
Identifying and monitoring HIV-1 transmission net-
works can be important in understanding the evolu-
tionary patterns and geospatial spread of the epidemic. 
Recent advances in molecular epidemiology have greatly 

enhanced our ability to characterize the dynamics and 
the structure of HIV transmission networks over space 
and time using HIV-1 pol sequences generated for rou-
tine [1–3]. A better understanding of the dynamics of the 
HIV-1 epidemic can assist preventive measures [2–5]. 
In the past decade, there has been an increase in the cir-
culation of non-B strains and Circulating Recombinant 
Forms (CRFs) of HIV-1 in Europe and North America. 
In France and other European countries, HIV-1 sub-
type B is still predominant but the proportion of non-B 
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infected individuals has progressively increased [6–8]. 
This increase of non-B viral infections has been reported 
in both newly diagnosed chronic HIV-1 infections [9, 10] 
and individuals with primary or recent HIV-1 infection 
(PHI) [11–14]. Among HIV-1 non-B subtypes, CRF02_
AG is one of the most prevalent recombinant forms in 
the world, responsible for at least 8% of total infections 
[15]. Though CRF02_AG is predominantly transmitted 
within heterosexuals in Sub-Saharan Africa, it has been 
increasingly reported among men who have sex with 
men (MSM) [16]. In a recent study conducted in newly 
diagnosed patients living in Europe, the proportion of 
circulating recombinant form CRF02_AG increased sig-
nificantly between 2002 and 2010 [17]. A similar trend 
was also observed in Western and Central Europe, with 
an increased proportion of CRF02_AG from 5% in 
2000–2003 to 8% in 2004–2007 [15]. In France, recent 
data showed a spread of non-B subtypes in individu-
als of French origin and that the MSM group are par-
ticularly involved in this dynamic [14]. Altogether, these 
reports emphasize the need for a better understanding 
of the spread of various HIV-1 subtypes through these 
transmission networks. The recent advances in molecu-
lar epidemiology have greatly enhanced our ability to 
evaluate the dynamic of these transmission networks [2, 
18–21]. Several recent studies have also used clustering 
approaches to characterize potential correlates of HIV 
transmission [3, 4, 22] and there is a growing interest in 
using these approaches to implement and evaluate pre-
vention interventions [1, 2, 23, 24].

In this study, we analyzed HIV-1 pol sequences gener-
ated over a period of more than 15 years from individuals 
enrolled during PHI in France in the National Agency for 
Research on AIDS and hepatitis (ANRS) PRIMO Cohort 
to reconstruct the broad molecular epidemiology of the 
HIV epidemic in France. We then determined if cluster-
ing analyses could be used efficiently to target prevention 
interventions in newly diagnosed PHI individuals belong-
ing to an active cluster of transmission (index cases).

Methods
Study population
The study protocol was approved by the Paris Cochin 
Ethics Committee, and all patients gave their written 
informed consent.

The multicenter ANRS CO6 PRIMO cohort has 
enrolled in France more than 1900 participants with PHI 
since November 1996, which were diagnosed on the basis 
of a negative or incomplete Western blot (no anti-p68 or 
anti-p34) with detectable HIV-1 RNA for 96% of cases 
or on the basis of an interval of <3–6  months between 
a negative and a positive enzyme-linked immunosorb-
ent assay (ELISA) for the remaining cases [25]. All were 

treatment naïve at enrollment. Demographic, behavioral, 
biological (CD4, HIV-RNA) and clinical data of the par-
ticipants were collected and organized anonymously in a 
common electronic archive.

HIV‑1 pol sequencing
For all participants, plasma samples were collected at 
enrollment in the ANRS-PRIMO cohort, centralized in 
the Virology Laboratory of Necker Hospital and stored 
for genotypic resistance testing. HIV RNA was extracted 
and pol-amplified products were sequenced using pub-
lished primers (http://www.hivfrenchresistance.org, 
HXB2 coordinates 2530–3334) [6, 26].

Transmission network
Sequence curation, alignment, and network infer-
ence were performed using the freely available software 
(https://github.com/veg/hivclustering, https://github.
com/veg/TN93). After quality control procedures no 
contaminant sequences were identified [27], and the 
partial transmission network was inferred based on the 
nucleotide genetic distances between bulk HIV-1 pol 
sequences from each participant [28].

Similar to previous studies investigating the structure 
and dynamics of HIV transmission networks [2, 18–21], 
we linked two individuals (nodes) in networks whenever 
their pol sequences were ≤1.5% distant (TN93 distance 
measure). This relatively conservative genetic distance 
cutoff was determined based on previous within host 
evolutionary rate estimates [29] where HIV sequences 
from mono-infected participants collected after almost a 
decade had less than 1% divergence from baseline.

The degree (connectivity) of each individual was 
defined as the number of links (edges in the transmis-
sion network) to other individuals [30]. We also have 
explored the potential impact of drug resistance muta-
tions (DRM) on network inferences by excluding codons 
associated with DRM [28, 31]. To prevent spurious 
sequence linkage due to nucleotide ambiguities, genetic 
distances between ambiguous nucleotides and known 
nucleobases were averaged (i.e., R was considered as 
50% A and 50% G) [20]. Dyads and clusters were defined 
as connected components of the network compris-
ing 2 nodes and >2 nodes, respectively. Singletons were 
defined as individuals without an identified phylogenetic 
connection.

Phylogenetic analysis and demographic history
HIV-1 subtypes were determined uploading sequences 
individually into the REGA HIV-1 automated Subtyping 
Tool version 2.0 (http://www.bioafrica.net/rega-geno-
type/html/subtypinghiv.html) and confirmed by in-house 
phylogenetic analysis.

http://www.hivfrenchresistance.org
https://github.com/veg/hivclustering
https://github.com/veg/TN93
https://github.com/veg/TN93
http://www.bioafrica.net/rega-genotype/html/subtypinghiv.html
http://www.bioafrica.net/rega-genotype/html/subtypinghiv.html
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The age of the most recent common ancestor 
(TMRCA, years) and the ancestral geographic move-
ments were jointly estimated using a Markov Chain 
Monte Carlo (MCMC) framework as implemented in 
BEAST v1.8.1 [32]. We used a discretized gamma distri-
bution (GTR + 4Γ) to account for among-site rate vari-
ation. Time scales of the trees were calibrated with the 
sampling dates available. The temporal scale of evolu-
tionary process was estimated from the sampling dates 
of the sequences using a relaxed uncorrelated lognor-
mal molecular clock model and a gamma prior on clock 
rate. Different parametric demographic models (a con-
stant population size, exponential and logistic growth) 
and a nonparametric Bayesian skyline plot (BSP) were 
compared, and the best models were selected as con-
firmed by a higher Bayes Factor (BF) support imple-
mented in BEAST [32]. MCMC simulations were run 
for 50–200 ×  106 chain steps, sub-sampling parameters 
every 20,000 steps. After removing 10% of burn-in and 
combining evolutionary parameters and trees using 
LogCombiner. Convergence of the chains was inspected 
using Tracer.v.1.5. The TMRCA estimates were expressed 
as mean and 95% highest posterior density (HPD) years 
before the most recent sampling dates.

The identification of significant migration pathways 
was performed using discrete non-reversible diffusion 
models and a Bayesian stochastic search variable selec-
tion (BSSVS) approach [33]. We first applied a discrete 
diffusion model and geographic locations were recorded 
at the tips of pol phylogenies. To quantify the dissemina-
tion process, we estimated the number of viral migrations 
among locations using ‘Markov Jump’ counts [34] of loca-
tion-state transitions along the posterior tree distribution 
[35]. In an attempt to maximize spatial information and 
put spatiotemporal dynamics in a demographic context, 
we compiled location information into 10 equally popu-
lated areas (regions 1–10). We also included sequences 
originating from French overseas departments (region 
11).

Statistical analyses
All available data including demographics, HIV risk fac-
tor, baseline CD4 count, viral load and HIV-1 subtype or 
CRF were compared between individuals who clustered 
and those who did not and analyzed to determine if these 
factors changed over time. Categorical variables were 
compared using the Fisher exact test, and continuous 
variables were evaluated using the Wilcoxon rank test. 
p values <0.05 were considered statistically significant. 
The calculations of all statistical tests were performed 
by using Graph-Pad Prism 6.0c software (GraphPad 
Software, Inc., San Diego, CA) and the computing 
R environment.

Impact of targeted prevention
We evaluated whether phylogenetic monitoring can be 
used to efficiently target prevention interventions [5]. 
Here, we evaluated the impact of a prevention interven-
tion targeting clustering individuals (index cases) belong-
ing to an active cluster before 2010 on onward HIV 
transmission within this network. Briefly, we estimated 
the number of infections that would have been prevented 
from 2010 to 2014 if identified clustering individuals 
(index cases) enrolled in the PRIMO Cohort had received 
the prevention intervention based on the network density 
(defined as 

∑
degrees(cluster)
size(cluster)

) prior to 2010. We then con-
sidered that an onward transmission would have been 
prevented if a participant (contact of index cases) was 
diagnosed after the date of intervention (i.e. from 2010 to 
2014) and belonged to an active transmission cluster tar-
geted by the intervention.

Results
Population characteristics
A total of 1356 individuals with PHI enrolled in the 
ANRS PRIMO cohort CO6 between 1999 and 2014 were 
included. Participants were preferentially Caucasian 
(85.9%), male (86.7%) and MSM (71.4%). More than one-
third (37%) were diagnosed in Paris (n = 348) and its sur-
rounding areas (n = 167). The median age was 35 years 
(range from 17 to 79 years), and a vast majority (69%) was 
between 20 and 40 years old. Over this period, the pro-
portion of HIV-infected individuals reporting MSM risk 
increased over the study period from 66% (n =  309) in 
1999–2005 to 77.7% (n = 310) in 2011–2014 (Chi square 
test for trend, p < 0.01). The socio-demographic charac-
teristics of 1356 individuals are summarized in Table 1.

Subtype epidemics
Overall, the HIV-1 subtype B (72.5%, n = 983) was largely 
predominant. Among the non-B viral strains, CRF02_AG 
was the most prevalent (56% of non-B, n = 209) (Table 1). 
MSM individuals were significantly more likely to be 
infected with subtype B (80%) than CRF02_AG (12.2%) 
and other non-B lineages (p < 0.001). Among heterosexu-
als, subtype B clade was also the most prevalent (42%) 
but prevalence of CRF02_AG (27%) and other non-B 
subtypes (30.7%) increased overtime. We also showed a 
significant increase of non-B subtypes among MSM over 
the study period (p < 0.001).

Transmission network characteristics
The HIV-1 reverse transcriptase sequences generated 
from each participant were used to infer the transmission 
network. Overall, the mean genetic distance between 
pairs of sequences was 6.5% (s.d.  ±  2%) and 5.9% 
(s.d. ± 2%) among subtype B and CRF02_AG infections, 
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respectively. We used a pairwise distance below the 
threshold of 1.5% to define a link between individuals 
[2]. Using this threshold, 387 individuals (28.5%) were 
connected to at least one other study participant. Exclu-
sion of DRM codons did not impact the observed HIV 
transmission network. Connected nodes (Fig.  1) were 
arranged in 44 large clusters (i.e., connected to more than 
one other individual) ranging in size from 3 to 41 indi-
viduals (median = 4) and 78 dyads (i.e., connected with a 
unique participant). Then, we evaluated the factors asso-
ciated with clustering. Comparison between people in 
clusters (i.e. connected) versus people not in cluster (i.e. 

singletons) revealed that individuals who are linked in a 
cluster were more likely men (95.9 vs 83%, p < 0.01) and 
significantly younger (median age =  32.5 vs 36.0  years, 
p  <  0.01) than singletons. MSM (85.8% clustering vs 
65.6% non-clustering, p  <  0.01) and white participants 
(91.5 vs 83.7%, p < 0.01) were significantly more likely to 
cluster. There were no significant associations between 
clustering and: baseline CD4 T cell count (p  =  0.25), 
baseline viral load (p = 0.15) or being diagnosed in Paris 
and its suburban area (37.0 vs 38.4%, p = 0.66) (Table 1). 
Individuals infected with CRF02_AG viruses were also 
more likely to be connected to another participant than 

Table 1  Population characteristics at primary infection

MSM man who have sex with men, HTS heterosexual individual, IDU injection drug user
§  Statistical significance was assessed between clustering and non-clustering individuals
a  Zipcodes: 75, 91, 92,93, 94 and 95; † Chi square test for trend

Not clustered individuals All clustered individuals Large clustered individuals (≥3 individuals) p value§

N 71.5% (969) 28.5% (387) 17% (231)

Age (years)
Median (min–max)

36 (17–79) 32.5 (18–68) 32 (18–64) p < 0.01

Sex

 Male 83.0% (804) 95.9% (371) 98.2% (227) p < 0.01

 Female 16.6% (161) 3.9% (15) 1.3% (3)

 NA 0.4% (4) 0.2% (1) 0.5% (1)

Ethnicity

 White 83.7% (811) 91.5% (354) 93.1% (215) p < 0.01

 Black 12.8% (124) 5.7% (22) 3% (7)

 Asian 1.5% (15) 1.3% (5) 1.3% (3)

 Others/NA 2.0% (19) 1.6% (6) 2.6% (6)

Origin

 Paris areaa 38.4% (372) 37% (143) 41.6% (96) p = 0.66

 Other French regions 55.3% (536) 56.8% (220) 52.8% (122)

 Overseas 6.3% (61) 6.2% (24) 5.6% (13)

Risk

 MSM 65.6% (636) 85.8% (332) 88.3% (204) p < 0.01

 HTS 27.6% (267) 7.5% (29) 4.3% (10)

 IDU 0.3% (3) 0% (0) 0% (0)

 Others/NA 6.5% (63) 6.7% (26) 7.4% (17)

Year of diagnosis

 1999–2005 38.4% (372) 24.8% (96) 20.3% (47) p < 0.01†

 2006–2010 34.2% (332) 40.6% (157) 43.7% (101)

 2011–2014 27.4% (265) 34.6% (134) 35.9% (83)

CD4 (cells/µL)—median (IQR) 506 (382–655) 522 (382–655) 525 (379–659) p = 0.25

HIV-RNA level
Log10 copies/mL—median (IQR)

5.1 (4.4–5.8) 5.2 (4.7–5.8) 5.2 (4.6–5.8) p = 0.15

HIV-1 subtype

 B 71.5% (693) 74.9% (290) 69.2% (160) p = 0.01

 CRF02_AG 13.4% (130) 20.4% (79) 28.1% (65)

 A 3.2% (31) 0.2% (2) 0

 C 2.4% (23) 0% (0) 0

 Others 9.5% (92) 3.8% (16) 2.6% (6)
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other subtype infections (20.4 vs 13.4%) (Additional 
file  1: Figure S1). As might be expected, the probability 
that an individual was connected with another individual 
increased significantly during the study period (from 
1999 to 2014) (p < 0.01).

Within the transmission network, three distinctly large 
viral clusters B1 (subtype B), AG1 and AG2 (CRF02_
AG) were identified with a respective size of 9, 14 and 
41. Cluster B1 included nine white MSM (median age: 
32 years old [21–37]). It was first identified in 2001 with 
no additional cases since 2010, mostly originating from 
the Nantes area (West coast) (Fig.  2). Cluster AG1 was 

composed of fourteen white MSM (median age: 31 years 
old [20–48]) infected with CRF02_AG-related variants. It 
was first identified in 2011 and had a peak identification 
of individuals in 2013. Individuals in this cluster were 
mostly originating from the Marseille area (South-East) 
but more widely spread throughout the country (Fig. 2). 
Finally, cluster AG2 was composed of forty-one white 
men (median age: 32 years old [21–45]) mostly originat-
ing from Paris and its suburban area (n =  34, 83%). It 
was first noted in 2000 and accrued individuals relatively 
steadily throughout the observation period (Fig.  2). All 
but one reported MSM sexual risk exposure. To further 

Fig. 1  Inferred HIV transmission clusters. HIV-1 transmission cluster diagrams illustrating the structure and demographics of the putative trans‑
mission clusters identified in the PRIMO ANRS CO6 cohort. A total of 387 of the 1356 (28.5%) individuals were connected with at least one other 
individual. Color indicates the reported transmission risk [red MSM; green heterosexual (HTS), purple others]; and shape denotes gender (ellipse male, 
square women). All edges represent a genetic distance of ≤1.5% separating nodes. All shapes are labeled according to the HIV-1 subtype. NA not 
available. White and unfilled dots correspond to missing informations
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evaluate the timing of these clusters, we found that the 
cluster B1 had a TMRCA in 1997 (95% HPD: 1995–2000) 
(Fig. 3), and the CRF02_AG clusters AG1 and AG2 had a 
TMRCA in 2003 (95% HPD: 2000–2008) and 2000 (95% 
HPD: 1998–2001) respectively (Fig. 3).

Spatiotemporal patterns of the subtype B and CRF02_AG 
epidemics
Discrete diffusion models can offer insights into the ori-
gins and epidemiological links within the set of locations 
from which infections were sampled [33, 36].

To analyze the spatial spread of subtype B and CRF02_
AG epidemic among individuals with PHI in France 

between 1999 and 2014 at a national scale, we com-
piled all subtype B (n = 983) and CRF02_AG (n = 209) 
sequences. Given the demographic characteristics of 
France with wide range of population density, we per-
formed our analyzes after dividing the country in 10 
equally populated area and an 11th area accounting 
for individuals originating from overseas departments 
(n = 86) accounting for 6.3% of the participants.

Geographic locations throughout the phylogenetic his-
tories were estimated by applying a discrete asymmet-
ric Bayesian phylogeographic approach, which allows 
for possibly different dispersal rates between two loca-
tions depending on the directionality of diffusion [37]. 

Fig. 2  Characteristics of the 3 larger clusters B1, AG1 and AG2. a Transmission network of the three larger cluster AG1 (n = 14), AG2 (N = 41) and B1 
(n = 9) and evolution of the main clusters over the study period. b Map representing the number of clustering individuals by location of residence. 
c Ancestral root state probabilities. The root state probabilities are presented with the color codes corresponding to the 11 equally populated 
regions
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Fig. 3  Bayesian time-scaled tree of the HIV transmission network of subtype B (a) and CRF02_AG (b) pol sequences in clusters from the participants 
enrolled in the PRIMO ANRS cohort between 1999 and 2014. Time scaled in year. Nodes and branches are colored according to the most probable 
location state of their descendent nodes. Tips are colored according to the recorded location of sampling
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Reconstruction of viral migrations across time suggests 
that Paris area was the major hub of dissemination of 
both subtype B and CRF02_AG epidemics.

Similarly, we evaluated the dynamics of the three main 
clusters of subtype B and CRF02_AG lineages. The most 
probable root location for phylogeny of cluster B1 was the 
Western region R3 with posterior state probability of 0.72. 
The most probable root state probabilities were South 
Eastern regions with posterior state probability and Paris 
region R1 with posterior state probability of 0.95 for the 
AG1 and AG2 clusters, respectively (Fig. 2). These results 
showed that the diffusion of the larger CRF02_AG cluster 
(AG2) ignited in the most densely populated region (Paris, 
R1) and thereafter spread to other areas (Fig. 2).

Targeted ART for prevention
Given the depth of sampling and the characteristics of 
the ANRS PRIMO transmission network, we evaluated 
the number of onward transmissions that could have 
been prevented by an enhanced prevention intervention 
targeting newly diagnosed clustering HIV-infected indi-
viduals (index cases).

We identified that 223 of the 872 (25.6%) newly diag-
nosed individuals before 2010 in the PRIMO cohort 
belonged to a transmission network. We estimated that 
an enhanced prevention intervention on these cluster-
ing index individuals could have potentially prevented 60 
of the 143 (42%) onward new infections linked to these 
index cases. The 320 individuals diagnosed between 
2010 and 2014 that did not cluster with any individuals 
infected before 2010 would not have been protected by 
any prevention intervention given to prior cohort par-
ticipants. We next evaluated the impact of intervention 
targeted to participants enrolled before 2010 by cluster 
densities defined as 

∑
degrees(cluster)
size(cluster)

. We found that inten-
sified prevention intervention provided to all individuals 
belonging to clusters with densities ≥2 (n = 79 individu-
als) diagnosed before 2010 would have potentially pre-
vented 33 transmissions linked to these index cases.

Discussion
Here, we investigated the transmission network and spa-
tiotemporal dynamics of HIV-1 epidemic in 1356 pri-
mary infected individuals enrolled in the French ANRS 
PRIMO CO6 cohort between 1999 and 2014. We par-
ticularly focused on the major circulating subtypes B 
and CRF02_AG to provide a better understanding on the 
dynamics of these epidemics in France and their relative 
evolution [6, 12, 26, 38–40].

As the epidemic has matured, patterns of HIV trans-
mission have changed, albeit MSM represent a large pro-
portion of the affected populations in many countries 
[41]. In Western Europe, the incidence of HIV-1 among 

MSM has increased or at least has remained constant 
over the last decade [42–44]. The increased proportion 
of MSM is also observed among all new HIV diagnoses 
in France (up to 43% in 2013) [45]. Consistent with these 
observations, we found that the proportion of MSM 
among all PHI enrolled in the ANRS-PRIMO cohort sig-
nificantly increased over the last 15  years (from 66% in 
1999–2005 to 77.7% in 2011–2014). However, the high 
frequency of MSM among recently HIV-infected patients 
can also be partially explained by targeted and repeated 
screening of MSM populations. For example in the 
United Kingdom, the proportion of individuals tested for 
HIV among people attending to STI clinics was the high-
est among MSM and increased overtime (86% in 2013 vs 
78% in 2009) [46]. More recently, a multicenter preven-
tive trial in France (ANRS IPERGAY) also showed a high 
incidence rate of HIV among MSM, up to 9 per 100 per-
son-years in Paris [47].

By combining methods from classical and molecular 
epidemiology, we were able to infer and characterize the 
HIV-1 transmission networks among identified PHI indi-
viduals in France over 15 years. Similar to previous data 
showing that the HIV-1 networks derived mostly from 
populations of MSM [2, 39, 48], we observed that MSM 
were significantly more prevalent in connected individu-
als than singletons. We also showed that non-B subtypes 
were frequent in primary infected individuals (28.5%), 
although slightly less than among all new HIV diagnoses 
in France [10, 45]. We observed that 57% of the individu-
als infected with CRF02_AG variants reported MSM sex-
ual risk exposure. These results are in line with reports 
from other European countries showing an increase 
in proportion of non-B clades in the MSM population 
[49] suggesting that the sociodemographic boundaries 
between HIV-1 subtypes globally are diminishing in 
Western Europe.

By applying Bayesian phylogeographic inference using 
discrete non-reversible models to pol geo-referenced 
sequences, we also investigated the spatial patterns of sub-
type B and CRF02_AG clades in France among PHI indi-
viduals. We found that these two distinct epidemic lineages 
have ignited in the most urbanized region of Paris (R1, 
“Ile de France”) as illustrated by the most probable loca-
tion state of the descendant nodes with over 90% of all 
viral lineages movements originating from Paris area (i.e. 
viral dispersal from Paris) for both lineages (96.5% [95% 
CI 95.1–97.5%] and 94.1% [92.2–95.6%] for subtype B and 
CRF02_AG respectively). These results suggest the key role 
of Paris as a hub for new HIV infections and the potential 
spatial expansion from this region to the rest of the country. 
This might be explained by the high prevalence of MSM in 
the ANRS-PRIMO cohort, who are more likely originating 
from urbanized and highly-densified area [50].



Page 9 of 12Chaillon et al. Retrovirology  (2017) 14:15 

Interestingly, the three larger clusters of HIV-1 sub-
type B (cluster B1, n = 9) and CRF02_AG (clusters AG1, 
n =  14 and AG2, n =  41) identified displayed also very 
distinct evolutionary patterns. While cluster B1 did not 
increase since 2010, both clusters AG1 and AG2 con-
tinued to grow up to end of the follow up period in late 
2014. Altogether, these observations suggest that CRF02_
AG clade was introduced and disseminated within highly 
connected networks of MSM, which may explain the suc-
cessful rapid dissemination and increased prevalence of 
CRF02_AG subtype [51].

Understanding the dynamic of HIV transmission 
is crucial in the design of effective interventions and 
recently Individuals contributes disproportionately to 
the spread of the HIV epidemic [52–54]. Considering the 
limited time frame of HIV transmission, targeted preven-
tion strategies focusing on PHI may have a significant 
impact on the HIV epidemic [52–55]. Here, the extensive 
collection of samples along with demographic and clini-
cal data of the 1356 PHI participants from the PRIMO 
ANRS cohort allowed us to better time the observed 
transmission clusters. It also helped to better evaluate the 
direct effect of theoretical prevention interventions at an 
individual level rather than relying on population effect 
of the intervention (i.e. indirect effect).

Given that the French 2013 guidelines for ART of 
HIV-1 infection in adults [56] recommend that ART 
should be initiated in any HIV-positive person, what-
ever his/her CD4 T cell count, even when >500/mm3, we 
first considered a prevention intervention strategy based 
on immediate ART introduction [57]. We found that an 
intensified intervention targeting all clustering partici-
pants with PHI diagnosed before 2010 (n =  223 index 
cases) would have prevented 60 out of the identified 143 
onward transmissions identified between 2010 and 2014. 
Given the depth of sampling and structure of the trans-
mission network, we evaluated intervention strategies 
based on network connectivity. We found that prevention 
targeted to newly infected individuals belonging to inter-
mediate and high density clusters (density ≥  2, n =  79 
index cases) would have potentially prevented 33 onward 
new infections linked to these index cases. In light with 
a recent study showing that near real-time phylogenetic 
monitoring of routinely collected HIV genotypes are a 
promising resource for public health intervention on 
localized outbreaks of HIV transmission [23], our results 
also emphasize the need of an efficient sample process-
ing, a rapid turnaround time on HIV sequence genera-
tion and a near real time based monitoring of clustering 
analysis. Beyond the rapid identification of the index 
cases, an effective and efficient prevention strategy would 
require a combination of interventions targeting these 
indices (i.e. immediate provision of ART and enhanced 

adherence support services), and the identification and 
immediate provision of pre-exposure prophylaxis (PrEP) 
to the contacts of these index cases [58]. Identifying and 
monitoring HIV clusters should be also an invaluable 
method to (1) determine the leading edge of local HIV 
transmission, (3) characterize potential correlates of HIV 
transmission (i.e. recreational drug use, high risk venues) 
[3, 4, 52], (3) investigate hotspots of transmission [23] 
and (4) further intensify HIV screening, providing PrEP 
and partner tracing [59] in population with high rates of 
transmission.

This study has a number of limitations. First, HIV clus-
tering and network inferences are directly affected by the 
sampling density [60]: studies with low sampling density 
showed minimal HIV clustering [61], while in depth sam-
pling allows more accurate characterization of HIV trans-
mission network [48, 49, 62]. In these deeper sampling 
density studies, the proportion of clustering sequences 
varied between 28 and 41%, though these studies were 
performed in heterogeneous population, in other coun-
tries and with various methods. While the number of 
individuals in our dataset is smaller than other studies, 
we reported an overall clustering proportion of 28.5% 
and up to 52.5% (332 out of 636) among MSM, consist-
ent with previous reports. This overall clustering rate is 
also consistent with previous reports where interventions 
have been deemed useful [5] and allowed the charac-
terization of the dynamics of HIV transmission [19]. We 
have also estimated that the PRIMO ANRS Cohort is well 
representative of new HIV infections occurring in France. 
Indeed, based on the data recorded through the manda-
tory notification of new HIV infections, 12% of new HIV 
diagnoses are done at time of primary infection, corre-
sponding to 600–700 cases each year [63]. Therefore, the 
cases included in the PRIMO ANRS cohort represent 
approximately 15% of all primary infections diagnosed 
in the country. In addition, the proportion of MSM 
included in our study (71.4%) is similar to that observed 
at the national level (73.6%) [64]. Altogether, while our 
dataset is not ideal and that we could have missed a num-
ber of HIV infected individuals in the local network due 
to the lack of diagnosis of all PHI, it is sufficient to use 
the presented techniques to understand the transmission 
dynamics underlying the sampled epidemic.

Second, recent HIV infection accounts for 39% of new 
HIV diagnoses in France [45]. Here, we did not take into 
account the contribution of transmissions from chroni-
cally infected individuals to partners diagnosed after 
the PHI stage, which is also likely to have an important 
impact on epidemic spread [65] and rely on convenient 
sampling. Hence, individuals who are not tested or dis-
engaged from care are not represented in this cohort and 
may also contribute to the epidemic. Though the number 
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of early diagnoses has increased since 2011 in France, 
the number of late diagnoses has remained stable among 
MSM, and 25% of the estimated 6220 new HIV diagno-
ses in 2013 in France were still diagnosed at a late stage 
(<200 CD4 or AIDS) [45]. Another limitation of all con-
venience based sampling methods is that the presence of 
a directed link between two individuals simply reflects 
recent relatedness of the virus, possibly through a series 
of unobserved intermediaries [2]. Finally, the use of HIV 
pol region for HIV subtyping may have led to potential 
misclassification of CRF forms. However, it should not 
impact the HIV network inferences and the dynamic of 
CRF02_AG clade within the HIV transmission network 
presented in this study.

Conclusion
In summary, this study showed the rapid evolutionary 
dynamics of subtype B and CRF02_AG among PHI in 
France since the late 1990s. While subtype B remains the 
most prevalent lineage, the rapid diffusion of CRF02_AG 
in highly connected networks of MSM could lead to a 
substantial and rapid reshaping of the HIV epidemic in 
Western Countries. Combined with a short turnaround 
time for sample processing, our findings also show that 
identifying hotspots of HIV transmission and near real-
time monitoring based on phylogenetic analyses can be 
an effective prevention intervention in combination with 
Public Health Recommendations for early treatment 
introduction, enhanced adherence support and partner 
tracing for immediate diagnosis, provision of PrEP and 
counseling.
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