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Sarcomas are a heterogeneous group of malignant neoplasms of mesenchymal origin, 
many of which have a propensity to develop distant metastases. Cancer cells that have 
escaped from the primary tumor are able to invade into surrounding tissues, to intravasate 
into the bloodstream to become circulating tumor cells (CTCs), and are responsible for 
the generation of distant metastases. Due to the rarity of these tumors and the absence 
of specific markers expressed by sarcoma tumor cells, the characterization of sarcoma 
CTCs has to date been relatively limited. Current techniques for isolating sarcoma 
CTCs are based on size criteria, the identification of circulating cells that express either 
common mesenchymal markers, sarcoma-specific markers, such as CD99, CD81, or 
PAX3, and chromosomal translocations found in certain sarcoma subtypes, such as 
EWS-FLI1 in Ewing’s sarcoma, detection of osteoblast-related genes, or measurement 
of the activity of specific metabolic enzymes. Further studies are needed to improve the 
isolation and characterization of sarcoma CTCs, to demonstrate their clinical significance 
as predictive and/or prognostic biomarkers, and to utilize CTCs as a tool for investigating 
the metastatic process in sarcoma and to identify novel therapeutic targets. The present 
review provides a short overview of the most recent literature on CTCs in sarcoma.
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inTRODUCTiOn

Sarcomas are a heterogeneous group of soft tissue and bone neoplasms that arise from mesoderm 
or ectoderm (1) and consequently may arise from mesenchymal stem cells (2). Helman and Meltzer 
(3) associated different molecular alterations with specific histological entities and suggested that 
sarcomas can be defined by their molecular signatures. This observation is strengthened by recent 
publications identifying a specific subgroup of thoracic sarcomas based on SMARC4A inactivation 
(4) and a “BRCA-ness” signature in osteosarcomas (5). These molecular signatures include sarcoma-
specific translocations that result in oncogenic fusion genes, which are believed to be necessary for 
malignant transformation and are utilized for molecular-based subgrouping.

Distant metastases develop in half of sarcoma patients presenting initially with localized disease, 
with the lungs being the most common metastatic site (1). The vast majority of sarcomas, excepted 
epithelioid sarcoma, angiosarcoma, and alveolar rhabdomyosarcoma, which can invade regional 
lymph nodes, predominantly spread through the blood vasculature. This modality is not exclusive 
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FiGURe 1 | The metastatic process in sarcoma and possible fates of cancer cells in secondary site. (A) Cells escaping from the primary tumor into the 
blood circulation (1) are carried by the flow, either blood stream or lymphatic system (2), to secondary sites where they grow if they find a favorable environment (3). 
(B) Following the arrival of CTCs into a secondary organ, only a subset will survive and generate metastases (clinically detectable) and remainder cells might either 
go into a state of dormancy/quiescence or die (clinically undetectable).

2

Tellez-Gabriel et al. Circulating Tumor Cells in Sarcoma

Frontiers in Oncology | www.frontiersin.org September 2016 | Volume 6 | Article 202

and can be associated with spread from the lymphatic system into 
the blood vasculature (6). To generate metastases, tumor cells 
must overcome several constraints: escape from the primary site 
through the invasion of cancer cells from the basal membrane 
into a blood or lymphatic vessel, a process called intravasation 
(7); survival in the circulation; arrest in the capillaries at a new 
site; migration from the capillary into the interstitial space; and 
establishment of tumor growth at the new location (Figure 1). 
As these steps are sequential and dependent on each other, only 
a small number of cells will successfully complete all of them, 
illustrating the considerable inefficiency of the metastatic process 
(8). Interestingly, communications between tumor cells and the 
host tissue play an important role in the establishment and devel-
opment of metastatic foci (9–11).

Current methods to detect tumor recurrence or the develop-
ment of metastasis is largely dependent on clinical examination 
and/or radiographic imaging to identify the location/expan-
sion of tumor growth, such as computerized tomography 
(CT), which uses multiple X-rays to produce cross-sectional 
layers that show detailed images inside the body, including 
bones, organs, tissues, and tumors (12), or positron emission 

tomography based on the injection, inhalation, or swallowing 
of radioactive tracers. Metabolic disturbances associated with 
tumor growth can be then detected by these techniques (13). 
These approaches present some advantages: (i) they are painless, 
easy to set up, and rapid; (ii) they can help in the diagnosis 
and serve as a guide for treatment; (iii) they can be used in 
the treatment follow-up. Nevertheless, these methodologies 
show also important disadvantages such as (i) exposure to 
ionizing radiation (X-ray or gamma rays) with potential risks 
of secondary cancer; (ii) injection of a contrast medium (dye) 
can cause kidney problems or result in allergic/injection-site 
reactions in some patients; and (iii) some procedures require 
anesthesia (14–16). New methods are needed to enable the 
earlier detection of tumor recurrence and metastasis, and to 
improve the diagnosis, treatment, and surveillance of patients 
suffering from sarcoma. Detection of circulating tumor cells 
(CTCs), as a measure of metastatic potential, could provide 
a way to target a patient population more likely to benefit 
from adjuvant chemotherapy. To date, however, the clinical 
significance of CTCs, as a prognostic or predictive marker in 
sarcoma, is uncertain.
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Circulating tumor cells can be detected in the peripheral 
blood and in theory have the potential to extravasate to form 
tumor metastases (17). CTCs are cells that circulate in the 
peripheral blood, while disseminated tumor cells (DTCs) 
are cells located in secondary organs such as bone marrow. 
DTCs then derive from CTCs. Interestingly, Kim et  al. (18) 
suggested that DTCs converted into CTCs can also return 
to and enrich the primary tumor, a process termed “tumor 
self-seeding” or “cross-seeding.” This process was confirmed 
recently by Gundem et al. (19). Detection of CTCs has been then 
investigated across numerous tumor types but most commonly 
in epithelial neoplasms (20). The relatively non-invasive nature 
of CTC isolation and their likely correlation with the metastatic 
process and potential as a biomarker of disease progression 
and therapeutic response warrants further investigation as 
a clinical tool. The present review gives a brief overview of 
the most recent techniques available for CTC isolation from 
sarcoma patients.

MeTHODS FOR iSOLATiOn OF CTCs 
in PATienTS SUFFeRinG FROM 
RARe CAnCeRS

Studies of the detection of CTCs in sarcomas are relatively recent 
due to the limited number of patients, their high diversity/
heterogeneity, and the absence of specific markers expressed by 
sarcoma tumor cells (Table 1).

isolation of CTCs Based on  
non-Specific Parameters
Because CTCs are frequently larger than that of normal circu-
lating cells in blood, cell size represents a potential criterion 
for isolating sarcoma CTCs. Isolation by size of sarcoma cells 
(ISET, Rarecells Diagnostics, France) was first described by 
Chinen et  al. (35). Authors concluded that size was a “uni-
versal” approach for the isolation of CTCs from patients with 
different types of sarcoma. Filtration methods are relatively 
rapid, sensitive, and easy technique; nevertheless, the lack of 
multicentric studies impairs their clinical validity (41, 42). 
After isolation, CTCs are also characterized by immunocy-
tochemistry and more specifically by the absence of (i) white 
blood cell markers, such as anti-CD45 (leukocyte common 
antigen) or anti-CD34 (hematopoietic and vascular-associated 
tissue marker), and (ii) the absence of epithelial-related mark-
ers, such as anti-Pan CK (35).

Another strategy for CTC detection in sarcomas is the use 
of common mesenchymal cell markers such as vimentin. Satelli 
et  al. developed an anti-vimentin antibody allowing the detec-
tion of sarcoma CTCs. This antibody was able to discriminate 
the expression of cell-surface vimentin, mainly associated with 
cancer cells, from the intracellular vimentin expressed by white 
blood cells (34). The authors validated the usefulness of this 
antibody in different subtypes of sarcoma, such as osteosarcoma, 
Ewing’s sarcoma, leiomyosarcoma, angiosarcoma, and pleomor-
phic sarcoma, and defined cell-surface vimentin as a potential 
universal marker for isolating sarcoma CTCs.

Use of “Specific” Markers for 
isolating CTCs
Circulating tumor cells can more easily be identified in sarcoma 
subtypes associated with specific chromosomal translocations 
leading to the expression of a unique fusion product, which 
is found in tumor cells but not in normal cells. This approach 
requires an initial pre-enrichment step of CTCs from peripheral 
blood, which is based more commonly on density gradient. 
This step allows the recovery of the blood mononuclear fraction 
where CTCs are present and must include important positive and 
negative controls to determine the sensitivity of the subsequent 
assay (28).

The best example of this is the Ewing’s family of tumors, in 
which the chromosomal translocation (EWS-ERG or EWS-FLI1) 
can be detected by FISH or the specific fusion gene product can be 
analyzed by RT-PCR (43). Results from a few small clinical studies 
of patients with Ewing’s sarcoma (21–24) or neuroblastoma (33) 
suggest that the detection of CTCs at diagnosis may be associ-
ated with worse clinical outcomes and that CTCs may be an early 
marker of recurrent disease. The fusion gene ASPSCR1–TFE3 
can be detected in peripheral blood from patients with metastatic 
alveolar soft part sarcoma (ASPS) but is undetectable in healthy 
individuals. The clinical significance of CTCs in ASPS remains 
to be established (27). Kelly et al. (28) found that the presence 
of PAX3–FOX1 and PAX7–FOXO1 fusions in CTCs located 
in bone marrow correlated with clinical outcome in alveolar 
rhabdomyosarcoma.

Wong et  al. (29) described a semi-quantitative RT-PCR for 
measuring mRNA levels of osteoblast-related genes like in CTCs 
from peripheral blood of osteosarcoma patients and found that 
type I collagen levels were significantly higher in osteosarcoma 
patients than in healthy subjects. Furthermore, high collagen 
mRNA levels were strongly associated with the subsequent devel-
opment of clinical metastases and may be a prognostic marker 
to identify osteosarcoma patients with a high risk of metastasis/
recurrence at the time of diagnosis (29). Similarly, Hatano et al. 
developed a system with a PCR assay based on an enzyme-
linked immunosorbent assay (PCR-ELISA) to detect circulating 
osteosarcoma cells in a mouse metastatic model. This model was 
characterized by a splicing variant of the transcription factor 
Osf2 restricted to bone and osteosarcoma (30). The level of this 
splicing variant was significantly higher in the blood of mice with 
metastasis than in the control group (30), suggesting that Osf2 
mRNA is a potential marker for detecting CTCs in osteosarcoma.

Various tumor cells produce high quantities of specific 
metabolic enzymes, such as neuroblastomas (sarcoma-related 
tumors), which produce a large amount of tyrosine hydroxylase, 
an enzyme that coverts l-tyrosine to l-3,4-dihydroxyphenyla-
lanine (l-DOPA). The expression levels of this enzyme can be 
measured by RT-PCR in either bone marrow or peripheral blood, 
as a marker of CTCs, and several studies have associated high 
levels of tyrosine hydroxylase mRNA with a poor prognosis in 
neuroblastoma (31, 32).

Multiple studies report the use of specific makers for sarcoma 
CTC detection by flow cytometry, including CD99 in Ewing’s 
sarcoma (36); CD81, CD56, and NB84 in neuroblastoma 
(37,  38); and PAX3 in rhabdomyosarcoma (39). For isolating 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


TABLe 1 | Summary of published studies on circulating tumor cells from sarcoma and neuroblastoma.

Sarcoma type Detection  
method

Method 
for CTC 
enrichment/
isolation

Marker Main conclusion Reference

Ewing’s sarcoma RT-PCR Whole  
blood

EWS-FLI-1/
ERG

Detection of CTCs in BM and PB in patients with 
localized disease. Association with poor outcome

West et al. (21); 
Schleiermacher et al. (22)

Ewing’s sarcoma RT-PCR Whole  
blood

EWS-FLI-1/
ERG

Detection of CTCs in BM and PB correlates with 
disease progression

Avigad et al. (23)

Ewing’s sarcoma RT-PCR Density 
gradient

EWS-FLI-1/
ERG

Detection of tumor cell in BM is associated with 
reduced survival

Fagnou et al. (24)

Ewing’s sarcoma RT-PCR Density 
gradient

EWS-FLI-1/
ERG

No prognostic data Peter et al. (25); Zoubek 
et al. (26)

Alveolar soft part 
sarcoma (ASPS)

RT-PCR Red blood 
cells lysis 
buffer

ASPSCR1–
TFE3

Detection of CTCs in PB of patients but not in 
healthy individuals. Clinical significance must be 
validated

Hoshino et al. (27)

Rhabdomyosarcoma 
(ARMS)

RT-PCR Density 
gradient

PAX3–FKHR
PAX7–KFHR

Detection of minimal disease in PB and BM. Larger 
number of samples must be analyzed to correlate 
MRD with clinical relapse

Kelly et al. (28)

Osteosarcoma RT-PCR Density 
gradient

mRNA of 
osteoblast-
related genes

From analysis of peripheral blood, collagen type 
I had a higher expression in OS patients than in 
healthy people. Moreover, expression correlated 
with the development of metastases

Wong et al. (29)

Osteosarcoma PCR-ELISA Density 
gradient

Osf2 mRNA Osf2 mRNA was significantly higher in the blood of 
mice with metastasis than in controls

Hatano et al. (30)

Neuroblastoma RT-PCR Density 
gradient

Tyrosine 
hydroxylase

Association of CTC expressing high levels of 
tyrosin hydroxylase with poor prognosis

Burchill et al. (31); Träger 
et al. (32); Kuroda et al. (33)

Multiple sarcomas 
(OS, leiomyosarcoma, 
angiosarcoma, and 
pleomorphic sarcoma)

Flow cytometry CD45- 
positive  
cells 
depletion

Cell-surface 
vimentin

CSV as a universal sarcoma CTC marker by using 
a monoclonal antibody. This marker has not yet 
been clinically validated

Satelli et al. (34)

Multiple sarcomas ISET Cell size ISET was able to identify CTCs in patients with 
high-grade sarcoma

Chinen et al. (35)

Ewing’s sarcoma Flow cytometry Density 
gradient

CD99 Bi-color flow cytometry for CD99+CD45− cells 
provides a new strategy for detecting circulating 
Ewing’s sarcoma cells. The clinical evaluation and 
validation of this method is ongoing

Dubois et al. (36)

Neuroblastoma Flow cytometry Whole  
blood

CD81 and 
CD56

Triple-color flow cytometry analysis using CD81/
CD56/CD45 is useful for detecting neuroblastoma 
cell lines in peripheral blood. Further clinical 
validation of this approach is needed

Nagai et al. (37); Bozzi 
et al. (38)

NB84 NB84 marker improves the detection of infiltrating 
neuroblastoma cells, especially in cases of dubious 
positivity of CD56 marker

Rhabdomyosarcoma Flow cytometry Red blood 
cells lysis 
buffer

PAX3 Almazán-Moga et al. (39)

Soft-tissue sarcoma Immunocytochemistry CellSearch 
System

EPCAM and 
cytokeratins 
9/18/19

Detection of CRT in soft-tissue sarcomas 
expressing the EpCAM epithelial marker. No 
demonstration of clinical significance

Vincenzi et al. (40)

BM, bone marrow; PB, peripheral blood; MRD, minimal residual disease; ES, Ewing’s sarcoma; OS, osteosarcoma; CSV, cell-surface vimentin; CTC, circulating tumor cells; ISET, 
isolation by size; density gradient, isolation of mononucleated cells.
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CTCs, pre-enrichment steps are required in combination with 
specific antigen recognition for discriminating CTCs from cir-
culating hematopoietic cells (anti-CD45 marker) and epithelial 
cells (pan-cytokeratin-related marker) (42). In contrast to the 
previous impression that EpCAM expression was restricted to 
epithelial tissue and epithelial-derived tumors, a meta-analysis 

of gene expression profiles demonstrated that EpCAM mRNA 
was expressed by different sarcoma cell lines (44). Interestingly, 
subsequent immunohistochemical staining of archived solid 
tumor samples revealed the expression of EpCAM protein in a 
subset of angiosarcoma, leiomyosarcoma, and in all the osteo-
sarcoma samples analyzed (44). These works are in agreement 
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with the expression of EpCAM reported on CTCs isolated from 
sarcoma patients. Vincenzi et al. (40) detected EpCAM-positive 
CTCs in 43% of metastatic soft-tissue sarcoma patients using the 
CellSearch System.

CiRCULATinG TUMOR CeLLS vS. 
CAnCeR STeM CeLLS

Cancer stem cells (CSCs) share some similarities with physi-
ological stem cells in terms of self-renewal, production of dif-
ferentiated progeny, utilization of common signaling pathways, 
and maintenance of the stem cell niche (8). However, CSCs 
differ in their tumorigenic activity, as in contrast to physiological 
stem cells they can induce the formation of tumor masses when 
transplanted into animals (28, 45).

Several studies suggest that tumor recurrence is due to an 
increase in CTC number and subsequent transformation of some 
of these circulating cells into CSCs (46–50). Notable findings in 
breast cancer demonstrate that a subclone of CTCs express CSC 
phenotypes (51–53). Moreover, accumulating evidence shows 
that a subset of CTCs and CSCs exhibit an epithelial–mesen-
chymal transition (EMT) phenotype (54), enabling these cells 
to survive in the peripheral blood circulation and actively cause 
tumor relapse. These findings suggest that EMT links CTCs 
and CSCs. The hypothesis that a subgroup of CTCs have CSC 
hallmarks, such as self-renewal and asymmetric cell division, is 
reinforced by the expression of related molecular markers such 
as Nanog, Oct4, or Nestin by a subpopulation of CTCs (55, 56). 
In addition to the commonly known stem cell markers, studies 
have attempted to identify specific markers that enable the detec-
tion of CSCs in sarcoma. To date however, only a few reports 
have shown the existence of CSCs in bone and soft-tissue sarcoma 
(57–60). Gibbs et al. found a subset of stem-like cells in bone sar-
comas with the capacity to form sarcospheres and to self-renew in 
culture. Furthermore, they found cells derived from these tumors 
that express mesenchymal stem cell markers: Stro-1, CD44, and 
CD105 (57). For the first time, Wu et al. (58) showed the exist-
ence of a side population of cells in mesenchymal tumors that 
was enriched with tumor initiating cells and established a direct 
correlation between the number of this side population cells and 
the aggressiveness of the tumors. Another study carried out by 
Murase et al. (60) demonstrated in several human osteosarcoma 
cell lines the existence of a side population with self-renewal and 
cancer-initiating capacity in vitro and in vivo, supporting the idea 
that bone sarcomas might contain a population of CSCs. Bian 
et  al. compared the peripheral blood of bone sarcoma patients 
and healthy subjects and observed a higher quantity of mesen-
chymal stem cell-like cells in the first group. This increment was 
accompanied by higher levels of HGF and VEGF in the plasma 
(59). It has been described that HGF can enhance the prolifera-
tion, migration, and invasion potential of osteosarcoma cells (61), 
and VEGF promotes mesenchymal stem cell proliferation and is 
involved in angiogenesis and cancer development (62–64).

Greco et al. (65) analyzed a series of bone sarcoma patients 
and found a correlation between aldehyde dehydrogenase 
(ALDH) activity and metastatic potential. One study carried out 
by Martins-Neves et  al. suggested the co-existence of different 

CSC within osteosarcoma, which seemed dependent on the 
histological subtype. Distinct CSC subsets may assume dif-
ferent functions according to their role in the maintenance of 
self-renewal (spheres) or chemo-resistance (ALDH activity and 
side population) (66). Collectively, it appears that CSCs may be 
present in sarcoma, but the exact composition of these cells and 
their correlation with CTCs remain to be established.

COnCLUSiOn AnD FUTURe 
PeRSPeCTiveS

The CTC domain is technically challenging, as CTCs are very rare 
with only a few found per milliliter of peripheral blood. They have 
a highly heterogeneous phenotype and are not the only rare cells 
in blood; thus for isolation and study, they must be distinguished 
from epithelial and non-epithelial non-tumor cells, atypical 
non-tumor cells, endothelial cells, and other rare circulating cells 
such as stem cells. Many authors have previously isolated CTCs 
from carcinomas and demonstrated their prognostic value in 
various carcinomas (17). However, the majority of methods used 
for isolating these CTCs are based on epithelial antigen-targeted 
antibodies, and thus they neither allow the isolation of the most 
malignant CTCs undergoing EMT nor the detection of CTCs 
from sarcomas (42, 52). In recent years, the technologies for CTC 
enrichment and molecular characterization have significantly 
improved. Their application in large clinical trials will not only 
increase our understanding of the biology of CTCs and their 
contribution to local recurrence and distant metastasis but will 
also open another non-invasive route for biomarker discovery. 
Importantly, the specificity of CTC markers needs to be improved 
and validated. In sarcomas characterized by chromosomal trans-
locations, where aberrant gene fusion products are constitutively 
present, this is a relatively straightforward task. As described by 
Wong et al. in osteosarcoma, the detection of simple overexpres-
sion of non-modified genes is much more complex (58). Non-
specific markers of osteoblastic differentiation are present in a 
variety of circulating cells. One way in which Chinen et al. (35) 
attempted to cut through this background noise was by combin-
ing size- and marker-specific approaches (58).

Current (RT)-PCR-based methods to detect tumor cells in 
peripheral blood and/or bone marrow in soft-tissue sarcomas 
show several limitations. They are specific to a subtype of sarcoma 
and cannot be extended to another subtype; their “sensitivity” 
depends on the level of expression of the targeted transcript in the 
tumor cells, which can be variable; and their specificity depends 
on the absence of similar transcripts (in the case of non-mutated 
transcripts) in peripheral blood cells. Finally, they neither allow a 
reliable enumeration of CTCs nor to visualize CTC morphology 
and to study their protein expression and invasive potential.

Vimentin is an interesting marker for the identification of 
sarcoma CTCs, as it is associated with AKT1 activation in the 
process of sarcoma tumor cell motility and invasiveness (67). 
Vimentin expression is not specific to sarcoma CTCs (68). 
Several authors have reported its expression in carcinoma CTCs, 
where it is associated with an EMT phenotype, “stemness,” and 
increased malignant potential (67, 69, 70). Vimentin expression 
in sarcoma CTCs could be a marker of increased aggressiveness 
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and invasiveness of these tumor cells. Consequently, future stud-
ies are required to better understand the biological significance of 
vimentin expression in CTCs and to correlate its expression with 
clinical outcomes.

Combining technological strategies for isolating CTCs may 
enhance the veracity of the results obtained. Gallego et al. (71) 
analyzed CTCs in patients suffering from either alveolar or 
embryonic rhabdomyosarcoma, combining the detection of 
a fusion gene product and muscle-specific markers, including 
MyoD1 and myogenin. The authors concluded that (i) CTCs were 
detectable in peripheral blood in a high number of patients, (ii) 
CTCs detected at the end of treatment were markers of a poorer 
prognosis, (iii) CTCs preceded the metastatic relapse, and (iv) 
the detection of CTCs by multiple gene expression was highly 
efficient and reproducible (71). In a recent study, Satelli et  al. 
(72) compared the detection of CTCs in breast cancer patients by 
using the CellSearch® (EpCAM-based technique) method and 
the detection of cell-surface vimentin. They concluded that the 
summation of CTCs detected by both methods appeared a much 
stronger and more reliable predictor of therapeutic outcome in 
metastatic breast cancer patients undergoing therapy. EpCAM 
may be useful for the isolation of CTCs in sarcoma as part of an 
approach that combines multiple methodologies (71). Although 
Cellsearch® is considered as the gold standard for CTC detection 
methods, new methods of detection based on diverse technical 
approaches have been recently developed (42, 73). The isolation 
of CTCs in sarcomas by the detection of membranous makers, 
such as Cellsearch® and DEPArray™, for instance, is perfectly 
justified even if the results remain to be validated in clinical 
practice (42). The key question now is to determine if the isola-
tion of single CTCs is the most pertinent parameter to study 
compared to the clusters of CTCs, which are potent initiators of 
metastasis (74, 75).

Circulating tumor cells undoubtedly play an important role 
in the processes of tumor initiation and progression, as well as 
during metastasis formation and relapse of the disease (76, 77). 
Indeed, in heterogeneous tumor tissue, only CSCs are thought 
to initiate tumor growth after grafting into immunodeficient 

mice (78). The coexistence of different CSC, as proposed by 
Martins-Neves et al. (66), implies that therapies targeting CSCs 
should consider their clonal heterogeneity to enable their effec-
tive eradication. Thus, a full characterization of CSCs by tumor 
subtype may provide key information for the development of 
new effective anti-neoplastic therapies. Several studies have 
elucidated the existence of a CSC subpopulation in sarcoma. 
Findings from studies of various types of sarcoma suggest puta-
tive CSCs markers such as Nanog, Oct4, and Nestin (55, 56), 
as well as Stro-1, CD44, and CD105 (57) in a subpopulation 
of CTCs. Nevertheless, despite published results especially of 
various osteosarcoma and rhabdomyosarcoma cell lines, the 
phenotype of CSCs remains unclear, and their use for diagnostic 
or therapeutic purposes is ambiguous (79). The identification of 
a more accurate genetic profiling of this subpopulation of cells 
could serve to identify new specific markers and therapeutic 
targets. Further studies will contribute to their characterization 
in human bone and soft-tissue sarcomas and will help to better 
understand their pathogenesis (80).

The use of CTCs might be an important diagnostic tool for the 
earlier detection of metastatic disease for monitoring therapeutic 
response and for identifying the time point during treatment at 
which an adjustment in therapy is indicated. CTC analysis of 
well-annotated patient samples such as those collected during 
prospective clinical trials will help to develop this exciting field to 
offer new insights into the pathogenesis of sarcoma and ultimately 
to improve the future clinical management of sarcoma patients.
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